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CONVEXITY ON GRASSMANN MANIFOLDS?)

by Herbert BusemMaANN

The definition of a convex function presupposes that the
range of the independent variable is a convex subset of a linear
space. However, the question of what convexity means on
ranges of different types, in particular on Grassmann manifolds,
arises naturally, for example in the search for an analogue to the
Legendre Condition for a-dimensional variational problems in
an n-dimensional space when 1 << a << n—1. Thus the first
new concept of convexity—total convexity in our language—
occurs implicitly in the work of Carathéodory on such problems.
A general and detailed discussion of convexity from the point
of view of the calculus of variation was given by Wagner [11].

After the concept of convexity on Grassmann manifolds has
been analyzed, it appears that the theory of convex bodies is ready
for a significant extension, in that many theorems on convex
bodies are probably special cases of more general theorems deal-
ing with these new concepts of convexity.

Before entering a detailed discussion a typical problem
concerning the meaning of convexity will be useful. Consider
a convex body K with interior points in the n-dimensional
euclidean space £". For a given simple a-vector (1 < a < n—1)
A #~ 0, let Py (A) be the a-dimensional area of the projection
of K on an a-flat parallel to %A and define

PQA) =[AIP, (W, PO)=0,

where ] A \ is the absolute value (also called norm or area) of
A Clearly |
PkW = |k|PA) for all real k.

Fora = 1, n — 1 the a-vectors form linear spaces; in both cases
it was proved by Minkowski that P (%) is a convex function
(compare [5, pp. 45, 51]).

1) Talk delivered at the Zurich Colloquium on Differential Geometry and Topology,
June 1960.
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For 1 < a < n—1 it has a priort no meaning to say that
P () 1s convex, because the simple a-vectors form a Grassmann
cone and not a linear manifold. We wish to find out whether
we can atiribute a reasonable meaning to this statement.

We will find that there are three, possibly four, significant,
increasingly stronger concepts of convexity, the weakest is con-
vexity in any linear subspace lying entirely: on the Grassmann
cone and follows for P (?A) at once from Minkowski’s result, the
strongest is the total convexity found by Carathéodory.

First some notations. We use the same symbol for a vector
space and the corresponding affine space. V" is the n-dimen-
sional affine space or vector space over the reals, V, the space
of a-vectors 1 <a <n—1, Z, the origin of V; and G the
Grassmann cone in Vg consisting of all simple a-vectors, so that
Vi = V] =G and V,_; = G,_;. We will encounter expli-

k
plicitly only simple vectors so that symbols like ; and > UA;
j=1

always mean simple vectors.
Let V" be realized as the set of n-tuples z', ..., 2" of real
numbers. A euclidean metrization of V" has the form

[Zgu (' —y) (x* =y ]* ,

where Zg, x' x* is, of course, positive definite. [Z (x'—y)*]*
1s the trivial euclidean metric. Each euclidean metrization of
V" induces a euclidean metric in V3, the trivial metric in V) is
induced by that in V".

A hyperplane in V; considered as affine space is stmple or
a Grassmann plane, if the coefficients of its equation (except for
the constant term) satisfy the Pliicker identities or form a
simple a-covector. In terms of the trivial metric this means
that the perpendicular through Z, to the hyperplane falls on Gj.
A function defined in a subset of V7 is continuous if it is continu-
ous with respect to one, and then all, euclidean metrics induced
in V3.

The sources for the following discussion are the already men-
tioned paper [11] of Wagner, [6], [7] and principally [8].

Consider a continuous function f () defined on G,. For
simplicity, and because this i1s the most important case, we



CONVEXITY ON GRASSMANN MANIFOLDS 141

assume that f () is positive and positive homogeneous of
degree 1, i.e.,

£ >0 for A # 0 and f(kA) = kf () for k=0 . (1)

The weakest form of convexity was already mentioned: f ()
is convex if it is convex in each linear subspace lying entirely
in G,. This is equivalent to

FQ + W) = (W) +F (W), (2)

because the simplicity of U;, %Ay, A; + A, implies that the a-flats
parallel to UA; through Z, intersect in an (a — 1)-flat. For
a = 1, n — 1 the relation (2) yields

f(f%tj)gif(%j) for all k=2, (3)
i=1 ji=1

but (2) does not imply (3) for 1 < a < n—1. Iff(A) satisfies
(3) we call it extendably convex, because (3) is clearly necessary
and sufficient for f (A) to be extendable to a convex function
defined in all of V3.

This condition may be rephrased. In V; we consider the
indicatrix I, of f () which is the locus on G} defined by f () = 1.
The function f (A) is extendably convex if and only if I, lies on
the boundary of its own convex closure in V3, hence if and only
if I, possesses at each point a supporting hyperplane in V7.

Such a hyperplane will in general not be simple. If I,
possesses at each point a sumple supporting hyperplane, we call
f (A) totally convex.

These concepts would be of very little interest if they did not
have interesting geometric meanings tn V*. It is wellknown that
Minkowski interpreted f () for ¢ = 1 as a length, less known
that he also studied f () fora = n — 1 as an area (see [5, p. 64]).
We extend his ideas to general a.

Let p, (M) be the a-dimensional Lebesgue measure induced
by a euclidean metrization of V" of a set M in an a-flat. For
a given a-vector A # 0 we consider the oriented a-flats A parallel
to A and n each A the open sets, or closures of open sets, M
oriented as A and satisfying p, (M) = ] A | ). This condition

1) For 0 < pg (M) < oo it is always assumed that M is open or the closure of an
open set.
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is independent of the choice of the euclidean metric. The
totality of all sets M obtainable from 2 in this way is denoted
by [M] and may be identified with % because U and [ M] deter-
mine each other uniquely. [M] = U entails [— M] = — A.
With the vanishing a-vector we identify the totality of all Borel
sets M with p, (M) = 0 and lying in a-flats.

A function f(A) (satisfying (1)) defines an affine a-area
through

«(M) =) if [M]=9.

In general o (M) # o (— M) because we do not assume
fA) = f(—A). If f(A) = f(— A) we call { and the area «
symmetric.

Consider an oriented closed a-dimensional polyhedron P in
V® with oriented a-faces Fy, ..., Fi. If

k
x(— Fo) = z o« (F;) (m)
1=j

for any P, we say that the a-flats minimize f-area or «-area. 1f
[F7;] = A; then

k k

Z QIJ = O or - QIO = Z S)IJ

§=0 i=1
so that (m) is equivalent to

2 ()

1

\ J

and 1s therefore implied by extendable convexity. The converse
ts not known for 1 < a << n-—1 and amounts to an involved
semitopological question. The difficulties may be seen from
the fact that for ¢ = 2, n = 4 any 7 simple 2-—vectors are
dependent, but any two planes parallel to two of these 2-vectors
will in general intersect iIn points only. This means that
comﬁaratively few sets of 2-vectors whose sum vanishes cor-
respond to closed polyhedra, so that (m) provides rather little
information on general sums X9;.
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In the cases ¢ = 1, n — 1 extendable convexity becomes
ordinary convexity and is easily seen to be equivalent to
(m)1). The result goes back to Minkowski. Therefore, when
1 < a< n—1, convexity of f () is equivalent to (m) for P
which lie in (a -+ 1)-flats.

For 1 < a < n—1 the condition (m) is the natural analogue
to the Legendre Condition. It it should prove weaker than
extendable convexity—the evidence available at present speaks
against this possibility—it would therefore be the fourth signi-
ficant form of convexity to which we alluded above. FExtendable
convexity is probably the relevant concept for the theory of convex
bodzes. '

The interpretation of total convexity in V" requires the
concept of total normality or total transversality, which is at
first difficult to grasp. In order to at least avoid the complica-
tions arising from orientation we assume that f or the area «
1s symmetric, i.e., that f (W) = f(— A) and indicate later the
changes necessary for non-symmetric f.

In the simplest case @ = 1 the line L is normal to the hyper-
plane A at the origin z =L n H of V" if for any set ¥ < L
and any other line L’ through L ~ H the projection M’ of M
parallel to H on L’ satisfies o (M') = o (M). (Figure 1.) If
we choose as M a segment of «-length 1 beginning at z, its end-
point ¢ lies on the indicatrix /, of f, and we see that L is normal
to H if and only if the hyperplane H, parallel to H through ¢
1s a supporting hyperplane of /,, because only then will the end-
point ¢ of the projection of M lie on or outside of 7, for all choices
of L'.  Normality of L to H is the term used in Banach space
theory, whereas in the calculus of variations one speaks of
transversality of H to L. Thus a length induces a concept of
normality and transversality. We generalize this to arbitrary a,
leaving as much free play for the dimensions as possible.

If an a-dimensional affine area f or ais given, 1 < a < n — 1,
we wish to define when the a-flat A is totally normal to the b-flat
B,1=b=n—1atthe d-flat D= A n B, d < min (a, b), in

1) The conditions for the equality sign are different for ¢ = 1 and a — n — 1,
sce [8, p. 49].
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— A’

- j/;////j/

Fig, 2.
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A+B=0Q, g=dmQ=a+b—d=n We write this

relation as

D,Q

t

D,
A —tQ

B or B A, (4)

but read the second relation as: B is totally iransversal to A at D

in Q.

We distinguish two cases:

1) d=0. Then A n B is a point, it is convenient to
always take the same point, say the origin z. Let M be a set
in A with 0 < o (M) < oo, and consider any a-flat A" in Q with
A" A B = z (then A’ + B = Q) and the projection M" of M
on A’ parallel to B. The relation (4) means that

a(M") = o (M) (5)

for any choice of A’'.
This inequality is independent of the choice of .

2) d>0. (The case d =1, a=>b= 2 1s illustrated in
Figure 2.) Assuming D 5z we choose in B a (b — d)-flat €' with
CnD =2z Then C+ A =0, CnA=zand we define (4)

0

by A i—;— C. This definition seems to depend on the choice

of C,but doesnot. If C'isreplaced by another (b — d)-flat C = B
with C n D = z, then the projections M and M’ of M = A
on A’ using C and C respectively, have the same measure:
o (M') = « (M), because it is easily seen that g, (M) = p, (M’).
Therefore (5) for M’ entails (5) for M’ and conversely.

When A and B are known then D and Q are, and we omit
them in (4). If @ + b = n then Q = V" is known and will be
omitted ete.

The existence of A totally normal to B for given B, D, Q
follows at once from the assumption that f () is positive and
continuous. We saw already in the simplest case d = 0, ¢ = 1,
b =n—1, ¢ =n that the existence of B totally transversal

I’ Enseignement mathém., t. VII, fasc. 1. 10
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to A for given A, D, Q is a convexity property. In the general
case we find:

f(A) or « is totally convex if and only if a B totally transversal
to A for given D <« A < C exists for all dimensions a, b, d, g
satisfying d < min (a,b), g =a 4+ b—d < n.

There are two simple, but very important facts, relating
normality for different dimensions, the second of which was
used already in a special case when reducing d > 0 to d = 0,

(6) If A is (totally) normal to B at D and d < b’ < b then
A is (totally ) normal to any b’-flat B’ through D in B. (L ~| L,
in Figure 1.)

(7) If A is (totally) normal to B at D and the b'-flat B’ lies
in A + B and contains B but not A, then A is (totally) normal
to B at D' = B’ n A.

The parentheses about “ totally ” indicate that (6) and (7)
are also valid for the ordinary normality to be defined presently.

Repeated application of (6) and (7) shows that f(A) is
totally convex if for a given a-flat A an (n — a)-flat transversal to A
at a point exists. This special case 1s Carathéodory’s form of the
Legendre Condition [9, paper XX, which 1s therefore equivalent
to total convextty.

It is clear—and this is Carathéodory’s starting point [9, p. 364]
—that total convexity implies (m). With the previous notations,
if A is the a-flat containing the face /'y of P and B is an (n — a)-
flat totally transversal to A at a point, then by the definition
of total transversality the projection F; of F,(j = 1) parallel
to B on A satisfies « (F;) < a (F;). For topological reasons

k
U F; o F,, hence (m).

j=1

If A is totally normal to B at D then A is by (6) totally
normal to every (d + 1)-flat in B through D. The converse
holds trivially if b = d + 1, less trivially, when a = d + 1; and
d = min (a, b) — 1 is the only case where the converse 1s always
true. This leads us to the definition of normality.

A is normal to B at D in Q or B is transversal to A at D in Q,

in formulae
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D.Q, 1

4
if A is totally normal to every (d + 1)-flat through D in B.

Thus total normality and normality are in general equivalent
only for d = min (a, b)) — 1. As stated before, (6) and (7) hold
for normality, so that we can draw the analogous conclusion,
namely that B transversal to A for given A, D, Q exists when

an (n — a)-flat transversal to a given a-flat at a point exists.
This special case is Wagner’s concept of transversality.

B transversalto A for given A, D, Q exists if and only if { (A) ts
convex. Itsuffices for convexity that B exists in the case d = min) a,
b)—1 or even only for b = 1 (hence d =0, ¢ =a + 1).

The relations between the various concepts are summarized
in the Table.

TABLE
Conyezxity Eaxtendable Convexity — Total Convexity
Def: Def:

O+ )2 £+ £ X %) £ 27

j=1

N |
f (A) convex in each f (A) extendable to a
(a+1)-flat convex function in V,

I J !

! I, possesses supporting Def: I, possesses

hyperplanes in V; simple support-
| l T D ing hyperplanes
(m) for P in (a-+1)-flats (m) for general P in VZI
A 3
: ! : M
Existence of B with Existen(:(la of B
with
5 ,Q b
322 4
for given A, D, Q ' t
¢] ? for given 4, D,
Existence of B with
D,
B < A

t
if d = min (a, b) —1
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If f is not symmetric (f (A) £ f (— A)) then in the definition
of (total) normality the flat B remains non-oriented, A4 is oriented
and A’ has the orientation induced by that of A through pro-
jection parallel to B. The values « (M) and o« (M’) are deter-
mined by these orientations.

Our exposition seems to justify the restriction to the case
b =n-—a, d =0 considered by Carathéodory and Wagner,
but in discussing symmetry and equivalence of normality we
will find that the other cases prove most interesting. The
answer to the equivalence problem requires the concept of qua-
dratic area: f (W) or « is quadratic if 2 (N) s a quadratic form in
the components of A. Clearly a quadratic area satisfies f ()
= f(— A) and is extendably convex, but need not be totally
convex. A euclidean area, i.e. an area p, induced by some
euclidean metrization of V" is quadratic, the converse holds only
for a = 1 and ¢« = n— 1. Therefore a quadratic area is eucli-
dean in every (a + 1)-flat but not necessarily in every (a + 2)-flat.
In fact, if the latter is the case, then the area 1s euclidean.

If a convex or totally convex area « 1s given then the relations

are defined for two a-flats A, A" with D = A n A’ provided
d < a and 2¢ —d < n. It is natural to ask when these rela-
tions are symmetric. Since for f () =+ f (— A) the flat A has
to be taken as oriented and A’ is non-oriented the problem 1s
natural only for symmetric areas. Our preceding remarks show
that for d = a — 1 the normality relation is symmetric when
the area is quadratic.

The problem is wellknown for @ = 1 and was solved long ago
(1916) by Radon and Blaschke. A convex 1-area is a Min-
kowski metric and our space is a finite-dimensional Banach
space. The answer to the problem is as follows: if n = 2, then
symmetry of normality between lines does not imply that the
metric is euclidean (Radon [10]), but for n > 2 it does
(Blaschke [3]). These results were rediscovered by the Banach
space people in the 1940’s and formulated in their own language.
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In our case we have more free play and the problem presents
itself in the following form:

Let a symmetric ( totally) convex a-area o and a Symmelric
(totally) convex b-area B be given, moreover fized numbers d, q
such that d <a<b<q=a-+b—d=n Then « defines

A

D : :
the relation A(_t—) B. When is this relation equivalent to B —

(t)
which ts defined by B ?

The answer 1s this:

If the two relations are equivalent, then both o and { are qua-
dratic, unless a +b = n and d = 0.

In the latter case, when a totally convex a-area is given, an up
to a constant factor unique lotally convexr (n— a)-area can be

% /
constructed such that the relations At_ B and B Fl A are equi-

valent.
The special case o = B leads to symmetry of normality and
we find:

D D
If « is a (totally ) convex a-area and if A @\ A" implies A’ (_tj A

then o is quadratic unless n = 2a and d = 0. In the latter case
there are for each a =1 non-quadratic totally convex areas for

which A i—‘ A’ implies A’ E— A.

For a = 1 all areas or Minkowski metrics with this property
are known through Radon [10]; in such generality the problem
has not been solved for a > 1.

In special cases we can assert that a (totally) convex area «
1s euclidean if normality of a-flats at d-flats is symmetric, namely
when 2¢ < n and d =0 or 2a > n and d = 2a — n.

Not all results for special dimensions have interesting exten-
sions. An example is provided by the integral geometry of
(symmeltric) affine areas (for the following see [7]). Since affine
areas are invariant only under translations, one would conjec-
ture that a true integral geometry exists only for the translation
group. Such a theory does exist, but is not essentially new,
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because there is a simple method of transcribing the results of
the theory for the euclidean areas and this group, as it is deve-
loped in Berwald and Varga [2], directly without new proofs so
that they become valid for affine areas. The only surprise is,
that results into which areas of different dimensions enter remain
valid for completely unrelated, and not even necessarily convex
affine areas.

Contrary to our conjecture Blaschke showed in [3] that the
Minkowsky plane possesses a much richer integral geomeiry, in
which most of the euclidean results for the full group of motions
of E£? hold. The central point is the existence of a positive
density dL for all lines in the plane, such that for any segment §
the relation

a(S) = [dL1)

LAS+#0

holds. Thus one might hope (and Blaschke predicted in [3])
that there 1s a rich integral geometry for a reasonably general
a-dimensional area «. As criterion we take the existence of a
positive density dB for the (n— a)-flats such that for any
convex set § in an a-flat the relation

«(S) = [dB

BnS#0

holds. If n > 2 such a density exists only if « is extendably
convexr (which is a reasonable condition) and has in addition a
spectal form which deprives the theory of much of its interest.

We come to the new problems arising in the theory of convex
bodies through the new concepts. The classical theory proves
for many functions derived from one or several convex bodies
in £" and depending on the position of a hyperplane, that they
are convex. As our example of the projection function P ()
shows these functions are often naturally defined for a varying
a-flat, and the classical results only contain the convexity of the
new functions, and not extendable or total convexity.

1) The normalization of dL or dB differs from the usual one by a constant factor.
‘We emphasize that dL and dB be positive because this condition causes the trouble for dB
when n > 2.
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No method for establishing total convexity is known.?)
7] shows that in earious cases extendable convexily can be proved
with the help of integral geometry. The following is a typical
example: Let F be a closed convex hypersurface in E". For a
given simple a-vector A # 0, (¢ = 2), take the family of oriented
a-flats L, parallel to A, let dL, be their density and form, with
p.-41 Meaning ordinary (a — 1)-dimensional area,

J(mzlml.jpa~1(LAmF)dLAa J(O)=O
L4#Fn0
Then J () ]k [ J(A) and J (A) is extendably convex
because \
j'pa (LynF)dL, -fln A W |dF, ,

L4#FA0

where n, is the exterior unit normal to F' at p, dF, 1s the area
element of F and 2A® is the supplementary (n — a)-vector to 2.
Extendable convexity follows from | Y, A %; | £ Y [ n, A UAj|.

W. Fenchel and the author noticed that the examples in [7]
can be subordinated to a general principle, which is not discussed
here because it is not yet clear how far it carries.

Whether the projection function P () is extendably convex
is not known. Those familiar with the theory of convex bodies
will recognize this as a novel problem, because

P =) V.- (K, M), tf M, convex and [M] = A°.

As usual (see [5, p. 40] V, (K, M) is the mixed volume of K
taken n — a times and M taken a times. The just mentioned
general principle proves V,_, (K, M) = Q () to be extendably
convex.

We conclude with an interesting and probably quite dificult
convexity problem. In its simplest form it is this: Let K be a
convex body in E" with z as interior point and center. For an
a-vector A # 0 let A be the a-flat parallel to U through z and put

(W) = [Al/p,(AnK), a(0)=0.

1) This difficulty was already encountered by Carathéodory when he tried to esta-
blish his transversality condition for given variational problems.
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This function is convex; the proof of convexity for the problem
in a slightly more general form implies the Brunn-Minkowski
Theorem (the relation between the two theorems is discussed in
Barthel [1]). This shows that the extendable convexity of o (),
if true, 1s a deep theorem with many itmplications.

[4]
(5]
[6]

[7]
(8]

[9]
[10]
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