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proof which possibly goes more to the heart of the matter emerges
from the point of view of Atiyah and Hirzebruch. They define
the groups:

KU (X) = n[E™'X; Z x By] i<0

where w[A, B] denotes homotopy classes of maps. In this
terminology the periodicity formula: Q2 (Z X By) = Z X By
is expressed by:

KU (X) = KU'*2(X) i< —2.

Now Atiyah and Hirzebruch use this recurrence to define K U* ( X)
for all integers i, and then show that the resulting functor
X - { KU (X)} satisfies all the axioms of a cohomology theory
—except for the dimension axiom. Further they observe that
the uniqueness theorem of Eilenberg-Steenrod can be generalized
to yield a spectral sequence relating E, = H* (X; KU* (p)) to
KU* (X). (Here KU'(p)—the KU-—theory of a point—is Z
if ¢ is even and O otherwise.) This sequence immediately
implies the proposition. (See [8].)

To return to our bundles £™ on P,. By the proposition just
discussed the restriction of £™ to P,_, will be trivial if m = n — k.
By trivializing this element on P,_, we obtain bundles £™ on
P, which under the projection =: P,— P, go over into &",
m =n—=Fk. In particular, =* ch (£") = (e*— 1)". Thus in
any case we obtain these criteria the S-reducibility of P, ,:

P, is S-reductble only if the coefficient of x"~* in (e* — 1)™,
m =n —k, is an integer.

This is the number theoretical condition from which Atiyah
and Todd deduce theorem III. Their result is the best possible
one obtainable from the test-space By, because one can show
quite easily, with the spectral sequence alluded to earlier, that
the elements 1, &"; n—1 =m =n—k; form a base of
KU (pn,k)'

BIBLIOGRAPHY

[1] Apawms, J., On the nonexistence of elements of Hopf invariant one.
Ann. of Math., 72 (1960), 20-104.
[2] Ativam, M., Thom Complexes (to be published).




[12]

[13]
[14]

[15]
[16]

[17]

R. BOTT

Atrvau, M., and F. Hirzesrucu, Riemann-Roch theorems for diffe-
rentiable manifolds. Bull. Amer. Math. Soc., 65 (1959), 276-281.

and J. Topp, On complex Stiefel Manifolds. Proc. Camb. Phil.
Soc. (1960).

Borr, R., The stable homotopy of the classical groups. Ann. of Math.,
70 (1959).

—— Quelques remarques sur les théoremes de périodicité. Bull. Soc.
Math. France (1959), 293-310.

- —— and J. MiLnor, On the parallelizability of the spheres. Bull.

Amer. Math. Soc., 64 (1958), 87-89.

Eckmany, B., Gruppentheoretischer Beweis des Satzes von Hurwitz-
Radon iber die Komposition quadratischer Formen. Comm. Math.
Helo., 15 (1943), 358-366.

HirzeBrucH, F., A Riemann-Roch theorem for differentiable manifolds.
Séminaire Bourbakt (1959), no 177.

Hurwrrz, A., Ueber die Komposition des quadratischen IFormen.
Math. Ann., 88 (1923), 1-25.

—— Ueber die Komposition quadratischer Formen von beliebig
vielen Variabeln. Nachr. Ges. d. Wiss. Géttingen (1898), 309-316.

James, I., The intrinsic join. Proc. London Math. Soc. (3), 8 (1958),
507-35.

Cross sections of Stiefel manifolds. Ibid., 536-47.

—— Spaces associated with Stiefel Manifolds. Ibid. (3), 9 (1959),
115-40.

Kervaire, M., Nonparallelizability of the n-sphere for n > 7. Proc.
Nat. Acad. Sci. U.S.A. (1958), 283-283.

Rapon, J., Lineare Scharen orthogonaler Matrizen. Abh. Sem. Ham-
burg, 1 (1923), 1-14. |

Spanier, E. and J. H. C. WHiTEHEAD, Duality in homotopy theory.
Mathematica, 2 (1955), 56-80.

Department of Mathematics

Harward University

Cambridge, Mass. U.S.A.




	...

