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VECTOR FIELDS ON SPHERES
AND ALLIED PROBLEMS?)

by Raoul Borr 2)

The problem on whose development I would like to report is
very easily stated.

A set of kmaps f;: E,—~ E,, i = 1, ..., k; of Euclidean n-space
into itself will be called an orthogonal k-system if:

fi(x)=x forall xeE,, and

f1 (@), ooy fi (&) form an orthonormal system whenever x is a unit
pector.
With this terminology our question is the following one:

Find the greatest integer k, so that E, admits an orthogonal
k-system.

Geometrically an orthogonal k-system on FE, is precisely a
continuous (£ — 1) frame on the unit sphere §,_; < E,, as is
seen immediately once the tangent space of §S,_; atx € §,_; is
identified with the orthogonal complement to the subspace
generated by z. We are therefore dealing with a very special
case of the general question of how many independent vector
fields exist on a manifold, and this central position of our ques-
tion has made it the favorite testing ground of progress in Alge-
braic Topology. It is not in the spirit of this talk to recount the
precise evolution of the problem, or pay tribute to the many
people who have contributed to it, be it through the general
theory of vector fields, or through a specific attack—Poincaré,
Hopf, Stiefel, Whitney, Steenrod, Whitehead, Wu, Addem, are
just a few names which come to mind—rather, I would first like
to recall an old algebraic result in this direction and then go on
to some of the most recent work which topologically confirms
the algebraic findings.

1) Talk delivercd at the Zurich Colloquium on Differential Geometry and Topology
June 1960. "

2) The Author holds an A. P. Sloan Fellowship.
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First of all it is convenient to recast the question in this
manner:

ProBrEm 1. Given k, for what n does E, admit an orthogonal
k-system ?

Before discussing this question, let us formulate its linear
version. If we call an orthogonal k-system linear whenever each
of the functions f;, 1 = 1, ..., k; comprising it 1s linear, then this
querry 1s:

For which n, does E, admit a linear orthogonal k-system ?

This purely algebraic question can also be expressed as
follows. A linear map |

u:E ®E, > E, k<n
will be said to define E, as an E,-module if for all x in £, and y
in F,
lux@p) | =1Ix]-1yl,
The vertical bars denoting the Euclidean norm. It is then quite
easy to check that E, admits the structure of an E,-module if

and only if £, admits a linear orthogonal k-system. In this
guise then, the associated algebraic problem is stated as follows:

ProBLEM 1% What are the dimensions of the possible E,-modules.
The complete solution of the linear problem 1s given by the
theorem of Hurwitz-Radon [10, 11, 16].

TuroreM 1. If Af denotes the set of dimensions of possible
E,-modules then there exist integers ay so that :

1. A,I;={na,f} n=1,2,..
One has:
2, ar.s = 16 af k>1.

3. The first eight values of ay are: 1, 2, 4, 4, 8, 8, 8, 8.
Immediate corollaries are:
a) The integer ap is always a power of 2.

b) E, occurs as an E -module (i.e., ay = k) if and only if
k =1, 2 4, 8.
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A lovely proof of this theorem is given by Eckmann in [8]
Very briefly, his argument takes this form.
Let G, be the abstract group generated by the symbols 1, «,

Gy, ..., Oy, Subject to the relations:
1 — identity; &* = 1; ¢o; = aie i=1,..,k)
0,0, =¢&0;0;, 1 #]; 0; Z=g,i=1,...,k.

Next let a G,-module, W, be called special if ¢ acts as — 1 on
W. It is then easy to verify that;

E, admits the structure of an E,-module, if and only if there
exists a special G,-module of dimension n over the real numbers.

(In one direction this correspondence is obtained by sending
6; into f; and ¢ into — 1, whenever f;, ..., f, 1s an orthogonal
k-system. This function is then seen to define a representation
of G.)

We are thus led to seek the special Gy-modules and 1t will
clearly suffice to find the irreducible ones among them. FEck-
mann determines these with the aid of the representation theory
of finite groups. He first finds the irreducible special complex
Gi-modules—it turns out that there 1s only one isomorphy class
of these if %k 1s odd, and that there are two such classes, however
of the same dimension, when £ is even—and then determines
the real irreducible special G-modules by the Schur criterion:
A complex Gy -module, W, is the complexification of a real one
if and only if the character, yu, of W | satisfies the condition:

Y @)>0, geG,.

It 1s at this point that the mod 8 dependance of the answer
emerges.

So much, then, for the linear case. The theorem of Radon-
Hurwitz of course also gives us information about problem I.
Indeed if we denote by 4, the set of dimensions n, for which E,
admits an orthogonal k-system, then A, contains Ay, so that
Ay furnishes a lower bound for the set A4,.

Actually, at the present time there is no counter example to
the conjecture that 4, equals Ay, however we are still far from a
proof of such a fact. (Added in Proof: F. Adams has just estab-
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lished the validity of this conjecture.) The following theorem,
due to I. M. James [12, 13, 14] possibly best describes the pre-
sently known information in the direction of this conjecture.

Tueorem II. Let A, denote the set of integers n, for which E,
admits an orthogonal k-system. Then there exist integers a,
with the property :

Either A, ={na.} k=1,2,...
or A, ={na;} n=2734,..

further in the latter (exceptional) case, k =< a, < 2k — 1.

Finally, for all k, a,,q/a, = 1 or 2.

The James theorem 1s clearly a great step towards the con-
jecture that A, = Ay. The next step, one hopes, will be the
elimination of the exceptional cases. (In this direction Adams
has quite recently shown that in the exceptional case, g, must
actually equal (2k — 1).)

We sketch the main lines of the proof briefly. Let O, be
the Stiefel manifold of k-frames in E,, and let =: O0,, - O,,
be the fiber-projection on the first element of this frame. Then
an orthogonal k-system on FE, is equivalent to a section s:
0,1 — O, of this fibering. (If f;, ..., f, 1s an orthogonal
k-system, s is defined by s (z) = {z, f, (¥), ..., fi (¥)}.) Now by
the covering homotopy theorem the problem can be formulated
entirely in terms of homotopy groups. Indeed, =: O, — O,
admits a section if and only if =, (0, ;) maps onto «,_; (0, ;)= Z
under n,. (Any element o, projecting onto the generator can
be deformed into a section.) To recapitulate—from this point
of view A, consists of those integers n for which

7'C*: UTE (On,k) > Ty—1 (On,l)

is surjective.

The first step is now to show that if »n and m are in A, then
n -+ mis again in 4,. In the linear case this is trivial enough—
if £, and E,, are E, modules, then £, ® E,, 1s again an £, module.
The topological counter part to this argument is given by the
join map A of James, which takes O, * O, into O, ,,,. Here *
denotes the join, and A 1s defined by:
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Itz={x}and y={y:}, i=1,..,k, are k-frames in E, and
E,, respectively, then A (z, t, y); 0 =<t =< 1; is the frame {x; cos
nt/2 @ y; sinwt/2} in E, @ E,.

In the usual manner the map

/1: On,k " Om,k - On+ m,k

defines a pairing

j'>}<: T, (On,k) @ s (Om,k > Myt s+1 (On+ m,k)

and the naturality conditions of A, relative to w, easily yield
the fact that A, is closed under addition. To get further, one
needs at least a partial subtraction law. The basic result in this
direction is James’s extension of the Freudenthal theorem:

GENERALIZED FREUDENTHAL THEOREM. JSuppose that n € A,
and let s € m,4 (0,;) project on a generator of t,—q (O,1).
Then sg: 7 (Opg) = Tivn (Opimy) defined by: sy (y) = Ay
(s ® y), ts a bijection for 1 £ 2 (m —k + 1).

Roughly this theorem enables James to conclude that if
n+ meA, and n is small relative to n -+ m then m is also
in A,. By subtracting the lowest integer in A, successively as
far as possible he then obtains theorem II.

James prove the generalized Freudenthal theorem by induc-
tion on k. For &k = 1, we have precisely the Freudenthal theo-
rem. The crucial fact here is a “boundary ” formula of the
type

Vic(a @b) = A, (pa ® b) +a ® A, pb

where p 1s the boundary in the homotopy sequence of fiberings
of the type O,;— O,,;. I will not describe it more precisely.
However, this formula is the hardest and its proof the most
geometric part of the whole theory.

Theorem II does not include all the presently known informa-
tion about our vector-field problem. By means of cohomology
operations one can, for instance find restrictions on the set 4,.
I will not attempt to do justice to these but, rather, say a word
about the parallelizability question which was settled two years
ago.

L’Enseignement mathém., t. VII, fasc, 1. 9
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The problem is: For what n, does S,_, admit an (n — 1) field,
or put more geometrically, for what n can a global parallelism be
defined on S,_; ? In our notation the question is stmply : When
does A, contain k ?

The answer, due independently to Milnor[7] and Kervaire[15]
asserts that, just as in the linear case, this phenomenon occurs
only if £ =1, 2, 4 and 8.

At present several proofs of this result are known. The most
topological proof is obtained by applying the work of Adams [1]
on the decomposability of certain primary operations in terms
of secondary ones. (This result becomes pertinent in view of
the following construction. Corresponding to o« € m,~1 (O,,)
let £, be the bundle determined over S,, and let X, = S, U, ¢,,
be the complex obtained by forming the 1-point compactifi-
cation of £,. Then if o represents a section of =: 0,,— O, 1t 18
well known that Sq": H" (X,) -~ H*" (X,) is nontrivial. Now
by Adams, this can occur only if n = 1, 2, 4 or 8.)

The original solutions of the parallelizability question were
based on divisibility properties of the characteristic classes of
vector bundles. Quite recently Atiyah and Hirzebruch brought
another proof based on this principle, which 1s possibly the most
satisfactory one. The main steps are:

If £1is a (real) vector bundle over a complex X then w (£)—the
- Stiefel Whitney class—is a well determined element of H* (X; Z,)
which has component 1 in dimension O. This class is not affected
by adding a trivial bundle to &. Now it is not hard to see that
k € A, is equivalent to the assertion: S, admits a vector bundle
withw () # 1. (If « € 7,—4 (0,,) 1s a section, then . « (mod 2)
can be identified with the component in dimension n of w (&,) — &,
being the bundle over S, determined by «.) With this as a
starting point, the hard part of the parallelizability question is
to show that w (£) = 1 whenever £ is a vector bundle over a
sphere of dimension > 8. Suppose then that S, = Sgi,,, m = 1,
so that S, = §,, # Sg where # denotes the identification space
obtained from §,, X Sg by collapsing the wedge S, v §g 1n
S, X Sgtoapoint. Now the periodicity theorem for the stable
orthogonal group asserts [5/6]:
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Let X be a finite CW complex, and let & be a (veal) vector bundle
over X # Sg.  Then there s a bundle, £[), over X, and a cannonical
8 dimensional bundle ) over Sg, so that & = E[/N @ A, where &
denotes the reduced tensor product and the congruence is taken
modulo trivial bundles.

Concerning the reduced tensor product of two bundles g and 7
on X and Y one has to recall that £ ® » determines a bundle
on X # Y, and that w (£ ® 7) is determined by £ and » accord-
ing to the law:

Let |

m

w (&) = ﬁ(1+xi), n=dmé; w(n =[]A+y;), m = dimyn .
1

1

Then
w(E@n) = [1L,A+x+y){w@©}" - {w}"

Now, if one takes a bundle £ over S,,,g, m > 1; it follows from
the periodicity formula that w (%) = w (£/A ® 1), and a purely
algebraic estimate, using the fact that w (A) = 1 + u, where u
is the generator of //® (Sy; Z,), and that A has dimension 8, shows
that w (£) = 1 under these conditions.
- T would like to take up the “ allied ” problems next. We
have been concerned with the question whether =: O, - O, 4
has a section. Now this problem has an obvious analogue for
the other two fields over the real numbers. The spaces O,,
are perfectly well defined over the complex numbers (unitary
g-frames in Hermitian p-space) and also over the Quaternious
(Symplectic ¢-frames 1n Symplectic p-space). Hence the
question of whether O, — O, has a section is also meaningful
over the complex numbers and the quaternions.

The method of James turns out to be applicable to these
cases also. In fact, it yields the following stronger result:

Tueorem III.  Let By, [C] denote the set of integers for which
Oui =~ On has a section in the complex [quaternion] case.
Then there exist positive integers by [e,] so that

B, = {nb,}
Co={nc}.
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In these two instances, then, there are no exceptional cases.
The proof of James follows the earlier pattern. The result is
stronger because the extended Freudenthal theorem is applicable
in a greater range of dimensions. However, there is this great
difference: In these two cases there is no known information
about the linear case—in its strongest formulation there are no
linear orthogonal k-systems for £ > 1—in particular it is not
apriori clear that B, is nonempty for £ > 1. To show that
indeed O, ;— 0, has a section for some n, James again uses
his boundary formula essentially to derive this fact from the
finiteness of the stable homotopy groups of the spheres.

There i1s another path to this theorem. Motivated by certain
other results of James, this approach has recently been perfected
by M. Atiyah [2]. It proves that B, consists of multiples of a
certain integers b, by essentially identifying B, with the kernel
of a homomorphism of a cyclic group. I will discuss only the
complex case, as the quaternion case is entirely similar.

Several steps are involved. First we reformulate our pro-
blem once again. As our concern is now with the behavior of
7,1 under the projection O,;— 0,,; we may replace O,, by
its 2n-skeleton, which can be constructed in a very simple
manner when n/k is large. Let P, denote the projective space
of the one-dimensional subspaces of complex n-space C,. (Thus
P, is the projective space of complex dimension n — 1.) Next,
define P,, to be the identification space P,/P,_;, the inclusion
P,_,= P, being induced by the inclusion C,_,<=C,. We
clearly have a natural projection =': P,;,— P,,, and it can be
shown that the suspension of =n’, that is Lo =n': EP,, ~ EP,,
= S,,-1, represents the projection 0,;— O,; In the pertinent
dimension—at least if n/k is large. Using cohomology opera-
tions to eliminate low ratios of this integer, one concludes, that
O, 0,1 has a section, if and only if (£’ 0 w), 1s surjective
in dimension 2n — 1. Finally, again using the apriori estimate
on n/k one can redefine B, in terms of purely “ stable ” notions.

The integer n € By if and only if some suspension of the map =':
P~ San—1, admits a right homotopy inverse.

Precisely then, the condition is that there should exist an m,
and amap f: E™ S,,_; ~ E™ P,; so that E™ =’ o f be homotopic
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to 1. Colloquially one may also put it this way: “ The top
cycle of P, should become spherical after a suitable number
of suspensions.” James calls this condition S-reducibility.

To proceed further we need the notion of the generalized
J-homomorphism, and of the twisted suspension.

—
Let X be a finite CW complex. We write KO (X) for the
suspension classes of real vector bundles over X (see [3, 9]).
Thus two bundles £ and v determine the same element, [£] = [7],

n KZ (X) if after suitable trivial bundles are added to both they
become isomorphic. Next define J (X) as the set of equivalence
classes of vector-bundles over X, in which two bundles are con-
sidered equal if after suitable trivial bundles are added to them,
their unit sphere-bundles are of the same fiber-homotopy type.

Finally J shall denote the projection KO (X)— J (X). The
Whitney sum now defines a group structure in both these sets
and makes J into a homomorphism. So interpretted J is the
generalized J-homomorphism. A first observation is now,

Prorosition 1. J (X) is a finite group.

The proof follows more or less directly from finiteness of the
stable homotopy of the spheres and the definition of fiber
homotopy type.

Finally the twisted suspension of X, by a vector bundle &
(over X) is defined as the one-point compactification of &, and
will be denoted by X°®. The terminology is justified by this
formula:

G+ _ . x¢

where 1 stands for the trivial bundle and E denotes suspension
as before. One also needs the convention that when £ has
dimension O, then X° is to be the disjoint union of X and a
point.

This construction is pertinent to our discussion for the follow-
g reason: Let P, be the orthogonal projective space to P,_, in
P,, and let = denote its normal bundle. Then it is geometrically
clear that v can be identified with P, — P,_,. Hence P,.= P;.
The bundle = splits into the direct sum of (complex) line-bundles
as is also evident because Py is a complete intersection in P,.
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Thus, if & is the normal bundle of in P, P, then P,, is given

by:
Py = Pk(n_k)é

To return to the general situation—First there is the following
rather easy relation between J and the twisted suspension:

ProrositioN 2. Let £ be a vector bundle over X. Then X° is
of the same S-type as X if and only if J[E] = O.

(Here, as usual, two spaces are of the same S-type if suitable
suspensions of them are of the same homotopy type.)

Suppose now that M is a compact differentiable manifold.
If £ is a vector-bundle over M, the S-reducibility of M*is defined
exactly as it was for P, ,—the top cycle of M* has to be stably
spherical. Let v be the normal bundle of M imbedded in some
high dimensional sphere Sy. By collapsing the exterior of a
tubular neighborhood of M in Sy we obtain a map Sy— M®
which clearly establishes M" as S-reducible. This argument
makes the following proposition plausible:

M°® is S-reducible if and only if J ([¢] —][v]) = O.

By replacing M with P, this last formula now immediately
yields the theorem of James. Indeed, in this case [v] = — k[&]
as it well known. Thus P,, = P{" "% is S-reducible if and only
if J(n[g]) = 0. Because J (P,) 1s finite, and J is a homomoz -
phism the theorem follows.

The last formula is really a special case of the following duality
theorem of Atiyah, which was also independently proved by
A. Shapiro and the Author.

Duarity THEOREM. Let X be a differentiable mantifold, and let £
and &' be two vector bundles over X so that[8'] = —([&] + [7]),
where = is the tangent bundle of X. Then the S-types of X°
and X° are dual to each other in the sense of Spanier W hite-
head [17]:

D[X*] =[X"°""].

A remark is now in order as to why the real case cannot be
treated in this manner. Actually one can procede quite simil-
arly at first. In the real case O, is approximated by the real
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analogue of P,,, rather than by EP,; as it was in the present
situation, however this is no serious drawback. . The exceptional
case can occur precisely because one is not always able to elimin-
ate low ratios of n/k apriori, so that the S-reducibility of P,
is not necessarily an equivalent problem to the existence of a
section to the fibering O, ,— O0,;. The S-reducibility of the
real P, of course has the same sort of answer as in the complex
case. |

In conclusion let me report on estimates which Atiyah and
Todd obtained for the b, of theorem II [3]. Let 2, (V) denote
the power to which the prime p occurs in the integer V. Now
let integers M, be defined by the formula:

sup (r+ A,(r), 1= r[

0 if p>k .

':|, if p <k
A’p(Mk): 1

TucoreM 1II.  The integers by of theorem II (for the complex
case) are divistble by M.

The principle on which this estimate is based is the following
one. As we have seen, our question is really: For what values
of n is the top cycle of P, “ stably spherical ”. That 1s, when
does this homology class become spherical after a suitable
number of suspensions.

In short, we need criteria for stably spherical homology
classes. The following simple procedure clearly yields such
criteria. Suppose B 1s a space in which the stably spherical
classes are already known. Then if u € H;(X) 1s a homology
class in X, it will be stably spherical only if for every map f:
X — B, {4 uis stably spherical in H, (B). Such a criterion is of
course only effectively applicable if we know how to compute
(1) the set of homotopy classes of maps of X into B and (2) the
homorphisms these classes induce in cohomology.

The best known application occurs when B is an Eilenberg-
Maclane space. Here there are no stable spherical classes except
the lowest dimensional ones—(in the stable range). In this way
one obtains the criterion that u is stably spherical only if the
value of any stable primary cohomology operation on a lower
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dimensional class, vanishes on u. (This criterion can be applied
to our problem, however it yields considerably weaker results
than those given by theorem III.)

The results of Atiyah Todd, are in fact obtained by using for
their testing space B, the universal base space, By, of the infinite
unitary group. As a consequence of the periodicity [5]:
Q2 (Z X By) = Z X By one can determine the spherical classes
in By rather easily, and for stable spherical classes one can
derive this criterion: There is a rational cohomology class ch (with
components in all dimensions) in H* (By; Q), such that if u is
a stably spherical class in Hy (By) then ch (u) must be an integer.

Thus, if we write K7] (X) for the homotopy classes of maps

—

of X into By, and for £ € KU (X) write ch (E) = £, . ch, then
we have the criterion:

u € H, (X) 1s stably spherical only if for each & € KU (X),
ch (8) . u is an integer.

It 1s this criterion which yields the Atiyah Todd theorem
modulo some rather delicate number theory.

How does one carry out the steps (1) and (2) of our program
in this case ? Here it is only fair to admit, that the space By
is not an ad-hoc testing space, but rather that i1t is more or less
God given. Indeed, by virtue of the classifying theorems for

—

bundles, KU (X) can be interpretted geometrically as the sus-
pension classes of complex vector bundles over X. Further, if

= KFZ] (X) then the element ch (£) in H* (X; Q) is a particular
characteristic class of £ about which a lot is known. For inst-
ance if £ is the normal bundle of P,in P,,, then ch (§) = e —1
where x € H? (P,; Z) 1s a generator. Now, using the known
functorial properties of ch, it follows that ch (E¥) = (e*— 1)¥,
where &% is £ ® ... ® £ (k times) in the sense of the reduced
tensorproduct. Thus, if we restrict £” with m = n — £ to P,_;

[—
we get an element of KU (P,_;) with vanishing character.

It is a theorem that if X is a torsion free finite CW complex
then ch: KU (X)— H* (X; Q) is injective. This was first proved
by F. Peterson—directly by obstruction theory from the evalua-
tion of m;(Z X By) as Z if 1 1s even and 0 when ¢ 1s odd. A
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proof which possibly goes more to the heart of the matter emerges
from the point of view of Atiyah and Hirzebruch. They define
the groups:

KU (X) = n[E™'X; Z x By] i<0

where w[A, B] denotes homotopy classes of maps. In this
terminology the periodicity formula: Q2 (Z X By) = Z X By
is expressed by:

KU (X) = KU'*2(X) i< —2.

Now Atiyah and Hirzebruch use this recurrence to define K U* ( X)
for all integers i, and then show that the resulting functor
X - { KU (X)} satisfies all the axioms of a cohomology theory
—except for the dimension axiom. Further they observe that
the uniqueness theorem of Eilenberg-Steenrod can be generalized
to yield a spectral sequence relating E, = H* (X; KU* (p)) to
KU* (X). (Here KU'(p)—the KU-—theory of a point—is Z
if ¢ is even and O otherwise.) This sequence immediately
implies the proposition. (See [8].)

To return to our bundles £™ on P,. By the proposition just
discussed the restriction of £™ to P,_, will be trivial if m = n — k.
By trivializing this element on P,_, we obtain bundles £™ on
P, which under the projection =: P,— P, go over into &",
m =n—=Fk. In particular, =* ch (£") = (e*— 1)". Thus in
any case we obtain these criteria the S-reducibility of P, ,:

P, is S-reductble only if the coefficient of x"~* in (e* — 1)™,
m =n —k, is an integer.

This is the number theoretical condition from which Atiyah
and Todd deduce theorem III. Their result is the best possible
one obtainable from the test-space By, because one can show
quite easily, with the spectral sequence alluded to earlier, that
the elements 1, &"; n—1 =m =n—k; form a base of
KU (pn,k)'
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