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689 = 13 x53 (méme cas) qui a deux cycles de type 2 et 3, d’un
nombre pair d’idéaux (6 et 4) et un couple de cycles conjugués
de type 4, de chacun quatre idéaux. Son groupe est d’ordre 4,
cyclique;

904 = 8x 113 (deuxiéme cas), qui a deux cycles de type 1 conte-
nant un et trois idéaux et trois couples de cycles conjugués
de type 4, contenant respectivement trois, trois et cinq idéaux.
Son groupe est d’ordre 2-+2x 3 = 8, cyclique.

55. Corps a plus de deux classes doubles.

Les conditions, énoncées ci-dessus, suffisantes pour qu’un
corps contienne seulement une ou deux classes doubles d’idéaux,
sont aussi nécessaires : si elles ne sont pas vérifiées par le discri-
minant, le corps a au moins trois classes doubles. Cette propriété
peut étre explicitée sous forme d’une condition suffisante ana-
logue aux précédentes.

Un corps réel a au moins trois classes doubles d’idéaux lorsque
son discriminant D a 'une des formes suivantes:

1. 1l est impair, nécessairement congru a -+1, mod. 4, égal
a un produtt u X ¢ X w, de trois nombres premiers, congrus chacun
a +1, mod. 4;

2. il est pair, égal au produit par 4, du double 2d’ d’un pro-
duit d’ = u’ x¢’, de deux nombres premiers, congrus chacun d
+1, mod. 4;

3. Il est impair, nécessairement congru & -+1, mod. 4, égal
a un produit de plus de trois nombres premiers tmpairs.

4. 11 est pair, produit par 4 d’un nombre impair d, congru
a —1, mod. 4, ou du double 2d" d’un nombre impair d’, produit
d’aw moins trots nombres premiers impairs.

[1 est équivalent de dire que D vérifie ces conditions, ou ne
vérifie pas les conditions précédentes; c’est ce qui résulte du

tableau des diverses conditions:

L’Enseignement mathém., t. VII, fasc. 1. 7
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‘ ' N D pair = 4d
D impair = 41 — ;
' ' | dimpair = —1 d = 2d’, d’ impair
1 seule | D premier d premier d’ premier = —1
classe |—————— — —
double | D = uxo
u, v premiers = —1
2 D= uxy ‘ d= uxy d’ premier = -1
classes | u, ¢ premiers = +1 | u, ¢ premiers |— — — — — — — —
doubles |— — — — — — — u = —1 d = u Xy
D= uxXoxw u’, ¢’ premiers;
u, ¢, w premiers u' = —1; ¢’ impair
uety =-—1
3 D= uxoxw d = u Xy’
classes | u, ¢, w premiers , u’, o’ premiers = -+1
doubles | =+1 |  —— -
au 4 facteurs premiers,
moins au moins : 3 facteurs premiers impairs au moins

Dans les cas 1 et 2, D est décomposable de quatre facons en somme
de deux carrés; le corps contient donc quatre idéaux semi réduits
réfléchis.

D’autre part, 1l existe quatre idéaux doubles, dont les normes
sont 1, u ou ¢w, ¢ ou uw, ue ou w dans le premier cas, et 1, 2, u’ ou
D:8u’, 2u’ ou D:4u’ dans le second cas.

Il y a donc huit idéaux semi réduits remarquables, donc quatre
cycles, contenant chacun deux de ces idéaux et définissant chacun
une classe double.

Dans les cas 3 et 4, il y a huit idéaux semi réd uits doubles, au
moins, dont les normes sont suivant les cas:

3— 1, uou D, ¢ ou D, uv ou D:wue, w ou D:w,
uw ou D:uw, ew ou D:iww, uew ou D:uvw,

4 — 1, 2, u ou D:u, 2u ou D:2u, ¢ ou D:, 2¢ ou D:2v,
uy ou D:uv, 22uv ou D:2uv; |

si u, ¢, w sont des facteurs premiers impairs de D.
Il y a au moins huit idéaux semi réduits remarquables, donc au
moins quatre cycles, définissant chacun une classe double.
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Dans chacun de . ces cas, le groupe des classes d’idéaux
contient au moins deux éléments d’ordre 2, donc contient un
sous-groupe, produit direct de deux groupes cycliques d’ordre 2.

TaBLEAU XXX,

Exemples de corps & plus de deux classes doubles.

c D = 1105 = 5X13X17 c D = 1365 = 3X5XT7X13
—(x2 4 x—276) —(x2+x—341)
-0 | 276 0 | 341
1 | 274 1 | 339
2 | 270 = 15x18; IyxI, 2 | 335
3 | 264 3 | 329
& | 256 = 16Xx16; Uzx U, L | 321
5 | 246 ' ‘ 5 | 311
6 | 234 = 183x18; IgxI; 6 | 299 = 13x23; JyxJ,
7 | 220 = 11x20; JyXJ, 7 | 285 = 15%x19; K3X K,
= 10x22; K,xK, 8 | 269
8 | 204 = 12X17; KyX Kq4 9 | 251
9 | 186 10 | 231 = 11x21; K ;X K,
10 | 166 11 | 209 = 11x19; K, xK,
11 | 144 = 12x12; K X K, 12 | 185
= 8x18; I,xI, 13 | 159
= 9x16; U,xU, 14 | 131
= 6X2&; JyxJ, 15 | 101 ;
12 | 120 = 10x12; K, x K, 16 | 69 = 3x23; JoxJ; |
= 8x15; IgxlI, 17 35 = H5X7; Iy x 1, ‘
= 6X20; JgxJg = 1x35; UygxU,
= 5X2h;  JeXJ5 | e e
13 94
14 66 = 6xX11; JyXJq,
o | ae = 2??}2, i8;£3 produit direct de 2 groupes
— 4x9 U, U. cycliques d’ordre 2
= 3x12; K,xK, IXJ ~ K
= 2x18; I;xI,
16 | 4= 2x2; I, <1,
= 1Xk&; Uyx Ug

prodult direct de 2 groupes
cycliques d’ordre 2

IxJ ~K
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Les seuls corps, & plus de deux classes doubles, dont le dis-
criminant D est inférieur a 1000, sont les cinq corps dont les
discriminants sont:

D =520 = 8x5Hx13
D = 680 = 8xbHx17
D = 840 = 8x3xbHxT7
D =780 = 4x3xbx13
D =924 = 4x4xT7x11

Le groupe des classes d’idéaux de chacun de ces corps est le
produit direct de deux groupes cycliques d’ordre 2.

Le tableau XXX donne deux exemples de calcul des idéaux semi
réduits et de vérification de la structure des groupes pour les corps
dont les discriminants sont:

1105 = 5%x13x17, qui a un cycle de sept idéaux (U) et trois
cycles de onze idéaux;

1365 = 3x5x7x13, qui a deux cycles de deux idéaux, un cycle
de quatre idéaux et un cycle de six idéaux.

On peut encore généraliser la construction des exemples
précédents, pour obtenir des corps contenant exactement n
classes doubles d’idéaux.

NOTE 1

La théorie des corps de nombres algébriques, et plus préci-
sément 1’étude des propriétés arithmétiques de leurs entiers, a
pour origine des travaux de K. F. Gauss (1777-1855). Gauss a
introduit la notion d’entier algébrique et établit les propriétés
de divisibilité des entiers de quelques corps particuliers. Mais
c’est seulement E. E. Kummer (1810-1893) qui a introduit la
notion essentielle d’idéal, dans un anneau d’entiers algébriques,
permettant d’obtenir des propriétés arithmétiques dans tout
corps de nombres algébriques de degré fini. Cette notion a été
précisée et développée, dans le cours du x1x° siecle, surtout par
I’école allemande: R. DEpeEkinD (1831-1916), L. KRONECKER
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