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On peut compléter cette indication en cherchant les expressions
de K et de L. Elles résultent notamment des décompositions:

F(49) — 25x17x31 = (25, 0—49)x (17, 0—49)x (31, 0—49)
— (25, 0—124) % (17, 6—117)x (31, 6—111) ~ 1

F(120) = 5x13 %17 = (5, 6—120) % (13, 6—120) % (17, 6—120) ~ 1.

Elles entrainent:

K=1IxJ%; L=Ix]J.

Les cycles conjugués sont aussi inverses, I'un de lautre, de sorte
que chacun d’eux est égal au carré de Pautre (exposant 2, mod. 3).

52. Corps de discriminant premier.

On va examiner quelques unes des circonstances qui peuvent
se présenter dans la structure du groupe des classes des idéaux
semi réduits, ou des cycles.

Dans un corps réel, dont le discriminant est un nombre pre-
mier, nécessairement congru a -+1, mod. 4, 1l n’y a qu’une seule
classe double, caractérisée par un cycle, du type 1, d’'un nombre
impair d’idéaux. Il peut exister en outre des couples de cycles
conjugués, et associés, du type 4, qui ont aussi un nombre 1impair
d’1déaux. _

Si le cycle principal existe seul, le corps est principal. Dans
le cas contraire 'ordre du groupe des classes est impair et supérieur
& 1; sicet ordre est un nombre premier, ou un produit de nombres
premiers différents, le groupe est cyclique, mais cette condition
suffisante n’est pas nécessaire.

Un corps, de discriminant premier ne contient qu’un idéal double
de norme 1, qui engendre un cycle de type 1, évidemment principal.
Ce cycle doit donc contenir un idéal semi réduit réfléchi, ce qui
entraine I'existence d’une décomposition du disecriminant en une
somme de carrés de deux nombres entiers.

C’est 1a une nouvelle preuve de la propriété déja établie par la
considération du corps R(t): un nombre premier, congru & -1, mod. 4:
est égal a une somme de carrés de deux nombres entiers (20).

Cette démonstration établissait aussi la détermination de ces
deux carrés; il est possible de le vérifier également par des considéra-
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tions simples de congruences, dont le module est le nombre premier
considéré. Cette précision montre qu’il ne peut y avoir d’autre idéal
remarquable dans le corps, donc aucun autre cycle de type 1, 2, ou 3.

Le tableau XXI donne deux exemples de corps, de discriminants
premiers, 317 et 193, dont la considération des idéaux réduits permet
d’affirmer qu’ils sont principaux. Le tableau XXVIII indique
comment ceci peut étre établi par la considération des idéaux semi
réduits; la disposition est la méme que dans le tableau XXVII; mais
dans chaque corps il n’y a qu'un seul cycle, dont les idéaux sont
désignés par la lettre I: ils sont de trois termes dans le premier corps,
de quinze termes dans le second.

Pour les discriminants peu élevés, on constate que, pour une
trés grande proportion d’entre eux, il n’y a pas de cycles de
type 4, et que, par suite, le corps est principal. On indique ci-
dessous la répartition des corps principaux de discriminant pre-
mier inférieur a 1000, suivant le nombre d’idéaux dans le cycle
unique (les corps sont designés par leurs discriminants):

1 idéal dans le cycle: b, 13, 29, 53, 173, 293;

3 idéaux: 17, 37, 61, 101, 197, 317, 461, 557, 677, 773;

5 idéaux: 41, 149, 157, 181, 269, 397, 941;

7 idéaux: 89, 109, 113, 137, 373, 389, 509, 653, 797, 853, 997;
9 idéaux: 73, 97, 233, 277, 349, 353, 613, 821, 877,

11 idéaux: 541, 593, 661, 701, 857,

13 1déaux: 421, 757, 15 idéaux: 193, 281;

17 idéaux: 521, 617, 709; 19 idéaux: 241, 313, 449, 829, 953;
21 idéaux: 337, 569, 977; 23 idéaux: 433, 457, 641, 881;

25 idéaux: 929; 27 idéaux: 409;
29 idéaux: 673, 809; 31 idéaux: 937;
33 idéaux: 601; 35 idéaux: 769.

Les six corps, dont le cycle principal n’a qu’un seul idéal,
sont indiqués dans le tableau XX (avec cinq autres, de discri-
minant non premier).

Les seuls corps, de discriminant premier, inférieur a 1000,
qui ne sont pas principaux sont ceux de discriminants:

229, 257, 733, 761, qui comprennent chacun trois cycles (ou
classes) formant par suite un groupe cyclique d’ordre 3;
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401, qui comprend cing cycles, formant un groupe cyclique
d’ordre 5;

577, qui comprend sept cycles, formant un groupe cyclique
d’ordre 1.

Le tableau XXVIII donne aussi les calculs des cycles pour trois
de ces corps, de discriminants:

577: cycle U de trois idéaux; trois couples de cycles conjugués;
I, T et J, J' de chacun trois idéaux; K, K’ de chacun cinq
idéaux; |

401: cycle U de trois idéaux; deux couples de cycles conjugués;
I, I' de chacun trois idéaux; J, J' de chacun cinq idéaux;

761: cycle U de cinq idéaux; deux cycles conjugués, I, I' de cha-
cun sept idéaux.

Pour des discriminants relativement élevés, le groupe de cycles
(ou de classes) peut n’étre pas cyclique. L’exemple de calcul de
structure du tableau XXVII concerne un corps dont le discriminant,
62 501, est premier, et dont le groupe des cycles, d’ordre 9 est pro-
duit direct de deux groupes cycliques d’ordre 3.

53, Corps a une seule classe double.

Le corps, de caractére exceptionnel, défini par le polynome

fondamental:
F(r) = a*—2; D =8;

a un seul idéal semi réduit, & la fois double et réfléchi, qui est
Iidéal unité. Il n’y a done qu’un seul cycle, d’un seul terme, et
le corps, comme ce cycle, est principal.

A Texception de ce corps, et en plus de ceux dont le discri-
minant est un nombre premier, il existe des corps qui n’ont
qu’une seule classe double (conjuguée d’elle-méme); ce sont ceux
dont le discriminant a au plus deux facteurs premiers impairs,
congrus & —1, mod. 4. En tenant compte des conditions de
construction d’un corps réel (1), on obtient 1’énoncé suivant:

Un corps réel, dont le discriminant D est:
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