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72 A. CHATELET

La derniére comparaison est une égalité, si non la comparaison de
vj+1 & la base des o entrainerait:

Cir1] = Y41 S % = Y

Yie] <

ce qui est contradictoire avec la définition de la base des +.
L’6galité des valeurs absolues |y ;| = |#;4,| entraine celle des
conjugués vy, = ®;4+q, puisqu’ils sont positifs.

Le théoréme résulte aisément de cette propriété préalable:
si un idéal M = (m, 0—c), semi réduit, de racine finale ¢, est
congru aux idéaux M; d’un cycle et notamment a M,;, dans
lequel est construit une suite de bases o;o;44, 1 existe un
élément p, qui peut étre choisi positif, tel que (p) XM soit égal
a M,. Le couple d’éléements:

Y, = eXm yjy = p X(0—c)

est une base arithmétique libre de M,, qui vérifie les conditions
précédentes et qui par suite est égale & une des bases de la
suite:

eXm = o; = g;Xm; pX(0—c) = a;4; = pi( X 0—c)).

Dans la derniere égalité, la comparaison des coefficients de 6
montre que:

P =eH M =m; C=C<C, M = Mi'

Tout tdéal M, semi réduit, congru auz idéaux d'un cycle d'idéaux
semi réduits est égal a un idéal de ce cycle.

48. Diviseurs de I'unité.

TutorEME des diviseurs de 'unité (II). — Dans un corps
réel, pour chacun des cycles d’idéaux semi réduits, désignés par
leurs racines finales:

M, = (m;, 6—c;); i1deOahr—1;

i

les diviseurs de I'unité sont égaux aux produits par -1 et —1 des
puissances »”, (d’exposants A entiers quelconques) de:

o = [II(0—c¢,)]:[lIm;]; ¢ de 0 a ~—1.

Cette expression a la méme valeur pour tous les cycles du corps.
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On a déja indiqué (Théoréme I des diviseurs de I'unité, 45) que
les éléments +w? et —w* sont des diviseurs de 'unité. Réciproque-
ment, les opposés de diviseurs de I'unité étant encore des diviseurs
de 'unité, on péut se borner a chercher ceux qui sont positifs.

On considére un cycle, engendré par un idéal semi réduvit
M, = (my, 6—cy), dans lequel on a construit une suite de bases de
termes positifs «;. Le produit nxM,, de cet idéal par un diviseur
positif v, de I'unité, lui reste égal et les éléments positifs n X m, et
7 X (B—c¢,y) en constituent une base arithmétique libre. Comme cette
base vérifie les relations:

[ % (0—cg)]: (n X mg) = (B—co):my < 1
[ X (0"—co)]: (0" X mg) = (8'—cy):my < —1;
elle est égale & 'une des bases de la suite, de sorte que:
DX (0—Co) = o4y = ;X (0—¢y);
ce qui entraine:
N =g, C=2¢ = 1=»M; 1n=wr" A\ entier.

La démonstration montre notamment que la valeur de U'expression
qui donne o est indépendante du cycle utilisé. On peut obtenir cette
valeur par un calcul de multiplication, dans le corps quadratique (en
utilisant la relation 02 = —S0-+N), notamment en cherchant de
proche en proche les valeurs o;;; = ;X (0—¢;): m,.

On peut aussi utiliser une relation linéaire qui existe entre
trois termes successifs de la suite des «;:

Fity = %i—1— i X0 ¢ = (¢itci-1—S):m,.

Cette égalité résulte de la construction des idéaux successifs du
cycle: l'idéal M; = (m;, 0—c;) est le conjugué de 'associé de son
précédent M;_;, de sorte que:

¢itci-y =S, (mod. my); ou ¢ = S—C;—1+¢; X my;

q; étant le nombre entier positif, indiqué plus haut.
En transportant cette valeur dans la relation de récurrence mul-
tiplicative des «;, on obtient:

%41 = [(0—c):m X0y = [(0—S4-c;_y):m;] Xo—q; X ot
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Mais le premier terme du second membre est égal & o;_,, on le vérifie
en exprimant o;, par la relation de récurrence; le terme devient:

[(—0"4¢;—): m I X[(O—c;—q) s my (] X ot; 4
et le facteur de o;_; est égal a:
—[(0"—c;—1) X (0—¢;—)]: (myXm;—q) = [—F(c;—))]: (myXm;—y) = 1

la derniére égalité résulte de I’association de M;_; et du conjugué
de M,.

La relation de récurrence linéaire peut étre mise sous forme
matricielle. Les bases, disposées en colonnes (comme il a été
fait ci-dessus; 9), vérifient ’égalité:

Xit+1 —q; 1 o

; q; = (¢j—y+c;—S):m,.

I
X

&; 1 0 xi—1q

Cecl appliqué a 2 bases consécutives (par exemple aux £ pre-
mieres) donne une propriété de :

o X oy O+ 1 —q; 1 %y

o X o ol 1 0 oo

|

les matrices sont prises de ¢ =1 a ¢t = h, mais disposées de
droite @ gauche. Toutes les matrices multipliées ayant un déter-
minant égal & —1, la matrice produit a un déterminant égal
a —1 ou a 41, suivant que k&, nombre d’idéaux du cycle, est
impair, ou pair. Ce produit est donc de la forme:

g, 1 U v
11 — L UXU—VXV =¢e(4+1 ou —1).
1 0 i

La relation obtenue entraine:

o X oty uv oy U—o V |
== X = déterminant =0
o X o VU | V' U—o
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I1 en résulte que le diviseur de I'unité o vérifie 'équation du
second degré:

0> —(U+U') Xw-+e = 0;

et la norme o X’ est égale & €; sa valeur absolue est 1 et son
signe est — ou -, suivant que h est impair ou pair.

Il en résulte que tous les cycles, d’'un méme corps quadra-
tique, ont la méme parité du nombre de leurs idéauz.

Les matrices multipliées étant symétriques (égales respectivement
& leurs transposées), la transposée de leur produit est égale a leur
produit, mais disposé dans I'ordre inverse:

—q; 1 u v
I1 == ;1del ah.
1 0 Vv U

(On obtiendrait d’ailleurs ces produits en disposant les termes des
bases en lignes.) L’équation en  reste la méme.

ExempPLES. — On a indiqué ci-dessus (46) le calcul de » dans le
corps de discriminant 145, en utilisant la relation de récurrence
(multiplicative) entre deux o; successifs. L’emploi de la récurrence
linéaire conduit aux calculs suivants (pour le méme cycle):

M, = (1,0—5) | M; = (6,0—0) |M,=(6,6—5) |M,= (1, 06—5)
i = « cv oo o |(BF0+1):6 =1 (04+54+1):6 =1 | (b+5+1):1 =11
oy == 1 oy =60—D| ay = atg—1 X0y | o3 = ot;—1 X,
—0-+6 20—11 = o

Le produit des matrices (i de 1 & 3, de gauche & droite) est:

—1 1 —1 1 —11 1 —23 2

10 1 0 10 12 —1
Péquation vérifiée par w est:
w?+240—1 = 0;
ce quon peut constater directement.

Le tableau XXV donne encore un exemple de calculs des idéaux
seml réduits dans le corps de discriminant 377. Il y a 2 cycles de 4 et
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de 6 idéaux. Il indique, pour le premier de ces cycles, le calcul des «;
et du diviseur de 'unité w, par récurrence multiplicative et par récur-
rence linéaire, ainsi que le produit des substitutions linéaires (ou des
matrices unimodulaires).

La norme de « est 1, puisque les nombres d’idéaux de chaque
cycle sont pairs.

TaBLEAU XXV.

Exemples de calculs de cycles et de diviseurs de ’'unité.
Flx) = x*+2—9%4; D = 377 = 13x29

c ] ECS —F(c) Idéaux semi réduits
0 1 | 94 = 2 X &7 C |Fle)
1 3 192 =22x23 4
2 5 | 88 ==23x11| (8, 6—2)x (11, 6—2) 2
3 71 82 =2%x41 3
4 9 | 74 = 2x37 4
5| 11 | 64 = 26 (8, 6—5)x (8, 6—05) 5
6] 13 | 52 = 22x13 | (4, 6—6)x (13, 6—6) 6 |
7115 | 38 = 2x19 7
8 17 | 22 =2x11 | (2, 6—8)x (11, 06—8) 8
- (2, 6—9)x (2, 6—9) 9
9 19 [,I: - 22 ] [} 1 ‘

(1, 0—9)x (&, 6—9) Normes | 4 2 & 8 a4 13

. 1) ¥ ¢ v
(&, 0—9) <« (13, 6—6) (2, 6—9) < (11, 6—8) « (8, 0—2)
Calcul des diviseurs de ’unité.
M,=(1,0—9) | M, = (4, 6—6) |M,= (13,60—6) |M;= (4, 6—9) |M,= (1,06—9)
g, = - (9+6+1):b=4]|(64+5+1):13=1|(6+9+1):b=14|(94+9+1):1 =19
o = 1 oy = (6—9) oy X (6—6) :4 oty X (6—6):13 oy X (0—9) :4
oy = og—L4oy og = o;—1 Xty | otg = aty—4b Xog
—46-+37 50—46 —246-+-221
—4 1 —1 1 —4 1 —19 1 461 -—24
X X X =
1 0 1 0 1 0 1 0, —96 5

0*—466w-+1 = 0
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