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70 A. CHATELET

Les limites pour i infini des multiplicateurs p£ et des éléments oq

résultent de leur appartenance à des progressions géométriques. La
raison <o, de ces progressions est le produit de quotients (0—c^irrii
(i de 0 à h—1) positifs et inférieurs à 1; elle est donc inférieure à 1,

d'où les limites des termes des progressions.
La croissance des éléments oq et de leurs conjugués oq, et la

comparaison (des signes) des éléments consécutifs, résulte de leur
construction au moyen des bases de qui sont semi réduits:

ai+i:ai [P;X(6—CjMpjXmi] (6— 1,

ai+i: aî [PfX(0'-—c;)]:[p-x/wj (0'— : < —1.

47. Détermination des cycles.

La considération de la suite des bases de M0 permet d'établir
que les cycles d'idéaux semi réduits représentent les classes

proprement.

Théorème de la détermination des cycles. — Dans un corps
réel, chaque classe (Tidéaux contient un et un seul cycle d'idéaux
semi réduits.

En définissant les idéaux (canoniques) réduits (20), pour un
corps quadratique quelconque (réel ou imaginaire), il a été établi

que toute classe d'idéaux contient au moins un idéal M0 réduit, qui,

pour un corps réel, est, a fortiori, semi réduit (40). La classe

renferme, par suite, le cycle des idéaux réduits Mf, obtenus en formant
les suivants successifs de M0, puisque ces idéaux sont congrus à M0.

Pour établir que le cycle ainsi construit est unique, on peut
d'abord démontrer que:

dans un idéal M0 semi réduit, pour qu'une base arithmétique
libre, de deux éléments positifs jj > Yy+i, appartienne à la suite
des bases, oc^ oq+1, associée au cycle d'idéaux semi réduits engendré

par M0, il faut et il suffit que: ces termes et leurs conjugués
vérifient les comparaisons:

Yj+1-Yj < !; 1;

la première résulte de l'ordre adopté pour numéroter les deux
termes.
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La condition est nécessaire puisqu'elle a été vérifiée ci-dessus

pour la suite des bases oq.

Pour démontrer qu'elle est suffisante, il peut être commode

d'établir d'abord que pour un idéal qui a une base vérifiant ces conditions

(même s'il n'est pas semi réduit):

tout élément non nul Ç, de cet idéal, dont la valeur absolue n'est
égale ni à yj, ni à yj+1, vérifie F une, au moins, des comparaisons :

IS| > Y; > ïi+i; ou %'\ > hv+il > IY/I-

Cet élément £ peut être construit par additions et soustractions
au moyen des termes de la base considérée, de sorte que:

&fj+VYj+1Î ^j+yy'j+E y nombres entiers.

Il suffit alors d'examiner les divers cas, dépendant des signes et de

la nullité des entiers x, y:

xy> 0: \l\ \xYj+yYj+i\K/l + hO'+il > Y/,

xy < 0: %'\ \Ej+n'j+i\ \Ej\+>hv+il;

y o et \x\#1: %\IXYj\ > y}\
x=0 et \y\#1: \%\ Wj+il>[Yj"h-i|-

On peut mettre la disjonction ainsi vérifiée sous la forme d'implications

:

%\ < Y; I? I > lïj+ilï
n<iT;+1i => isi>Y

Ceci acquis, on compare, dans M0, à la suite des bases 0Lt oc£+1,

une base yy yy+1 vérifiant la condition indiquée. La suite des
décroissant de + oo à 0,yy est situé dans l'un des intervalles, il existe i,
tel que :

> Tj > v

Il y a égalité, si non d'après la propriété précédente, appliquée
à yj comparée à la base des oc, puis à af+1, comparée à la base des y:

yj < cLt => |yy| > |oq+1| => oci+1 > yy ;

ce qui est contradictoire avec le choix de ocf.

On peut alors comparer &i+1 à la base yj oct-, yy+1; il en résulte:

aï+1 < ai yj => K+i| > 1 yy -m | •
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La dernière comparaison est une égalité, si non la comparaison de

YJ-+1 à la base des a entraînerait:

lïjr' + ll < l«î + l| => > «i

ce qui est contradictoire avec la définition de la base des y.
L'égalité des valeurs absolues |y}+1| K+i| entraîne celle des

conjugués yJ+1 — ai+1, puisqu'ils sont positifs.

Le théorème résulte aisément de cette propriété préalable:
si un idéal M (m, 0—c), semi réduit, de racine finale c, est

congru aux idéaux M; d'un cycle et notamment à M0, dans

lequel est construit une suite de bases ai+1, il existe un
élément p, qui peut être choisi positif, tel que (p)xM soit égal
à M0. Le couple d'éléments:

Yj pXm Yj+ipx(6 c)

est une base arithmétique libre de M0, qui vérifie les conditions
précédentes et qui par suite est égale à une des bases de la
suite :

p xmoc; PiXtrifpx(0—c) oci+1 p;(X0—c;).

Dans la dernière égalité, la comparaison des coefficients de 0

montre que:

p pfj m nii, c — M

Tout idéal M, semi réduit, congru aux idéaux Tun cycle d'idéaux
semi réduits est égal à un idéal de ce cycle.

48. Diviseurs de l'unité.

Théorème des diviseurs de l'unité (II). — Dans un corps
réel, pour chacun des cycles d'idéaux semi réduits, désignés par
leurs racines finales:

M; (mh 0—Ci); i de 0 à h—1 ;

les diviseurs de Vunité sont égaux aux produits par -f 1 et —1 des

puissances caA, (d'exposants X entiers quelconques) de:

cù [11(0—Ci)]:\Ylmé\; i de 0 à h—1.

Cette expression a la même valeur pour tous les cycles du corps.
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