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70 A. CHATELET

Les limites pour ¢ infini des multiplicateurs p; et des éléments «;
résultent de leur appartenance a des progressions géométriques. La
raison «, de ces progressions est le produit de quotients (6—c;): m;
(t de 0 & A—1) positifs et inférieurs & 1; elle est done inférieure a 1,
d’ou les limites des termes des progressions.

La croissance des éléments o, et de leurs conjugués o, et la com-
paraison (des signes) des éléments consécutifs, résulte de leur cons-
truction au moyen des bases de M;, qui sont semi réduits:

iyt 0y = [P X (0 —¢)]:[es xmy] = (O0—c))im; < 4,

’

oc,-ﬂ:oc; = [pgx(e’—ci)]:[pQXmi] = (0'—c¢,):m; < —1.

47. Détermination des cycles.

La considération de la suite des bases de M, permet d’établir
que les cycles d’idéaux semi réduits représentent les classes
proprement.

THEOREME de la détermination des cycles. — Dans un corps
réel, chaque classe d’idéaux contient un et un seul cycle d’idéaux
semi réduits.

En définissant les idéaux (canoniques) réduits (20), pour un
corps quadratique quelconque (réel ou imaginaire), il a été établi
que toute classe d’idéaux contient au moins un idéal M, réduit, qui,
pour un corps réel, est, a fortiori, semi réduit (40). La classe ren-
ferme, par suite, le cycle des idéaux réduits M;, obtenus en formant
les suivants successifs de M, puisque ces idéaux sont congrus a M,,.

0» PUISq 0

Pour établir que le cycle ainsi construit est unique, on peut
d’abord démontrer que: |

dans un idéal M, semi réduit, pour qu'une base arithmétique
libre, de deux éléments positifs yv; > v;q, appartienne a la suite
des bases, o; a; 41, associée au cycle d’idéaux semi réduits engendré
par My, il faut et il suffit que: ces termes et leurs conjugués
vérifient les comparaisons:

'Yj+13Yj<1; Y;'+1:Y;'<—‘1;

la premiere résulte de I'ordre adopté pour numéroter les deux
termes.
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La condition est nécessaire puisqu’elle a été vérifiée ci-dessus
pour la suite des bases «;.

Pour démontrer qu’elle est suffisante, il peut étre commode
d’établir d’abord que pour un idéal qui a une base vérifiant ces condi-
tions (méme s’il n’est pas semi réduit):

tout élément non nul &, de cet idéal, dont la valeur absolue n’est
égale ni & v;, ni & v;4q, vérifie lune, au moins, des comparaisons:

€l > ;> vin; 0w [E]> il > vl

Cet élément £ peut étre construit par additions et soustractions

au moyen des termes de la base considérée, de sorte que:

£ = 2y4yvje1; & = ay;4+yvje1; &,y nombres entiers.

Il suffit alors d’examiner les divers cas, dépendant des signes et de
la nullité des entiers z, y:

zy > 0: [E] = |oy;+yy] = eyl +lyyieal > vss

xy < 0: [E'[ = Ixy;-—{—y'y;-HI = ]xY;"i‘l?fY;‘ﬂl > !'Y;'+1|;
y=0 et |g| #1:[5 = |ay;| > v}

r=20 et [yl #1:E = ]?JY;'HI = ,Y;'+1’-

On peut mettre la disjonction ainsi vérifiée sous la forme d’impli-
cations:

€l <vi = [E] > lyjul;

Bl <kl = [ >,
Ceci acquis, on compare, dans M, a la suite des bases o; ;. ,
une base y; y;.; vérifiant la condition indiquée. La suite des «;

décroissant de 4 co & 0,v; est situé dans I'un des intervalles, il existe ,
tel que:

Uy =Y > %y

Ii y a égalité, si non d’aprés la propriété précédente, appliquée
a y; comparée a la base des «, puis & «;,,, comparée & la base des v

Y <o = lYJ‘ > )“;+1l = U1 > Y5

ce qui est contradictoire avec le choix de «;.
On peut alors comparer «;,, &la base v; = «;, Y;j+1; 1l en résulte:

Rjpy < & =7y; = l“;+1' = IY;‘HI'
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La derniére comparaison est une égalité, si non la comparaison de
vj+1 & la base des o entrainerait:

Cir1] = Y41 S % = Y

Yie] <

ce qui est contradictoire avec la définition de la base des +.
L’6galité des valeurs absolues |y ;| = |#;4,| entraine celle des
conjugués vy, = ®;4+q, puisqu’ils sont positifs.

Le théoréme résulte aisément de cette propriété préalable:
si un idéal M = (m, 0—c), semi réduit, de racine finale ¢, est
congru aux idéaux M; d’un cycle et notamment a M,;, dans
lequel est construit une suite de bases o;o;44, 1 existe un
élément p, qui peut étre choisi positif, tel que (p) XM soit égal
a M,. Le couple d’éléements:

Y, = eXm yjy = p X(0—c)

est une base arithmétique libre de M,, qui vérifie les conditions
précédentes et qui par suite est égale & une des bases de la
suite:

eXm = o; = g;Xm; pX(0—c) = a;4; = pi( X 0—c)).

Dans la derniere égalité, la comparaison des coefficients de 6
montre que:

P =eH M =m; C=C<C, M = Mi'

Tout tdéal M, semi réduit, congru auz idéaux d'un cycle d'idéaux
semi réduits est égal a un idéal de ce cycle.

48. Diviseurs de I'unité.

TutorEME des diviseurs de 'unité (II). — Dans un corps
réel, pour chacun des cycles d’idéaux semi réduits, désignés par
leurs racines finales:

M, = (m;, 6—c;); i1deOahr—1;

i

les diviseurs de I'unité sont égaux aux produits par -1 et —1 des
puissances »”, (d’exposants A entiers quelconques) de:

o = [II(0—c¢,)]:[lIm;]; ¢ de 0 a ~—1.

Cette expression a la méme valeur pour tous les cycles du corps.
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