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48 A. CHATELET

petite (ou la premiére) et la plus grande (ou la derniére) des
racines, 8’1l en existe, qui donnent une valeur négative au poly-
nome fondamental F(zx).

Elles sont caractérisées par I’équivalence de conditions:
Flc) <0 <= {ci initiale <C ¢ < ¢ ﬁnale};
ce qui est équivalent a la proposition contraposée (f'(c) ne pouvant
étre nul):
F(c) >0 < {c < ¢ initiale, ou ¢ > ¢, finale }

Les racines initiale et finale de 'idéal M’, conjugué d’un idéal M,

sont respectivement les racines conjuguées:
¢ = S—¢;, c} = S—c¢,,

des racines finale et initiale de M.

Pour un idéal semi réduit, les racines initiale et finale existent
et sont distinctes. En outre le nombre entier (2c—J5) est

positif, pour la racine finale: 2¢,—S§ > 0;

négatif, pour la racine initiale:  2¢,—5 < 0;
(il n’est pas nul).

La différence c,—c; est positive et multiple de m, en sorte que
c;—m > ¢; et ¢;4+m < ¢, donnent des valeurs négatives a F(x). Il en
est de méme des racines conjuguées:

F(S—c,—m]) = F(c;—m) < 0;  F(S—[¢;+m]) = F(c;+m) < 0.

Done S—c,+m et S—c,—m sont, tous deux, inférieurs & c,+m et
supérieurs a c;—m (qui donnent des valeurs positives a F(z)). 1l en
résulte:

S—c,+m < cp4m < 2c,—5 > 0;
S—c,/—m > ¢;4+m < 2¢—S5 <O0.

41. Couple d’idéaux associés semi réduits.

Les idéaux semi réduits se présentent par couples d’idéaux
associés relativement & une racine (26), aussi bien initiale que
finale. Pour les idéaux d’un tel couple on peut en effet donner
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des conditions de semi réduction, qui sont: nécessaires séparé-
ment et suffisantes simultanément.’

THEOREME caractéristique de semi réduction. — Deux
idéaux canoniques M et N, étant associés, relativement a une
racine ¢ qui donne & F(x) une valeur négative:

F(¢) = —mxn; M= (m, 6—c), N =(n, 0—0);
m, n entiers positifs;
pour que un d’eux soit semi réduit, et admette ¢ comme racine

soit initiale, soit finale, il est nécessaire que leurs normes vérifient
l'une des conditions, qui sont équivalentes:

|lm—n| < {2¢—S] ou (m-+n)* <D.

Cette condition est suffisante pour que les deux idéaux soient
simultanément semi réduits.

Pour chaque idéal, la racine est finale ou initiale, suivant que
2¢—S, qui ne peut étre nul, est positif ou négatif.

[équivalence des deux comparaisons résulte du calcul immédiat:

(m—n)? < (2¢—8)? < (m+n)? < 2c—S8)2+4mxn
= (2c—8)>—4F(c) = D.
Pour établir leur nécessité, on calcule les valeurs de F(zx), pour

les racines de M, précédant et suivant immédiatement la racine c.
On obtient aisément les expressions, qui ne peuvent étre nulles:

F(c—m) = m xX[(m—n)—(2c—I)];
Flc+m) = mx[(m—n)4(2¢—S5)].
Pour que M soit semi réduit et que ¢ en soit racine finale, ou
initiale, 1l faut et il suffit que, suivant le cas:
¢ finale:  2¢—S§ > Ov; F(c—m) <0; F(c¢) <0; F(ec+m)>0; .
¢ initiale: 2¢—S8 < 0;  F(e—m)>0; F(c) <0; F(ct+m)<O.
IT est équivalent de dire que les crochets, qui ne peuvent étre nuls,
doivent avoir les mémes signes que leurs seconds termes. Pour cela,

1l est nécessaire et suffisant que la valeur absolue |2c—S| de ces
termes soit supérieure a la valeur absolue |m—n/, des premiers termes.
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- Réciproquement si cette condition est remplie, elle I'est & la fois
pour M et N, puisque m—n n’intervient que par sa valeur absolue.
Elle suffit done pour que M et N, associés relativement & la racine c,
soient semi réduits et admettent ¢ comme racine, finale ou initiale
suivant le signe de 2c—S. |

La simultanéité des conditions suffisantes peut encore étre
exprimée sous la forme de Pexistence d’idéaux (en général
différents) associés & un méme i1déal semi réduit:

st un idéal M est semi réduit, les idéauxr N; et N,, associés
a M, relativement a ses racines c; initiale et ¢, finale:

M = (m, 6”“‘0;’); F(c;) = —mXng; N;, = (n;, 0—c));
= (m, O—c;); F(c;) = —mXn;; Np= (ng, 0—c);

sont semi réduits et c;, ¢, en sont, respectivement, les racines
mitiale pour N, finale pour N,.

Sauf précision contraire, on utilisera, de préférence, les couples
d’tdéaux associés, relativement a leur racine finale (en sous enten-
dant I'indication de cette racine), donc pour une valeur positive
de 2¢c—S, et, par suite pour une valeur non négative de c.

Tout idéal réduit est, ainsi qu’il a été dit (40), a fortiori
semi réduit. La réciproque n’est pas vraie, on peut seulement
affirmer que

dans tout couple d’'tdéaux semi réduils, associés, relativement
& une racine c¢ (finale ou initiale):

M= (m, 6—c), N =(n, 6—c); m < n;

N

le premier, au moins, M (de norme au plus égale a celle du second)
est réduit.

La norme m, de l'idéal considéré a un carré au plus égal a
|F(c)| = mXn. On détermine la racine minimum ¢, de cet idéal M;
la valeur F(c) est aussi négative et de valeur absolue maximum (38).

Donc:
F(e)| < |[F(0)|;

m? <

M vérifie bien la condition de réduction (393).
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