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48 A. CHATELET

petite (ou la première) et la plus grande (ou la dernière) des

racines, s'il en existe, qui donnent une valeur négative au polynôme

fondamental F(x).

Elles sont caractérisées par l'équivalence de conditions:

F(c) <0 <^> { ct initiale < c < cf finale } ;

ce qui est équivalent à la proposition contraposée (F(c) ne pouvant
être nul):

F(c) > 0 {c < ci initiale, ou c > ey finale}

Les racines initiale et finale de l'idéal M', conjugué d'un idéal M,
sont respectivement les racines conjuguées:

Ci S Cy, C
J

S

des racines finale et initiale de M.

Pour un idéal semi réduit, les racines initiale et finale existent
et sont distinctes. En outre le nombre entier (2c—S) est

positif, pour la racine finale: 2cf—S > 0;
négatif, pour la racine initiale: 2ct—S < 0;

(il n'est pas nul).

La différence cf—ct est positive et multiple de m, en sorte que

Cf—m > Ci et Ci~{-m < cf donnent des valeurs négatives à F(x). Il en

est de même des racines conjuguées:

F(S—[Cf—m\) F(cf—m) < 0; F(S—[ci+m]) F(Ci+m) < 0.

Donc S—cf-\-m et S—c•—m sont, tous deux, inférieurs à cf+m et

supérieurs à ct—m (qui donnent des valeurs positives à F(x)). Il en

résulte :

S—Cf-\-m < cf-\-m <=> 2cf—S > 0;

S—ct—m > Ci+m o 2c — S < 0.

41. Couple d'idéaux associés semi réduits.

Les idéaux semi réduits se présentent par couples d'idéaux
associés relativement à une racine (26), aussi bien initiale que
finale. Pour les idéaux d'un tel couple on peut en effet donner



LES CORPS QUADRATIQUES 49

des conditions de semi réduction, qui sont: nécessaires séparément

et suffisantes simultanément.'

Théorème caractéristique de semi réduction. — Deux
idéaux canoniques M et N, étant associés, relativement à une
racine c qui donne à F(x) une valeur négative:

F(c) —mxn; M (772, 0—c), N — (n, 0—c);
772, n entiers positifs;

pour que Vun d'eux soit semi réduit, et admette c comme racine
soit initiale, soit finale, il est nécessaire que leurs normes vérifient
Vune des conditions, qui sont équivalentes:

\m 721 < [2c S| OU (t72-|-72)2 < D.

Cette condition est suffisante pour que les deux idéaux soient
simultanément semi réduits.

Pour chaque idéal, la racine est finale ou initiale, suivant que
2c—S, qui ne peut être nul, est positif ou négatif.

L'équivalence des deux comparaisons résulte du calcul immédiat:

(m—n)2 < (2c—S)2 o (T?2+72)2 < (2c—S)2jrkmxn
(2c—S)2—SF(c) D.

Pour établir leur nécessité, on calcule les valeurs de F(x), pour
les racines de M, précédant et suivant immédiatement la racine c.

On obtient aisément les expressions, qui ne peuvent être nulles:

F(c—m) mx[(m—n)—(2c—S)];

F(c-\-m) — mx[(m—tz) + (2c—S)].

Pour que M soit semi réduit et que c en soit racine finale, ou
initiale, il faut et il suffit que, suivant le cas:

c finale: 2c—£>0; F(c—772) <0; F(c) <0; i^c+772) > 0;

c initiale : 2c—S < 0 ; F(c—m) > 0 ; F(c) < 0 ; F(c+m) < 0.

Il est équivalent de dire que les crochets, qui ne peuvent être nuls,
doivent avoir les mêmes signes que leurs seconds termes. Pour cela,
il est nécessaire et suffisant que la valeur absolue |2c—S| de ces

termes soit supérieure à la valeur absolue \m—ti|, des premiers termes.
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50 A. CHATELET

Réciproquement si cette condition est remplie, elle l'est à la fois

pour M et N, puisque m—n n'intervient que par sa valeur absolue.

Elle suffît donc pour que M et N, associés relativement à la racine c,

soient semi réduits et admettent c comme racine, finale ou initiale
suivant le signe de 2c—S.

La simultanéité des conditions suffisantes peut encore être

exprimée sous la forme de l'existence d'idéaux (en général
différents) associés à un même idéal semi réduit:

si un idéal M est semi réduit, les idéaux et Ny, associés

à M, relativement à ses racines cL initiale et cf finale:

(m, 0— Ci);F(Ci) =—mxrii; N; 6—cÉ);

(m, 0—Cy); F(cf —m X nf ; Ny (nf1 0—cf);

sont semi réduits et ch cf en sont, respectivement, les racines
initiale pour Nf, finale pour Ny.

Sauf précision contraire, on utilisera, de préférence, les couples
idéaux associés, relativement à leur racine finale (en sous entendant

l'indication de cette racine), donc pour une valeur positive
de 2c—S, et, par suite pour une valeur non négative de c.

Tout idéal réduit est, ainsi qu'il a été dit (40), a fortiori
semi réduit. La réciproque n'est pas vraie, on peut seulement
affirmer que

dans tout couple rf'idéaux semi réduits, associés, relativement
à une racine c (finale ou initiale):

M (m, 0—c), N (tt, 0—c); m < n\

le premier, au moins, M (de norme au plus égale à celle du second)
est réduit.

La norme m, de l'idéal considéré a un carré au plus égal à

j.F(c)| mxn. On détermine la racine minimum c, de cet idéal M;
la valeur F(c) est aussi négative et de valeur absolue maximum (38).

Donc:
m* < jF(c)| < |.F(c)|;

M vérifie bien la condition de réduction (35).
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