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CHAPITRE VI

LES CLASSES D'IDÉAUX ET LES DIVISEURS DE L'UNITÉ

DANS LES CORPS RÉELS

Dans un corps réel, ou de discriminant positif, la considération

des idéaux réduits (25) suffit pour montrer que le nombre
de classes d'idéaux est fini. Mais elle ne permet plus de déterminer

toujours, avec certitude, la structure de leur groupe (ou
la table de pythagore de leur multiplication). On définit
alors une catégorie plus étendue d'idéaux, qui sont appelés
semi réduits. Chaque classe d'idéaux est caractérisée par un
système, ou, plus précisément, par un cycle (système ordonné)
d'un nombre fini d'idéaux semi réduits. Ces cycles permettent,
en même temps, de réaliser la construction, au moins théorique,
des diviseurs de Vunité, dans le corps réel considéré.

Avant d'exposer cette notion nouvelle, on montre d'abord
comment dans certains cas, notamment pour des discriminants
peu élevés, le calcul des seuls idéaux réduits permet encore
d'aboutir à une affirmation.

38. Corps réels principaux triviaux.

Dans un corps réel, la valeur F(c), du polynôme fondamental
est négative, pour un nombre fini de valeurs entières, comprises
entre les deux zéros (irrationnels) du polynôme, qui sont de

signes contraires. La considération de ces valeurs fournit un
critérium, moins strict, pour la détermination des idéaux
réduits.

On peut d'abord modifier une remarque faite pour les idéaux
des corps imaginaires (29): pour un idéal canonique d'un corps
réel, s'il existe des racines c qui rendent F(x) négatif, la racine
minimum c est celle, d'entre elles, qui donne à F(x) la plus grande
valeur absolue.



42 A. CHATELET

Il suffit encore de considérer la différence:

F{cJr'km)—F(c) — Xmx(2c—S+lm); X entier rationnel;

si c est racine minimum, |2c—S\ est au plus égal à m, (2c—6'+Xm)
est nul, ou du signe de X, supposé non nul; la différence est positive
ou nulle. S'il existe des racines x c+Xm qui rendent F(x) négative
il en est de même de c, puisque F(c) est au plus égal à F(cJrFm) et

il en résulte la comparaison des valeurs absolues:

F(c) < F(cF*km) => \F(c)| > |i*\c+ Xm)|.

Théorème caractéristique d'un idéal réduit. — Dans un
corps réel, ou de discriminant positif, pour qu'un idéal, et, par
suite, son idéal conjugué, soit réduit, il faut et il suffit qu'il ait
au moins une racine c, telle que F(c) soit négative et que le carré
de sa norme soit au plus égal à la valeur absolue \F(c)\:

m diviseur de |i^(c)| ; F(c) <0; m2 < |i^(c)|.

La condition est nécessaire, car pour un idéal réduit, ces conditions

sont vérifiées en prenant pour c la racine minimum c (25).

La condition est suffisante, la racine minimum de l'idéal est alors
l'entier c, de plus petite valeur absolue, congru à c, mod. m. Il donne

encore une valeur négative à F(x), au plus égale à F(c) en sorte que:

m* < |F(c)| < |-F(c)|;

ce qui vérifie la condition de réduction.

On peut encore vérifier que la définition d'un idéal double

et sa propriété caractéristique (7) sont valables: sa norme est
diviseur du discriminant. Mais la condition de réduction donnée

pour les corps imaginaires (29) devient (coefficient 3 remplacé

par 5):

si D est impair;
si D — 4d; d impair; m 2u', u' diviseur

de d;
si D 4d, m diviseur de d.

Les idéaux réduits ne représentent plus proprement les

classes d'idéaux; dans chacune d'elles, il peut exister plusieurs

5m2 < É),

4m2 < D,
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idéaux réduits, toutefois en nombre fini. Pour rechercher leur
table de multiplication, comme il a été fait pour les corps
imaginaires, il faudrait, au moins en principe, avoir préalablement
réparti en classes les idéaux réduits eux-mêmes.

On peut cependant affirmer directement le résultat lorsque
les calculs de multiplication des idéaux et les relations résultant
des décompositions de valeurs du tableau permettent de constater
que tous les idéaux réduits sont principaux, c'est-à-dire que le

corps est principal.

Tableau XX.

Corps réels où le seul idéal réduit est (1).

D
r

5

1

13
1

21 3X7
1

29
1

53
2

77 7X11
2

173
3

293
4

437 - 19X23
5

8

1

12
1

~F(0) 1 3 5 7 13 19 43 73 109 2 3

~F(1) —1 1 3 5 11 17 41 71 107 1 2

-F( 2) 7 13 37 67 103

~F[ 3) 31 61 97

~F(4) 53 89

~F(5) 79

Une première circonstance, presque pour laquelle
cette affirmation est possible est réalisée lorsque l'idéal unité
est le seul qui soit réduit:

pour qu'un corps réel soit principal,il suffit que les r premières
valeurs du polynôme fondamental F(c)

0 < c < r; a: > r <=> |A(a;)| < (2x— S)2

qui sont négatives, soient toutes des nombres premiers.
Dans le cas des corps imaginaires, cette condition est aussi

suffisante, mais elle est également nécessaire (34).
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Pour les discriminants pairs, elle n'est vérifiée que pour les
valeurs 8 et 12 (polynômes fondamentaux x2—2 et x2—3) ; pour
tous les autres, l'idéal, de norme 2 et de racine 0 ou 1 est réduit.

Elle est, d'autre part, vérifiée pour 9 corps, de discriminants
impairs (et aucun autre inférieur à 1000), qui sont donnés
dans le tableau XX. On remarquera que dans ceux de discriminants

21 et 77, il y a un idéal double, non réduit.

39. Exemples de vérification de corps principaux.

Dans certains cas, la considération des idéaux réduits suffit
encore à constater que le corps est principal. Quelques exemples
de calcul en sont donnés dans le tableau XXI, qui est disposé
de la même façon que les tableaux X, XII, XVI, donnés en

exemples de corps imaginaires. On a toutefois inscrits, en
caractères gras, les normes des idéaux réduits.

Une première circonstance est Yexistence d'un seul couple
d'idéaux réduits conjugués (en plus de l'idéal unité), éventuellement

égaux, dont la décomposition d'une valeur ultérieure du
tableau montre qu'ils sont principaux.

Dans le corps, de discriminant 317 (première colonne du tableau

XXI) les 3 seuls idéaux réduits sont l'idéal (1) et le couple d'idéaux
conjugués (inégaux), de norme 7. La valeur F(8) —7, montre
qu'ils sont principaux (0—8) (7, 0—8). La valeur antérieure

E(5) —49 montre aussi qu'ils sont congrus (idéal réfléchi, non
réduit).

Pour le corps de discriminant pair 152 — 8x19 (deuxième
colonne du même tableau), les 2 seuls idéaux réduits sont (1) et
l'idéal double de norme 2. La valeur F(6) — —2 montre que cet
idéal est principal.

De telles vérifications peuvent se faire pour un assez grand
nombre de corps de discriminants inférieurs à 1000, notamment:

impairs: 17, 33, 37, 41, 61, 69, 93, 101, 133, 149, 157, 197,

213, 237, 269, 317, 341, 413, 453, 461, 557, 677, 717, 773, 941;

pairs: 24, 28, 44, 56, 92, 152, 188, 248, 332, 668, 908.
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Tableau XXI.

Exemples de corps réels principaux.

(Calculs avec les idéaux réduits.)

b II CO

II
D —152 8X19

r 3
D193

3
D 184 8X23

r — 4

-m 79

(1. 6)

38 2X29
(1, 6)

(2, 0) (2, 0')

48 24>

(1. 6)

(2, 0)

(3, 0)

(4, 6)

(6, 0)

<3

(2, 0')
(3, 0')
(4, 0')
(6, 0')

46 2X23
(1, 6)

(2, 0) (2, 0')

—F(1) 77 7X11
(7, 6—1) (7, 0'—1)

37 46 2X23 45 32X
(3, 0—1)
(5, 6—1)-

5

(3, 0'—1)
(5, 0'—1)

—m 73 34 2X17 42 2X
(6, 0—2)

3x7
(6, 0'—2)

42 2x:
(6, 0—2)

3X7
(6, 0'—2)

-m 67 29 36 37

v#

in

l>

oo

fc,

Et,

1
1
1
1
1

59
49 7 X 7

7

2
18 6X3
6 2x3

30

10 2x5
—3

F(8):
(7, 9-1) ~ (1)

f(6):
(2, 0) — (1)

F(6):
(6, 0) ~ (1)

F(5):
(6, 0') x (3, 0')

~ (1)
F( 6):

(2, 6) X (3, 0)

~ (1)

m-
(3, 0-1) ~ (1)

F(l):
(3,0—l)3 x (5, 0—1)

~ (1)

F(6):
(2, 0) X (5, 0—1)

~
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Une circonstance, moins évidente lorsqu'il existe plusieurs
couples d'idéaux conjugués, est Vexistence de valeurs du tableau,
dont les décompositions montrent successivement que certains
des idéaux réduits sont principaux, et qu'il en est, par suite de

même de leurs produits mutuels, qui peuvent constituer tous les

autres.

Dans le corps, de discriminant 193 (troisième colonne du tableau

XVIII), il y a 11 idéaux réduits dont (1) et 5 couples d'idéaux
conjugués différents. Les décompositions de —F(6) 1x6, —F(b) —

6x3, et, à nouveau —F(6) 2x3 montrent successivement que:
un des couples d'idéaux, de norme 6, puis le couple de norme 3, puis
celui de norme 2 sont principaux. Il en résulte la même propriété

pour le couple de norme 4 et l'autre couple de norme 6.

Dans le corps de discriminant 184 (quatrième colonne du même

tableau), il y a 8 idéaux réduits, dont (1) et l'idéal double, de norme 2.

Les décompositions de —F(7) — 3x1, —.F(l) 32x5, et

—F (6) 2 X 5 montrent successivement que les idéaux, de norme 3,

donc ceux de norme 32 (non réduits), puis ceux de norme 5, puis
l'idéal double, de norme 2 sont principaux. Il en résulte la même

propriété pour les deux autres idéaux réduits, de norme 6.

De telles vérifications peuvent se faire pour presque tous les

corps principaux, de discriminant inférieur à 500 et pour un
très grand nombre de ceux dont le discriminant est compris
entre 500 et 1000. Les calculs sont, d'ailleurs, en général plus
simples que dans le cas des corps imaginaires. Cette simplification

tient, pour une part, au petit nombre de diviseurs des

valeurs F{c), pour c voisin des zéros (irrationnels) de ce

polynôme.

On est ainsi conduit, pour « distinguer » des idéaux (ou des

couples d'idéaux conjugués), à utiliser, au lieu des racines
minimums (les plus proches de 0), les racines les plus proches
des zéros (irrationnels) du polynôme, et comprises entre ces

zéros (ou rendant F(x) négatif) c'est-à-dire encore les racines

qui donnent à —F(x) les plus petites valeurs positives. C'est ce

qui va être fait dans les considérations et les définitions
suivantes.
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40. Idéaux semi réduits.

Pour « étendre » la définition des idéaux réduits, on peut
d'abord déduire de la propriété caractéristique, établie ci-dessus

(38), une remarque complémentaire.

Dans un corps réel, un idéal réduit M (m, 0—c) a, au

moins, deux racines distinctes, qui donnent à F(x) des valeurs

négatives.

Pour l'idéal réduit M, de racine minimum cf la somme:

F(c+m)+F(c—m) 2 [F(c)Jrm2]

n'est pas positive, puisque F(c) est négative et m2 au plus égal à

|E(c)|. Il en résulte que l'une au moins des valeurs F(c-\-m), et

F(c—m), qui ne peuvent être nulles, est négative, en même temps

que F(c). Comme c+m et c—m sont différents de c, la propriété
est établie.

Ceci suggère la définition suivante: Définition. — Dans

un corps quadratique réel, un idéal canonique est semi réduit,
lorsqu'il a, au moins, deux racines distinctes, qui donnent des

valeurs négatives à F(x) :

M (m, 0—q) (m, 0—c2); ci—c2 (mod. m);
Ci # c2; F{ci) < 0, F{C2) < 0.

En particulier, un idéal réduit est, a fortiori, semi réduit.
L'idéal M', conjugué, d'un idéal M semi réduit, est aussi semi

réduit, car les racines S—cr et S—c2. de l'idéal Mr, donnent à

F(x), les mêmes valeurs négatives, que les racines cx et c2, de M.

Pour un idéal semi réduit, il y a ainsi plusieurs (2 ou plus)
termes successifs de la progression arithmétique des racines qui
donnent une valeur négative à F(x); ils comprennent la racine
minimum c; ils sont en nombre fini [contenus entre les zéros

irrationnels, négatif et positif, de F(x)]; et ils ont deux termes
extrêmes. Ceci suggère la définition générale suivante.

Définition. — Dans un corps quadratique réel, on appelle
racine initiale et racine finale, d'un idéal canonique M, la plus
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petite (ou la première) et la plus grande (ou la dernière) des

racines, s'il en existe, qui donnent une valeur négative au polynôme

fondamental F(x).

Elles sont caractérisées par l'équivalence de conditions:

F(c) <0 <^> { ct initiale < c < cf finale } ;

ce qui est équivalent à la proposition contraposée (F(c) ne pouvant
être nul):

F(c) > 0 {c < ci initiale, ou c > ey finale}

Les racines initiale et finale de l'idéal M', conjugué d'un idéal M,
sont respectivement les racines conjuguées:

Ci S Cy, C
J

S

des racines finale et initiale de M.

Pour un idéal semi réduit, les racines initiale et finale existent
et sont distinctes. En outre le nombre entier (2c—S) est

positif, pour la racine finale: 2cf—S > 0;
négatif, pour la racine initiale: 2ct—S < 0;

(il n'est pas nul).

La différence cf—ct est positive et multiple de m, en sorte que

Cf—m > Ci et Ci~{-m < cf donnent des valeurs négatives à F(x). Il en

est de même des racines conjuguées:

F(S—[Cf—m\) F(cf—m) < 0; F(S—[ci+m]) F(Ci+m) < 0.

Donc S—cf-\-m et S—c•—m sont, tous deux, inférieurs à cf+m et

supérieurs à ct—m (qui donnent des valeurs positives à F(x)). Il en

résulte :

S—Cf-\-m < cf-\-m <=> 2cf—S > 0;

S—ct—m > Ci+m o 2c — S < 0.

41. Couple d'idéaux associés semi réduits.

Les idéaux semi réduits se présentent par couples d'idéaux
associés relativement à une racine (26), aussi bien initiale que
finale. Pour les idéaux d'un tel couple on peut en effet donner
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des conditions de semi réduction, qui sont: nécessaires séparément

et suffisantes simultanément.'

Théorème caractéristique de semi réduction. — Deux
idéaux canoniques M et N, étant associés, relativement à une
racine c qui donne à F(x) une valeur négative:

F(c) —mxn; M (772, 0—c), N — (n, 0—c);
772, n entiers positifs;

pour que Vun d'eux soit semi réduit, et admette c comme racine
soit initiale, soit finale, il est nécessaire que leurs normes vérifient
Vune des conditions, qui sont équivalentes:

\m 721 < [2c S| OU (t72-|-72)2 < D.

Cette condition est suffisante pour que les deux idéaux soient
simultanément semi réduits.

Pour chaque idéal, la racine est finale ou initiale, suivant que
2c—S, qui ne peut être nul, est positif ou négatif.

L'équivalence des deux comparaisons résulte du calcul immédiat:

(m—n)2 < (2c—S)2 o (T?2+72)2 < (2c—S)2jrkmxn
(2c—S)2—SF(c) D.

Pour établir leur nécessité, on calcule les valeurs de F(x), pour
les racines de M, précédant et suivant immédiatement la racine c.

On obtient aisément les expressions, qui ne peuvent être nulles:

F(c—m) mx[(m—n)—(2c—S)];

F(c-\-m) — mx[(m—tz) + (2c—S)].

Pour que M soit semi réduit et que c en soit racine finale, ou
initiale, il faut et il suffit que, suivant le cas:

c finale: 2c—£>0; F(c—772) <0; F(c) <0; i^c+772) > 0;

c initiale : 2c—S < 0 ; F(c—m) > 0 ; F(c) < 0 ; F(c+m) < 0.

Il est équivalent de dire que les crochets, qui ne peuvent être nuls,
doivent avoir les mêmes signes que leurs seconds termes. Pour cela,
il est nécessaire et suffisant que la valeur absolue |2c—S| de ces

termes soit supérieure à la valeur absolue \m—ti|, des premiers termes.

L'Enseignement malliém., t. VII, fasc. 1. 4
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Réciproquement si cette condition est remplie, elle l'est à la fois

pour M et N, puisque m—n n'intervient que par sa valeur absolue.

Elle suffît donc pour que M et N, associés relativement à la racine c,

soient semi réduits et admettent c comme racine, finale ou initiale
suivant le signe de 2c—S.

La simultanéité des conditions suffisantes peut encore être

exprimée sous la forme de l'existence d'idéaux (en général
différents) associés à un même idéal semi réduit:

si un idéal M est semi réduit, les idéaux et Ny, associés

à M, relativement à ses racines cL initiale et cf finale:

(m, 0— Ci);F(Ci) =—mxrii; N; 6—cÉ);

(m, 0—Cy); F(cf —m X nf ; Ny (nf1 0—cf);

sont semi réduits et ch cf en sont, respectivement, les racines
initiale pour Nf, finale pour Ny.

Sauf précision contraire, on utilisera, de préférence, les couples
idéaux associés, relativement à leur racine finale (en sous entendant

l'indication de cette racine), donc pour une valeur positive
de 2c—S, et, par suite pour une valeur non négative de c.

Tout idéal réduit est, ainsi qu'il a été dit (40), a fortiori
semi réduit. La réciproque n'est pas vraie, on peut seulement
affirmer que

dans tout couple rf'idéaux semi réduits, associés, relativement
à une racine c (finale ou initiale):

M (m, 0—c), N (tt, 0—c); m < n\

le premier, au moins, M (de norme au plus égale à celle du second)
est réduit.

La norme m, de l'idéal considéré a un carré au plus égal à

j.F(c)| mxn. On détermine la racine minimum c, de cet idéal M;
la valeur F(c) est aussi négative et de valeur absolue maximum (38).

Donc:
m* < jF(c)| < |.F(c)|;

M vérifie bien la condition de réduction (35).
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42. Construction des idéaux semi réduits.

Pour obtenir tous les idéaux semi réduits d'un corps, il
suffit de construire les couples, ou les produits, d'idéaux associés

relativement à leur racine finale.
On utilise le tableau des valeurs négatives de F(c), pour les

valeurs entières de c, à partir de 0. Pour chaque valeur |i^(c)|,
on cherche celles de ses décompositions en produit m An, de

deux entiers positifs, vérifiant la condition caractéristique,
|m—n\ inférieur à (2c—S); (ou la condition équivalente {m+n)2
inférieur à D).

Chaque décomposition donne un des produits cherchés:

(m, 0—c)x(ra, 6—c) (0—c).

Les idéaux ne sont ainsi obtenus qu'une fois, puisque c en est

une racine déterminée (finale). Dans leurs expressions, on peut
évidemment remplacer c par une racine congrue relativement
à la norme.

Pour chaque produit ainsi obtenu, les idéaux respectivement
conjugués, de mêmes normes m, 72, sont semi réduits, associés relativement

à la racine conjuguée c' S—c, qui est leur racine initiale
commune :

M' (772, 0' C) (772, 0 C'); N' (77, 0' C) (77, 0 U)

M'XN' (0' C) (0 C'); \F(C')\ |i^(c)[ 777 X 77.

Ces idéaux conjugués sont les mêmes que les précédents; mais ils sont
exprimés avec leurs racines initiales et leur répartition en produits,
ou en couples, est différente de la répartition précédente.

Exemples. — Le tableau XXII donne des exemples de calcul, à
la fois de couples d'idéaux conjugués réduits, et de produits d'idéaux
semi réduits associés à leur racine finale. Pour faciliter les
comparaisons, les idéaux ont été exprimés avec leur plus petite racine non
négative.

Dans le corps, de discriminant 145, la majorante des racines
minima des idéaux réduits est r 3: le carré de (2c—S) devient,
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Tableau XXII.
Exemples de construction d'idéaux réduits et d'idéaux semi réduits.

F(x) oc2 + .x—36; D
r 3

+145 5X29

9

Idéaux

-S
réduits conjugués semi réduits

0 1 —36
(1, 6)

(2,6)

(3, 6)

(4, 0)

—22x32

(2, 0—1)

(3, 0—2)

(4, 0—3)

(6, 6) (6, 0—5) (6, 0) x (6, 0)

1 3 —34 —2X17

2 5 —30 —2x3x5

(5, 0—2) (5, 0-2) (5, 0—2) X (6, 0—2)

3 7 —24 —23X3

(3, 0) X (8, 0—3)

(4, 0—3) X (6, 0—3)

4 9 —16 —24

(2, 0) x (8, 0—4)

(4, 0) x (4, 0)

5 11 —6 —2X3

(1, 0) X (6, 0—5)

(2, 0—1 X (3, 0—2)

6 + 6

F(x) x2-—58; D
r 4

+232 8X29

c 2 c

Idéaux

-S
réduits conjugués semi réduits

0 0 —58 —2x29
(M)
(2, 6) (2, 6)

1 2 —57 --3X19

(3,6-1) 1CD

2 4 —54 -—2 X 33

(6, 6—2)] (6, 0—4) (6, 0—2) x (9, 0—2)

3 6 —49 --72

(7, 0—3) <-(7, 0-4) (7, 0—3) X (7, 0—3)

4 8 —42 --2X3X7

(6, 0—4) x (7, 0—4)

5 10 —33 --3 X 11

(3,0—2) x (11,0—5)

6 12 —22 --2X11

(2, 0) x (11, 9—6)

7 14 —9 —32

(1, 0) X (9, 0—7)

(3, 0—1) x (3, 0—1)

8 + 6

(6, 6) (3, 6—3)
1 A

(6, 0—5) T—

(5, 6—2) ^ (6, 0—3) -> (4, 6—4)

(1, 6-5)
t

6—4)

(2,4-5)

<3, 0—5)
(6, 6—2)
(2, 6-4)

t
(8, 6—3)

t
(4, 6—3)

(1, 0—7) -> (9, 0—2) -> (6, 6—4) -> (7, 0—3)
I

6—7) (6, 0—2) (7, 0—4)
(2, 0—6) -> (11, 0—5) (3, 0—7)

(11, 0—6) (3, 0—5)
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pour cette valeur, supérieur à |E(c)|. Il y a 6 couples d'idéaux réduits

conjugués, mais ceux de normes 1 et 5 sont doubles, d'où seulement

10 idéaux réduits .En outre les idéaux du couple, de racine minimum 0

et de norme 6 sont réfléchis, donc congrus; il y a au plus 9 classes.

Ces couples sont inscrits devant la racine minimum (non négative)
de l'un de leurs termes, mais ils sont indiqués avec leur plus petite
racine non négative.

Le tableau a été prolongé, jusqu'à la première valeur positive
de F(c); devant chacune de ses valeurs, on a inscrit d'autre part les

produits d'idéaux semi réduits, calculés par les relations:

|E(c)| mxn; |m—n\ < 2c—S; (m, 0—cx) X (ft, 0—c2)

Cjl et c2 sont les plus petites valeurs, non négatives, congrues à c,

relativement aux modules respectifs m et n. Il y a, ainsi, 8 produits
d'idéaux semi réduits, mais pour deux d'entre eux, de racines finales
0 et 4, leurs termes sont égaux, et de normes 6 et 4. Il n'y a donc

que 14 idéaux semi réduits différents, qui comprennent les 10 idéaux
réduits précédents, dont les normes sont en caractères gras, et en

outre 2 couples d'idéaux conjugués, de normes 6 et 8.

Dans le corps, de discriminant pair 232, la majorante des racines
minima des idéaux réduits est r 4. Il y a 5 couples d'idéaux réduits
conjugués, dont deux idéaux doubles, de normes 1 et 2, en tout
8 idéaux réduits différents, dont 2 réfléchis, de norme 7 (au plus
7 classes).

Il y a d'autre part 7 produits d'idéaux associés semi réduits, dont
2 à termes égaux, de racines finales 3 et 7 et de normes 7 et 3. Il n'y
a donc que 12 idéaux semi réduits différents, qui comprennent les
8 idéaux réduits précédents (.dont les normes sont en caractères gras)
et deux couples d'idéaux conjugués, de normes 9 et 11.

Le tableau XXIII donne, pour les mêmes exemples, la
correspondance entre les produits d'idéaux semi réduits associés à leur
racine finale c (non négative) et les produits conjugués associés à leur
racine initiale S—c (négative). Chacun de ses idéaux est encore
désigné par sa plus petite racine non négative.

On peut résumer comme suit la définition, et la construction,
au moyen du tableau de valeurs, de tout idéal semi réduit, de
son associé (relativement à la racine finale) et de son conjugué.
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Tableau XXIII.
Correspondance des produits conjugués d'idéaux semi réduits associes à

leurs racines finale et initiale.

F(X) x2 + x—36; D 145 5X29

cf
finale

(0 Cf) Ci

initiale (6-ci)

0 (6, 0) x (6, 6) —1 (6, 0—5) X (6, 0—5)

2 (5, 6—2) X (6, 6—2) —3 (5, 0—2) X (6, 0—3)

3 (3, 0) X (8, 0—3)
(4, 0—3) X (6, 0—3)

—4 (3, 0—2) X (8, 0—4)
(4, 0) x (6, 0—2)

4 (2, 0) x (8, 0—4)
(4, 0) x (4, 0)

—5 (2, 0—1) X (8, 0—3)
(4, 0—3) X (4, 0—3)

5 (1, 0) X (6, 0—5)
(2, 6—1) x (3, 0—2)

—6 (1, 0) X (6, 0)

(2, 0) X (3, 0)

F(X) x2—58; D 232 8X29

cf
finale

(9—cf) Ci

initiale
(6—ci)

0 0 »

1 —1 »

2 (6, 0—2) X (9, 6—2) —2 (6, 6—4) X (9, 6—7)

3 (7, 0—3)X(7, 0—3) —3 (7, 0—4) x (7, 0—4)

4 (6, 0—4) X (7, 0—4) —4 (6, 0—2) X (7, 0—3)

5 (3, 0—2) X (11, 0—5) —5 (3, 0—1) x (11, 0—6)

6 (2, 0) X (11, 0—6) —6 (2, 6—2) X (11, 6—5)

7 (1, 0) X (9, 0—7)
(3, 0—1) X (3, 0—1)

—7 (1, 0) X (9, 6—2)
(3, 0—2)X(3, 0—2)
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Un idéal (canonique) semi réduit M, de racine finale c, est

caractérisé par:

M (m, 0—c) (m, 0—cx); cx s c, (mod. m);

0 < 2c—S; F(c) -—mXn; |w—n\ < 2c—£[ou (ra-fft)2 < D]

Son idéal associé N (relativement à sa racine finale c), qui
est aussi semi réduit, est:

N — (n, 0—c) K 6—^); c2 c, (mod. w).

Son idéal conjugué M', qui est aussi semi réduit, de même

norme et de racine finale c', est:

M' (m, 0—c'); c' 5—c, (mod. m);

F(cf) < 0 < jF(c'+m);

on peut évidemment remplacer la racine finale c' par tout
entier c'1? congru à c' (ou à 5—c), mod. m.

43. Idéaux semi réduits remarquables.

Par analogie avec la notion des idéaux réduits remarquables
dans un corps imaginaire (29), on peut donner les définitions
suivantes.

Définitions. — Dans un corps quadratique réel, parmi les

idéaux semi réduits (42), on peut remarquer, ou appeler
remarquables :

1. un idéal qui est double (7) et qui est ainsi semi réduit
double; il est égal à son conjugué.

2. un idéal qui est réfléchi, ou égal à son associé relativement
à sa racine finale et qui est ainsi semi réduit réfléchi (puisque
la différence des normes des idéaux associés qui est nulle est
inférieure à 2c—5, qui ne l'est pas).

Théorème d'existence d'un idéal semi réduit double. —
Pour qu'un idéal soit semi réduit double, il faut et il suffit que
sa norme m soit un diviseur du discriminant D et vérifie les
comparaisons :
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1. Si D est impair, ou si D 4rf, d impair et m pair: m2 <D.
2. Si i) 4d et m diviseur de d: m2 < d — DA.
Comme D ne peut avoir d'autre facteur carré que 4

(éventuellement), m2 ne peut être égal, ni à D, ni à d — DA (il n'y
a pas de corps réel, de discriminant égal à 4).

Pour qu'un idéal canonique soit double (7), il faut et il suffit que
sa norme divise le discriminant; c'est la conséquence de l'étude de

la congruence fondamentale (6). La condition supplémentaire de

semi réduction résulte de l'examen des deux cas.

Dans le premier cas, m ne divisant pas D:4, on utilise l'expression
du polynôme:

4F(x) (2x—S)2—D ;

on obtient des zéros conjugués, mod. m:

c (S-\-m):2 c S—c (S—m):2; (c c—m);

qui sont des racines consécutives de l'idéal, de norme m, pour lesquelles
les valeurs du polynôme sont égales:

4F(c) 4F(c') m2—D.

Si m2 < i), ces deux valeurs sont négatives, c'est la propriété
caractéristique de semi réduction (40) de l'idéal, de norme m et de

racines c ou c

Si m2 > D, les deux racines c et c' et tous les autres termes de la

progression :

c'—\m\ c+Am; A entier positif

donnent à F(x) des valeurs positives; l'idéal ne peut être réduit.

Dans le deuxième cas1 on utilise l'expression du polynome:

F(x) x2—d; D 4d.

m étant un diviseur de d, les entiers —?n, 0, +m sont des racines
consécutives de l'idéal double, de norme m.

Si m2 < d, les valeurs:

F(—m) — F{F m) — m2—d,

sont négatives, de même que F{0) — —d; l'idéal est semi réduit.
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Si m2 > d, la valeur F(0) —d est encore négative, mais toutes

les autres valeurs F(km), pour tout entier X non nul, sont positives,

il n'existe pas de racines consécutives de l'idéal qui donnent à F(x)
des valeurs négatives; l'idéal n'est pas semi réduit.

Théorème d'existence d'un idéal semi réduit réfléchi. —
Pour qu'un idéal, de norme m, soit semi réduit réfléchi, il faut
et il suffit que le discriminant D soit égal à la somme des carrés de

deux nombres entiers, dont un égal à 2m:

a impair, si D est impair;
D a +4m j ^ ^ ^ multiple de 8.

Il n'y a pas d'idéal semi réduit réfléchi, dans un corps dont le

discriminant est quadruple d'un nombre impair (D 4d\
d impair).

Ainsi qu'il a été déjà vérifié (16), la condition de décomposition
est manifestement nécessaire et suffisante pour que l'idéal:

M (m, 0—c) ; 2c—S a ;

soit réfléchi, relativement à la racine c, qui donne à F(x) la valeur
négative —m2.

Il n'y a pas de condition de comparaison: les deux facteurs de la

décomposition de —F(c) étant égaux, leur différence est nulle, donc

inférieure à 2c—S a, qui ne peut être nul.

Exemples. — Dans le corps de discriminant impair 145 5x29
(tableau XXII), les facteurs du discriminant D, de carré au plus égal
à D sont 1 et 5, qui sont les normes des deux idéaux semi réduits
doubles:

(1, 0) (5, 0-2).

Aux deux décompositions du discriminant:

145 p= 92+ 4 x 42, 145 l2+4x62,

correspondent les idéaux semi réduits réfléchis:

(4, 0-4) (4, 0); (6, 0),

de racines finales respectives 4 et 0.
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Les idéaux conjugués:

(4, 0+5) (4, 0-3), (6, 0+1) (6, 0-5),

également semi réduits, sont réfléchis, mais relativement à leurs
racines initiales —5 et —1 (tableau XXIII).

Dans le corps de discriminant pair 232 — 8x29 — 4x58
(tableau XXII), la congruence fondamentale, qui a une racine double,
mod. 2, est impossible mod. 4. Les normes des idéaux doubles ne

peuvent être divisibles par 4 et sont des diviseurs de 58. Les seuls

dont le carré est inférieur à 58 sont 1 et 2, qui sont les normes des

idéaux réduits doubles (1, 0) et (2, 0).

Aux deux décompositions du discriminant:

232 62+4x72; 232 142 + 4 x 32;

(qui sont composées des mêmes termes, mais où le quadruple du

carré mis en évidence n'est pas le même) correspondent les idéaux
semi réduits réfléchis:

(7, 0-3), (3, 0-7) (3, 0-1),

de racines finales respectives 3 et 7. Les idéaux conjugués sont encore

en évidence dans le tableau XXIII.

L'idéal unité est, dans tous les cas un idéal semi réduit double,

sa norme 1 est diviseur de D comme de D : 4 et son carré est
inférieur à cette valeur. Sa racine finale est le plus grand entier
c, qui donne à F(x) une valeur négative; son idéal associé est
l'idéal principal (—F(c), 0—-c) — (0—c).

Si cet entier c donne à F(x) la. valeur —1, l'idéal associé est

égal à l'idéal unité, qui est alors, à la fois, semi réduit double
et réfléchi.

44. Cycles d'idéaux semi réduits.

On va établir que, dans un corps quadratique réel, les idéaux
semi réduits peuvent être répartis en (un ou plusieurs) cycles,

d'idéaux congrus entre eux. Par cycle, on entend un système
de termes, en nombre fini, ordonnés circulairement.

A cet effet on définit et on justifie la relation d'ordre, puis
la répartition qui en résulte; on vérifie la congruence, ou l'appartenance

à une même classe des idéaux d'un cycle.
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Dans une deuxième étape, moins évidente (45 à 47), on

établit que chaque classe d'idéaux dun corps contient un et

un seul cycle, en sorte que, pour la détermination et le calcul
des classes, les cycles jouent, dans un corps réel, le rôle rempli

par les idéaux réduits dans un corps imaginaire (30 et 31).

Définitions. — On appelle suivant, d'un idéal semi réduit
M, l'idéal N', égal au conjugué de l'idéal N, associé à M
(relativement à sa racine finale):

suivant de M conjugué de [l'associé de M]

On appelle précédent7 d'un idéal semi réduit N', l'idéal M,
égal à l'associé (relativement à la racine finale) de l'idéal N,

conjugué de N':

précédent de N' associé de [le conjugué de N']
Le conjugué et l'associé d'un idéal semi réduit étant aussi

semi réduits, il en est de même des idéaux précédent et suivant.
En outre leurs constructions sont manifestement déterminées
et réciproques; c'est ce qu'exprime le théorème suivant.

Théorème de la réciprocité de la succession. — Tout idéal
semi réduit est le suivant dun et un seul idéal semi réduit, qui est
V idéal précédent;

il est le précédent dun et un seul idéal semi réduit qui est

Vidéal suivant:
précédent du suivant de M suivant du précédent de

M M.

Le suivant et le précédent sont déterminés comme le sont le

conjugué et l'associé; leurs constructions sont d'ailleurs évidentes
sur le tableau des valeurs négatives de T(c); pour c entier croissant
à partir de 0.

Un idéal semi réduit M étant donné par sa norme m et sa racine
finale c, on calcule la norme n-, puis la racine finale c', de l'idéal
suivant N' par les formules:

n E(c) : m ; c ^ S—c-\-Xtz;

X étant choisi par la condition que c' soit le dernier terme de la
progression arithmétique, qui figure dans le tableau, c'est-à-dire qui
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donne à F(x) une valeur négative. Ce choix est possible, puisque N'
étant semi réduit, il existe dans le tableau, au moins un terme de la
progression (de ses racines).

Inversément un idéal semi réduit N' étant donné par sa norme n
et sa racine finale c', on calcule la racine finale c, puis la norme m,
de l'idéal précédent M par les formules:

c S—c' -\-\n\ m —F(c):n;

X étant choisi par la condition que c soit le dernier terme de la
progression arithmétique qui figure dans le tableau. Ce choix est aussi

possible, puisque l'idéal M est semi réduit.
Ces deux constructions et leur détermination prouvent que:

N' suivant de M o M précédent de N'.

Théorème de répartition en cycles. — Dans un corps
quadratique réel, les idéaux semi réduits peuvent être répartis en

(un ou plusieurs) cycles (ou systèmes d'un nombre fini d'idéaux),
tels que :

un cycle contient le précédent et le suivant de chacun de ses

idéaux.

Par « répartition », on entend que chaque idéal semi réduit
appartient à un et un seul cycle, de sorte que deux cycles
différents n'ont pas d'élément commun et que la réunion des cycles
est égale au système des idéaux semi réduits.

D'autre part, un cycle ayant un nombre fini Ä, de termes,
l'appartenance du précédent et du suivant peut être exprimée

par la possibilité d'affecter, à chaque idéal du cycle, un indice i,
entier défini mod. A, tel que:

suivant de MI+1 ; précédent de Mf

Construction d'un cycle. — Un idéal semi réduit étant choisi
arbitrairement et affecté de l'indice 0, on construit les suivants successifs,

affectés des indices ï, a priori entiers positifs successifs

Mx suivant de M0; Mi+1 suivant de Mf;

Ils ne peuvent être indéfiniment différents, puisque les idéaux semi

réduits sont en nombre fini. On désigne par MÄ le premier idéal ainsi

construit, qui soit égal à un idéal déjà obtenu Mf, donc d'indice i,
au plus égal à h. Ce ne peut être que M0; si non aurait un précé-
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dent Mf_l7 à qui serait égal le précédent MÄ_1? de MÄ, ce qui serait

contraire à la détermination de h.

Les h idéaux, ainsi construits de M0 à MA_X sont différents et:

Mf suivant de Mi^1 (0 < i < h); et M0 suivant de MÄ_X.

En affectant chaque idéal de l'indice i+XA, (ou i, défini mod. h) ces

deux relations sont équivalentes à la relation unique:

Mi suivant de i, i—1, définis mod. h.

La réciprocité de la succession entraîne Mj précédent de M/+1.
On a ainsi établi l'appartenance de tout idéal semi réduit à un

cycle et l'ordonnance des idéaux d'un cycle.

Répartition. — La même construction faite en partant d'un idéal

quelconque Ma du cycle, désigné par P0 redonne évidemment les

mêmes idéaux, dans la même ordonnance circulaire, ou, plus
précisément avec la correspondance

p. — Mû+i; (&, a, a+L définis mod. h).

La propriété est évidente par récurrence sur i: Pi+1 etMa+f+1 étant
respectivement les suivants de P^ et Cette remarque montre

que deux cycles qui ont un élément commun sont égaux (propriété
de répartition).

Il peut se faire qu'un cycle ne contienne qu'un seul idéal, ou que
h 1. Pour cela il faut et il suffît que l'idéal M0 choisi pour l'engendrer
soit égal à son suivant et à son précédent, c'est-à-dire encore au
conjugué de son associé et à l'associé de son conjugué. Sa norme m0
et sa racine finale c0 doivent vérifier:

Ffco) ~moi 2c0 S, (mod. m0).

L'idéal est, à la fois semi réduit double et associé. Les égalités vérifiées

par un idéal réfléchi:

D (2c0 +1)2+4mo, ou D: 4 — Co+^o5 (co> mo impairs)

jointes à celles de l'idéal double, montrent que ml doit diviser D ou
D'A. Ceci n'est possible que pour m0 1, c'est-à-dire pour le seul
idéal unité, et dans un corps dont le discriminant a une valeur de la
forme:

(2c+l)2+4, ou 4.(c2+l), c entier impair.
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C'est le cas déjà signalé ci-dessus (43); alors:

F(c) — —1 et M (1, 0—c).

Exemples. — D 13; F(x) x2-\-x—3; M (1, 0—1).

D 173; F(x) x2-\-x—43; M (1, 0—6).

D 104; F(x) x2—26; M (1, 0—5).

Théorème de congruence. — Tous les idéaux (semi réduits)
(Tun cycle sont congrus entre eux. La congruence d'un idéal
et de son suivant Mi+1, définis respectivement par leurs normes
mu mi+l et leurs racines finales ch ci+u peut être explicitée par
l'égalité:

(mi+1)xM; (6—ct) xM;+1 ; ou M, ([6—c;]: xMi+1.

On peut considérer que les parenthèses représentent soit des

éléments du corps, soit les idéaux principaux qui ont ces éléments

pour bases respectives.

On a indiqué que deux idéaux associés, M, N, relativement à une
racine c, appartiennent à des classes inverses, ou conjuguées (24),
puisque leur produit MxN est égal à un idéal principal (0—c). Le

conjugué N', de l'un d'eux N, appartient donc à la classe définie par
l'autre M, ou lui est congru. On peut d'ailleurs le vérifier directement

par la suite d'égalités (où n est la norme de N):

(n) xM wn (N'xN)xM (MxN)xN' (0-c)xN'.

L'égalité des termes extrêmes est celle qui a été indiquée entre un
idéal et son suivant, dans un cycle.

Exemples. — On a complété le tableau XXII en indiquant la

répartition en cycles, des idéaux semi réduits, désignés par leurs
racines finales et séparés par des flèches qui indiquent le passage
d'un idéal à son suivant.

Dans le corps de discriminant 145, il y a 4 cycles, l'un contient
l'idéal unité (de racine finale 5) et deux autres idéaux (conjugués)
de norme 6 qui, étant congrus à (1), sont aussi principaux [c'est,

d'ailleurs ce que montre la décomposition de F(c) —1x6]. Un
autre cycle de 5 idéaux comprend un idéal double, de norme 5 et un
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idéal réfléchi, de norme 4; les idéaux de ce cycle appartiennent par
suite à une même classe double. Enfin deux autres cycles, de chacun

3 idéaux ne comprennent pas d'idéaux remarquables, leurs idéaux

sont respectivement conjugués (de normes 3, 8, 2) dans chaque cycle,

mais dans un ordre différent. Ces cycles appartiennent par suite à

deux classes conjuguées, ou inverses, ou dont le produit est égal à la

classe principale.

Tableau XXIV

c -F(C)

0 36 1

1. 34

2 30 Al.f S?
4

3 24. AÀ) 4 0 i
/ yy

A. 16. / JL i

5 6 °/tr
1

1 2
j ^
i

1

1

i

" ~

Mormes 1 A1. 5 8 2 3 8

Dans le corps de discriminant 232, il y a deux cycles. L'un contient
l'idéal unité (de racine finale 7) et 6 autres idéaux (deux à deux

conjugués) qui sont par suite principaux. Cette qualité est d'ailleurs
mise en évidence par les décompositions successives des valeurs:

F(7) —1x9 => (9, 0—7) - (1) et (9, 0—2) - 1;

F(2) —9x6 =*> (6, 0—2) - (1) et (6, 0—4) - 1;

F(4) -—6x7 => (7, 0—4) - (1) et (7, 0—3) - 1.

L'autre cycle de 5 idéaux contient un idéal double, de norme 2, un
idéal réfléchi, de norme 3, son conjugué et deux idéaux conjugués de

norme 11. Les idéaux de ce cycle appartiennent donc à une classe

double.

Le schéma XXIV illustre la construction des cycles; ils. sont

représentés par des lignes polygonales fermées: à un idéal correspond
un sommet, dont l'abscisse est la norme et dont l'ordonnée est la
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racine finale. Les côtés orientés de la ligne indiquent les passages
d'un idéal à son suivant. (Pour la clarté des figures, on a consacré
deux graphiques, chacun à deux cycles.)

Un idéal double, qui est le suivant d'un idéal, de même racine

finale, est représenté par l'extrémité d'un côté, parallèle à l'axe des

normes. Un idéal réfléchi, qui a la même norme que son suivant, est

représenté par l'origine d'un côté, parallèle à l'axe des racines. On

peut encore remarquer que les idéaux suivant et précédent d'un
idéal double ont des normes égales; les sommets voisins (précédent
et suivant) du sommet représentatif sont sur une même parallèle à

l'axe des racines.

45. Multiplicateurs d'un cycle d'idéaux semi réduits.

On peut exprimer les relations de congruence entre les

idéaux d'un cycle, en utilisant une suite d'éléments du corps,
dont les termes se reproduisent en progressions géométriques.

Définition. — Relativement à un cycle d'idéaux semi
réduits:

M| (mh 0 —ct); f, mod. h;

on appelle multiplicateurs une suite, doublement illimitée,
g?' éléments du corps, vérifiant la relation de récurrence :

(0—cfjXpi mi+1 xp^+1; rentier quelconque;

dont les coefficients sont, avec une transposition, ceux de la
relation de récurrence entre les idéaux du cycle.

On convient, en outre, de prendre p0 1, ce qui revient à

distinguer, plus spécialement l'idéal M0, affecté de l'indice nul,
dans le cycle.

De cette construction, on déduit l'expression des multiplicateurs

au moyen de l'un d'entre eux (notamment de p0):

p,+A prX[n(6— ci-1)]:[Ybni~\-, ider+làr+A;
X entier positif.

p,-A p,x[IlTOi+1]:[Il(0—Ci)] ; I de/•—A à r—1 ;

En particulier, on obtient pA et p_A, en prenant r nul et p0 1.

On aurait pu, plus généralement, choisir arbitrairement la valeur
d'un des multiplicateurs pr, toutefois égale à un élément du corps.
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La périodicité des coefficients 0—ct et mt (i défini mod. h)

entraîne une répartition en h progressions géométriques des

multiplicateurs p£; (ou une périodicité de multiplication):

Theoreme de la périodicité de multiplication. — Pour des

indices en progression arithmétique, de raison h (nombre
d'éléments du cycle), les multiplicateurs forment une progression
géométrique, dont la raison est un élément co, du corps:

9r+llh prX(o"; to [11(6— cj)]:[nTOy];/ de 0 à 1;

p. entier quelconque.

En remplaçant X par h, dans l'expression des multiplicateurs, au

moyen de pr, on obtient:

pr+ft prX«; w [11(0—c;_x)] :[nm;]; de r+1 à

Mais, en raison de la périodicité de ct et de les deux produits
11(0—Cj), et IImj ont des valeurs déterminées, quand / prend h

valeurs entières successives quelconques, ce qui est le cas pour les

deux termes du quotient précédent; sa valeur co est donc indépendante

de r et notamment est égale à l'expression de l'énoncé du
théorème.

L'expression de ç>r+llh s'en déduit immédiatement, par récurrence

sur p (positif ou négatif).

La relation entre multiplicateurs et idéaux du cycle est
alors exprimée par l'égalité:

le produit pjXM£, ou (pj)xMi? de chaque idéal Mh du cycle
par le multiplicateur ph de même indice (défini, mod. h), ou
par l'idéal principal (pf) qui a ce multiplicateur pour base, est

égal à Vidéal M0 d'indice nul (on a convenu p0 1):

Pi XM; OU (pi) XM; M0.

Il est équivalent de dire que l'idéal (pf) xMt est un idéal invariant
dont une expression est notamment (1) xM0. On peut vérifier d'abord
cette invariance lorsque i est remplacé par i+l. Elle résulte du
rapprochement des deux relations de récurrence, entre les idéaux et entre

L'Enseignement mathém., t. VII, fasc. 1. 5
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les multiplicateurs, qu'on peut remplacer par les idéaux principaux
qui les ont pour bases:

(^i+i)xMj — (0 Cj)xMi+1; (p*)X(0 ct) (pi+i) X ;

en les multipliant membre à membre, puis en divisant par le produit
des idéaux principaux (wf+1)x(0—cf), qui n'est pas nul, on obtient:

(pi) xM; (pi+1) xMi+1.

La relation s'étend au remplacement de i par t+X, par récurrence

sur X entier quelconque.
Si pr (au lieu de p0) était choisi égal à un élément y du corps, la

valeur commune des idéaux (pf)xMf serait (y)xMr.
On déduit encore de cette propriété que les produits d'un

idéal Mf par tous les multiplicateurs, d'indice sont égaux;
notamment:

.Mo (P«)XM0 xM0

Théorème des diviseurs de l'unité (I). — Les puissances et

leurs opposés, ± ooA, de l'élément cù construit au moyen des

idéaux (m,-, 0—Cy), semi réduits d'un cycle:

oo [11(0—Cj)] : [Hnij]; j de 0 à h—1 ; X entier;

sont des diviseurs de V unité du corps (3).

L'égalité de M0 et de son produit par l'idéal principal (o/), exige

que cet idéal soit égal à l'idéal unité (14) et par suite que sa base ooA,

et l'opposé —ooA soient des diviseurs de l'unité du corps (11).

On montre ci-dessous que, réciproquement, tous les diviseurs
de l'unité du corps sont obtenus ainsi; il en résulte notamment
que les valeurs de ± oo, sont les mêmes pour chacun des cycles
d'idéaux semi réduits, (48).

Exemples. — Dans le corps de discriminant 145 (tableau XXII),
les idéaux semi réduits, du cycle engendré par l'idéal unité peuvent
être affectés des indices (r, mod. 3):

M0 (l, 6-5); Mx (6, 8); M2 (6, 6-5);
les racines étant, bien entendu finales. Les multiplicateurs sont:

p0 l; Pl (6—5):6; p2 PlX(6:6) (6—5)x6:36 (—6+6):6
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Les autres multiplicateurs sont des produits de ceux là par des

puissances de 6) p3, qui est égal à:

<«> P3 P2X(0—5): 1 (—0+6) x(0—5): 6 - 20—11.

On vérifie aisément que oo et, par suite ses puissances et leurs opposées

sont des diviseurs de l'unité; il suffit de calculer la norme de ca:

N(cù) (ù x co7 (20—ll)x(20/—11) —4x36+22+121 1.

Pour le cycle de 5 idéaux:

M0 (5, 0—2), M1 (6, 0—3), M2 (4, 0—4),

M3 =» (4, 0-3), M4= (6, 0-2);
les multiplicateurs sont:

Po 1, Pl (6-2) : 6, p2 (-0+7) : 4, p3 (30-16) : 4,

p4 (—70+39) : 6; co p5 20—11.

On retrouve la valeur précédente.

Dans le cas d'un cycle d'un seul idéal (1, 0—c), les multiplicateurs

sont les puissances de:

w pi (0—c);

cet élément est d'ailleurs manifestement un diviseur de l'unité:

(0—c) X (0'—c) F(c) —1.

46. Suite de bases d'un idéal semi réduit.

A un cycle d'idéaux semi réduits auquel est associé une
suite de multiplicateurs pf, on peut aussi associer une suite de

bases, arithmétiques libres de l'idéal M0 (qui peut être choisi
arbitrairement dans le cycle, ou même être remplacé par un
idéal (y) X Mr).

Théorème de la suite des bases. — Dans Vidéal M0, d'un
cycle d'idéaux semi réduits (mh 0—<+, on peut construire
une suite, doublement illimitée, d'éléments af (entiers de M0);

par les relations:

a, miXpi (0— Xpi_x;
ai +1 mi +lXpi+ 1 — (6 ci)Xpi',
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Tout couple d'éléments successifs af, oti+1 constitue une base

arithmétique libre de M0.
Les p. sont les multiplicateurs définis ci-dessus par la relation de

récurrence, de coefficients 0—il en résulte l'égalité des deux
expressions données pour chaque élément.

D'autre part le couple d'éléments 0—ct est la base canonique,
donc arithmétique libre, de l'idéal M+ son produit par pf est donc

encore une base arithmétique libre de l'idéal congru (pJxMf, qui
est précisément M0 (24). Notamment pour i 0, on trouve la base

canonique de M0: m0 et 0—cQ.

On peut calculer directement les oct par la relation de récurrence,

déduite de leur définition:

oc0 ra0; mtX ai+1 (0—cJ-Xstf.

Ils ont la même périodicité de multiplication que les multiplicateurs

p£; l'expression de co résulte immédiatement de leur
récurrence :

ar+jiA c ar Xo+; co [11(0—cf)]:\UMi]* i de 0 à h—1.

On vérifie ci-dessous (48) par un calcul direct, que les ocf

sont bien des entiers de l'idéal et on indique une loi de récurrence
linéaire.

Exemples. — Corps de discriminant 145 (tableau XXII) et

cycle engendré par l'idéal unité M0 (1, 0-5):

i 0

—1 5 6 a_x 1:[(0—5): 6] —0r+5 0 +6;

0 5 1 a0 1

1 0 6 ax lx[(0—5): 1] 6—5;
2 5 6 a2 aix[0:6] [(6—5)0]:6 —6+6

3 5 1 a3 a2x[(0—5): 6] (—0+6) x (0—5):
20—11
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Dans le cas d'un cycle d'un seul idéal (1, 0—c), les multiplicateurs

et les termes des bases ocf sont les puissances de 0—c:

(0—c)"1 =—0'+c, 1, 0—c, (0—c)2,

On peut caractériser les bases ainsi construites par des comparaisons

de grandeurs entre leurs éléments et, éventuellement, avec
les éléments de l'idéal, considérés comme des nombres réels. Pour ce

faire il convient de distinguer les deux zéros (irrationnels, mais réels)
de F(x)\ on convient de désigner par 0 (lettre non accentuée) celui

qui est positif. On peut alors énoncer une autre condition de semi

réduction.

Théorème caractéristique de semi réduction. — Pour qu'un
idéal M (m, 0—c) soit semi réduit, et admette c comme racine
finale, il faut et il suffit que: les nombres qui constituent sa base
vérifient les conditions de comparaison:

0 < (0—c):m < 1; (0'—c):m < —1.

Les conditions de semi réduction peuvent être exprimées par le

signe des valeurs de F(x) pour les trois racines successives, encadrant
la racine finale c:

F(c—m) < 0; F(c) < 0; F(c-\-m) > 0.

Il est équivalent de dire que c—m et c sont compris entre les zéros 0'
et 0 et que c-\-m est supérieur à 0 (sans égalités possibles, F(x) n'ayant
pas de zéro rationnel). Cette condition peut être exprimée par:

0' < c—m < c < 0 < c+m o (0'—c) < —m < 0 < (0—c) < m

o —1 et 0 < (0—c) \m < -(-1.

De cette condition, on déduit les propriétés suivantes des
multiplicateurs pt et de la suite des termes des bases de M0.

Les multiplicateurs pt sont positifs et tendent vers 0, lorsque
i tend vers -f-oo et vers +oo lorsque i tend vers —oo.

Les éléments de la suite des bases réduites sont positifs
décroissants, de +oo à 0 (pour i de —oo à +oo).

Les conjugués de ces éléments sont alternativement positifs
et négatifs; leurs valeurs absolues sont croissantes, de 0 à +oo
(pour i de —oo à +oo).
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Les limites pour i infini des multiplicateurs p£ et des éléments oq

résultent de leur appartenance à des progressions géométriques. La
raison <o, de ces progressions est le produit de quotients (0—c^irrii
(i de 0 à h—1) positifs et inférieurs à 1; elle est donc inférieure à 1,

d'où les limites des termes des progressions.
La croissance des éléments oq et de leurs conjugués oq, et la

comparaison (des signes) des éléments consécutifs, résulte de leur
construction au moyen des bases de qui sont semi réduits:

ai+i:ai [P;X(6—CjMpjXmi] (6— 1,

ai+i: aî [PfX(0'-—c;)]:[p-x/wj (0'— : < —1.

47. Détermination des cycles.

La considération de la suite des bases de M0 permet d'établir
que les cycles d'idéaux semi réduits représentent les classes

proprement.

Théorème de la détermination des cycles. — Dans un corps
réel, chaque classe (Tidéaux contient un et un seul cycle d'idéaux
semi réduits.

En définissant les idéaux (canoniques) réduits (20), pour un
corps quadratique quelconque (réel ou imaginaire), il a été établi

que toute classe d'idéaux contient au moins un idéal M0 réduit, qui,

pour un corps réel, est, a fortiori, semi réduit (40). La classe

renferme, par suite, le cycle des idéaux réduits Mf, obtenus en formant
les suivants successifs de M0, puisque ces idéaux sont congrus à M0.

Pour établir que le cycle ainsi construit est unique, on peut
d'abord démontrer que:

dans un idéal M0 semi réduit, pour qu'une base arithmétique
libre, de deux éléments positifs jj > Yy+i, appartienne à la suite
des bases, oc^ oq+1, associée au cycle d'idéaux semi réduits engendré

par M0, il faut et il suffit que: ces termes et leurs conjugués
vérifient les comparaisons:

Yj+1-Yj < !; 1;

la première résulte de l'ordre adopté pour numéroter les deux
termes.



LES CORPS QUADRATIQUES 71

La condition est nécessaire puisqu'elle a été vérifiée ci-dessus

pour la suite des bases oq.

Pour démontrer qu'elle est suffisante, il peut être commode

d'établir d'abord que pour un idéal qui a une base vérifiant ces conditions

(même s'il n'est pas semi réduit):

tout élément non nul Ç, de cet idéal, dont la valeur absolue n'est
égale ni à yj, ni à yj+1, vérifie F une, au moins, des comparaisons :

IS| > Y; > ïi+i; ou %'\ > hv+il > IY/I-

Cet élément £ peut être construit par additions et soustractions
au moyen des termes de la base considérée, de sorte que:

&fj+VYj+1Î ^j+yy'j+E y nombres entiers.

Il suffit alors d'examiner les divers cas, dépendant des signes et de

la nullité des entiers x, y:

xy> 0: \l\ \xYj+yYj+i\K/l + hO'+il > Y/,

xy < 0: %'\ \Ej+n'j+i\ \Ej\+>hv+il;

y o et \x\#1: %\IXYj\ > y}\
x=0 et \y\#1: \%\ Wj+il>[Yj"h-i|-

On peut mettre la disjonction ainsi vérifiée sous la forme d'implications

:

%\ < Y; I? I > lïj+ilï
n<iT;+1i => isi>Y

Ceci acquis, on compare, dans M0, à la suite des bases 0Lt oc£+1,

une base yy yy+1 vérifiant la condition indiquée. La suite des
décroissant de + oo à 0,yy est situé dans l'un des intervalles, il existe i,
tel que :

> Tj > v

Il y a égalité, si non d'après la propriété précédente, appliquée
à yj comparée à la base des oc, puis à af+1, comparée à la base des y:

yj < cLt => |yy| > |oq+1| => oci+1 > yy ;

ce qui est contradictoire avec le choix de ocf.

On peut alors comparer &i+1 à la base yj oct-, yy+1; il en résulte:

aï+1 < ai yj => K+i| > 1 yy -m | •
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La dernière comparaison est une égalité, si non la comparaison de

YJ-+1 à la base des a entraînerait:

lïjr' + ll < l«î + l| => > «i

ce qui est contradictoire avec la définition de la base des y.
L'égalité des valeurs absolues |y}+1| K+i| entraîne celle des

conjugués yJ+1 — ai+1, puisqu'ils sont positifs.

Le théorème résulte aisément de cette propriété préalable:
si un idéal M (m, 0—c), semi réduit, de racine finale c, est

congru aux idéaux M; d'un cycle et notamment à M0, dans

lequel est construit une suite de bases ai+1, il existe un
élément p, qui peut être choisi positif, tel que (p)xM soit égal
à M0. Le couple d'éléments:

Yj pXm Yj+ipx(6 c)

est une base arithmétique libre de M0, qui vérifie les conditions
précédentes et qui par suite est égale à une des bases de la
suite :

p xmoc; PiXtrifpx(0—c) oci+1 p;(X0—c;).

Dans la dernière égalité, la comparaison des coefficients de 0

montre que:

p pfj m nii, c — M

Tout idéal M, semi réduit, congru aux idéaux Tun cycle d'idéaux
semi réduits est égal à un idéal de ce cycle.

48. Diviseurs de l'unité.

Théorème des diviseurs de l'unité (II). — Dans un corps
réel, pour chacun des cycles d'idéaux semi réduits, désignés par
leurs racines finales:

M; (mh 0—Ci); i de 0 à h—1 ;

les diviseurs de Vunité sont égaux aux produits par -f 1 et —1 des

puissances caA, (d'exposants X entiers quelconques) de:

cù [11(0—Ci)]:\Ylmé\; i de 0 à h—1.

Cette expression a la même valeur pour tous les cycles du corps.
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On a déjà indiqué (Théorème I des diviseurs de l'unité, 45) que
les éléments +gùa et —6+ sont des diviseurs de l'unité. Réciproquement,

les opposés de diviseurs de l'unité étant encore des diviseurs
de l'unité, on peut se borner à chercher ceux qui sont positifs.

On considère un cycle, engendré par un idéal semi réduit
M0 (m0, 0—c0), dans lequel on a construit une suite de bases de

termes positifs oq. Le produit t)XM0, de cet idéal par un diviseur
positif 7], de l'unité, lui reste égal et les éléments positifs Y}Xm0 et

7)X(0—cQ) en constituent une base arithmétique libre. Gomme cette
base vérifie les relations:

[7] X (0—c0)] : (Y) X m0)(0—cQ) < 1 ;

[7/ X (0'—c0)] : (V X m0) (0c0) : < —1 ;

elle est égale à l'une des bases de la suite, de sorte que:

Y)X(0—(C0) 0Ci + 1 p; X (0 ;

ce qui entraîne:

7] pf, c0 ct => i X/z; y] coA; X entier.

La démonstration montre notamment que la valeur de l'expression
qui donne où est indépendante du cycle utilisé. On peut obtenir cette
valeur par un calcul de multiplication, dans le corps quadratique (en
utilisant la relation 02 —notamment en cherchant de

proche en proche les valeurs oci+1 oc^x(0—

On peut aussi utiliser une relation linéaire qui existe entre
trois termes successifs de la suite des ocf:

a;+x — ai-i qt (o+*0-i—iS):
Cette égalité résulte de la construction des idéaux successifs du

cycle: l'idéal (mb 0—ct) est le conjugué de l'associé de son
précédent M^, de sorte que:

O+O-i S, (mod. mt); ou ct S—c^+q.xm^
qt étant le nombre entier positif, indiqué plus haut.

En transportant cette valeur dans la relation de récurrence
multiplicative des ocf, on obtient:

aî+1 ci): mi]X(xi [(0 SJrci_1):m^\XoLi—qiXoti.
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Mais le premier terme du second membre est égal à oc^, on le vérifie
en exprimant oq, par la relation de récurrence; le terme devient:

[(—Q'+Cj-i): m[\X[(0—Cj-j): mM]Xt(H1

et le facteur de oii-1 est égal à:

—[(6'—ci_i>x(0—Ci-i^^iXmj-i) [—F{ci-1)']: (miXmi-i) 1

la dernière égalité résulte de l'association de Mi_1 et du conjugué
de M;.

La relation de récurrence linéaire peut être mise sous forme
matricielle. Les bases, disposées en colonnes (comme il a été
fait ci-dessus; 9), vérifient l'égalité:

«i+l -q i i
— X

1 0 OCj-i

9t (ci^1+ci—S):mi.

Ceci appliqué à h bases consécutives (par exemple aux h

premières) donne une propriété de o>:

cù X ocx a/i+i
nf

i
)* «i

CO X OCq och \ 1 0 / a0

les matrices sont prises de i 1 à i A, mais disposées de

droite à gauche. Toutes les matrices multipliées ayant un
déterminant égal à —1, la matrice produit a un déterminant égal
à —1 ou à +1, suivant que A, nombre d'idéaux du cycle, est

impair, ou pair. Ce produit est donc de la forme:

n
1 u V

1 0 r V U'
; UxU'—VxV' =e(+l ou —1).

La relation obtenue entraîne:

CO X OC! U V al U—co F
X => déterminant 0

COXCCQ V U' a0 V co
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Il en résulte que le diviseur de l'unité co vérifie l'équation du
second degré:

G)2—{U+U')XCÙ+Z 0;

et la norme coXco' est égale à s; sa valeur absolue est 1 et son

signe est — ou +, suivant que A est impair ou pair.
Il en résulte que tous les cycles, d'un même corps quadratique,

ont la même parité du nombre de leurs idéaux.

Les matrices multipliées étant symétriques (égales respectivement
à leurs transposées), la transposée de leur produit est égale à leur

produit, mais disposé dans l'ordre inverse:

n
-9i 1 u V

1 0 V U'
; £ de 1 à A.

(On obtiendrait d'ailleurs ces produits en disposant les termes des

bases en lignes.) L'équation en oo reste la même.

Exemples. — On a indiqué ci-dessus (46) le calcul de cù dans le

corps de discriminant 145, en utilisant la relation de récurrence

(multiplicative) entre deux successifs. L'emploi de la récurrence
linéaire conduit aux calculs suivants (pour le même cycle) :

M0= (1,0-5)
h

a0 1

(6, 0—0)

(5+0+1) :6 1

% 0—5

M2 — (6, 0—5)

(0+5+l):6 1

a2 a0—1 X ax

—0+6

M0 (1, 6-5)
(5+5 + 1) :1 11

a3 ax—1 X a2
20—11 to

Le produit des matrices (ide1 à 3, de gauche à droite) est:

—1 1 —1 1 —11 1 —23 2

X X
1 0 1 0 1 0 12 —1

l'équation vérifiée par co est:

w2+24co—1 0;

ce qu'on peut constater directement.

Le tableau XXV donne encore un exemple de calculs des idéaux
semi réduits dans le corps de discriminant 377. Il y a 2 cycles de 4 et
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de 6 idéaux. Il indique, pour le premier de ces cycles, le calcul des <xt

et du diviseur de l'unité co, par récurrence multiplicative et par récurrence

linéaire, ainsi que le produit des substitutions linéaires (ou des

matrices unimodulaires).
La norme de est +1, puisque les nombres d'idéaux de chaque

cycle sont pairs.

Tableau XXV.

Exemples de calculs de cycles et de diviseurs de l'unité.
F{x) ++X—94; D 377 13x29

c
2c

—S —F(c) Idéaux semi réduits

0 1 94 2 X 47
1 3 92 22 X 23
2 5 88 23 X 11 (8, 0—2)X(11, 0—2)
3 7 82 2X41
4 9 74 ^2x37
5 11 64 « 26 (8, 0—5) X (8, 0—5)
6 13 52 =» 22 x 13 (4, 0—6) X (13, 0—6)
7 15 38 2X19
8 17 22 2X11 (2, 0—8) x (11, 0—8)

— (2, 0—9) X (2, 0—9)
9 19 4 22

(1, 0—9) X (4, 0—9)

C F(C)
1

l 8©
3 sy \

4
5 64 i

6 5Z \ '

7 \^r-— i

8
9

22
4

- - ;

• iiNormes 1 2 4 8 41 13

(î, e—9) 4, e—6) (2, e—8)
t it(4, 0—9) (13, 0—6) (2, 0—9)

(11, 0—2)

(11, 0—8)

Calcul des diviseurs de l'unité.

M0 (1, 0—9)

(8, 0—5)
I

(8, 0—2)

an 1

M, (4, 0—6)
(9 + 6 + 1) :4 =* 4

ax (0—9)

M2 (13, 0—6)
(6 + 5 + 1) :13 1

ai X (0—6) :4

a2 ao—4ai
—40 + 37

M3 (4, 0—9)
'

(6 + 9 + 1) :4 4

a2 X (0—6) :13

a3 — ax—1 X a2
50—46

Mo (1, 0—9)
(9 + 9 + 1) :1 19

a3 X (0—9) :4

a3 a2—4 X oc3

—240 + 221

—4 1 —1 1 —4 1 —19 1

X X X m-.

1 0 1 0 1 0 1 0

461 —24

—96 5

o)2—466w + l 0.
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49. Les quatre types de cycles.

Le numérotage (par indice i, mod. h) des termes d'un cycle

d'idéaux semi réduits permet d'établir aisément qu'il existe

seulement 4 types de cycles. On indique d'abord leurs
caractéristiques en les illustrant par des exemples déjà cités; la
justification en est explicitée au numéro suivant.

t. Le cycle contient un idéal semi réduit double et un idéal

semi réduit réfléchi. Il a alors un nombre impair de termes et

contient leurs conjugués et leurs associés (relativement à la
racine finale).

Pour le corps de discriminant 145 (tableaux XXII et XXIV),
dans le cycle de trois idéaux:

(1, 6-5) - (6, 6) - (6, 6-5);

le premier est double, le second est réfléchi (F(0) —62).

De même dans le cycle de cinq idéaux:

(5, 6—2) -> (6, 6—3) (4, 6—4) (4, 6—3) -> (6, 6—2)

le premier idéal est double (5 diviseur du discriminant), le troisième
est réfléchi (F(4) —42).

Dans le corps de discriminant D 232 (mêmes tableaux), un
cycle de 7 termes comprend un idéal double (1, 6—7) et un
idéal réfléchi (7, 6—3). Un autre cycle de 5 termes comprend un
idéal double (2, 6—6) et un idéal réfléchi (3, 6—-7).

Dans ce type de cycles rentrent les cycles dé un seul terme,
constitués par l'idéal unité, lorsqu'il est, à la fois double et
réfléchi, ce qui se présente dans les cas signalés ci-dessus (43
et 44). Si le corps ne contient que ce seul cycle, il est principal
et il présente le caractère trivial signalé ci-dessus (38); c'est le
cas de 7 des corps du tableau XX; de discriminants:

5, 13, 29, 53, 173, 293 et 8.

2. Le cycle contient deux idéaux semi réduits doubles. Il a
alors un nombre pair de termes et contient aussi leurs conjugués
et leurs associés (relativement à la racine finale).
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Dans le corps de discriminant 377 (tableau XXV), le cycle de

quatre termes contient deux idéaux doubles, de normes 1 et 13,

diviseurs du discriminant. Dans le graphique représentatif, ce sont
les extrémités de côtés parallèles à l'axe des normes.

Un cycle de deux termes est nécessairement de ce type 2, les

deux idéaux qui le constituent sont doubles.

En effet, les deux idéaux doivent être donnés par des décompositions

:

(0—c) (m, 0—c)x{n, 0—c), (0—c') (m, 0—cr)x{n, 0—cr)

et c, c' doivent être conjugués relativement à m et n et congrus suivant
ces mêmes nombres qui sont par suite des normes d'idéaux doubles

(donc diviseurs du discriminant).

Un tel cycle peut notamment contenir Y idéal unité (ce qui
est une condition nécessaire pour qu'il n'y ait pas d'autre cycle
et que le corps soit principal). Il est alors obtenu par la
décomposition de la dernière valeur négative de F(c) 1 Xm1 lorsque
m est diviseur du discriminant.

Cette circonstance se présente notamment dans les corps de

discriminants :

21 3x7, 77 - 7x11, 437 19x23,

signalés ci-dessus (tableau XX) comme corps principaux triviaux et

pour lesquels les décompositions des dernières valeurs négatives de

F(x) sont, respectivement:

F(1) —3, F(3) - —7, F(9) - —19.

Cette circonstance se produit encore pour les corps dont le

discriminant est de la forme D 4x(c2+2); ils contiennent un cycle
de deux idéaux de normes 1 et 2, parmi les premiers desquels ceux
de discriminants:

12 4.(1+2), 24 4.(4+2), 44 - 4.(9+2), 152 4.(36+2),
332 4.(81+2), 908 4.(225+2)

n'ont pas d'autres cycles, donc sont principaux. Il n'y a pas de corps
de discriminants 72, 108, 684, 792, donnés par les valeurs de c: 4, 5,
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13, 14. Les corps, de discriminants 204, 264, 408, 492, 584; donnés

par les valeurs de c: 7, 8, 10, 11, 12 contiennent d'autres cycles et ne

sont pas principaux.

3. Le cycle contient deux idéaux semi réduits réfléchis. Il a un
nombre pair de termes et contient leurs conjugués et leurs associés

(relativement à la racine finale).

Dans le corps de discriminant 377 (tableau XXV), le cycle de

six termes contient deux idéaux réduits réfléchis, donnés par les

décompositions

(6—9) (2, 6—9)x(2, 0—9); (0—5) (8, 0—5)x(8, 0—5);

dans le graphique représentatif, ce sont les origines des côtés parallèles
à l'axe des racines.

Un cycle de ce type doit contenir au moins quatre éléments et ne

peut contenir d'idéal unité. Il ne peut en exister dans un corps
principal.

Le tableau XXVI donne un exemple de corps, de discriminant
205, qui contient deux cycles de quatre termes; l'un de type 2,
l'autre de type 3.

Tableau XXVI.
Exemple de calculs de cycles.

F(x) x2+x—51; D — 205 5x41.

c 2c
—S —F{c) Idéaux semi réduits

0 1 51 3X17
1 3 II (7, 0—1) X (7, 0—1)
2 5 45 32 X 5 (5, 0—2) X (9, 0—2)
3 7 39 3X13
4 9 31
5 11 21 3X7 (3, 0—5) X (7, 0—5)

(3, 0—6) X (3, 0—6)
6 13 9 32

(1, 0—6)x(9, 0—6)

C P(c)

4 49
2 45
5
A
5 21

6 9

Normes

(1, 0—6) (9, 0—2) (3, 0—6) - (3, 0—5)
t 1 t 1

< (9, 0—6) ^ (5, 0—2) (7, 0—5) (7, 0—1)
Les normes des idéaux remarquables sont en caractères gras.
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4. Le cycle ne contient pas d'idéaux remarquables, notamment
pas d'idéal unité. Les conjugués de ses idéaux forment un cycle
différent, dont les idéaux sont respectivement associés à ceux
du précédent. Les deux cycles peuvent être qualifiés conjugués
et associés; ils définissent deux classes d'idéaux différentes
conjuguées et inverses.

Les cycles des trois premiers types (précédents) sont
conjugués et associés à eux-mêmes; ils définissent des classes doubles.

Le corps de discriminant 145 (tableaux XXII et XXIV) contient,
en plus de deux cycles de type 1, deux cycles conjugués (et associés),
de chacun trois idéaux:

(3, 6—3) -> (8, 6—4) -> (2, 6—5); (3, 6—5) -> (2, 6—4) (8, 6—3).

Les conjugués des idéaux, d'indices 0, 1, 2, du premier cycle sont

respectivement les idéaux d'indices 0, 2, 1, du second cycle (somme
des indices congrue à 0, mod. 3); leurs associés sont respectivement
les idéaux d'indices 2, 1, 0 (somme des indices congrue à —1, mod. 3).

Les sens de circulation sur les deux schémas sont opposés.

50. Justification des types.

Pour établir que les quatres types de cycles sont les seuls

possibles, on va étudier, comme il a été dit, le numérotage des

éléments des cycles; en comparant deux cycles, non nécessairement

différents, dont chacun contient les associés et par suite
aussi les conjugués (dans un ordre différent) des termes de

l'autre.

Théorème de la correspondance des indices. — Dans un

corps réel, pour que deux cycles (éventuellement égaux), d'idéaux
semi réduits, Mf et N7-, contiennent chacun les idéaux associés, et,

par suite aussi, conjugués, des idéaux de Vautre, il suffit (et il
faut évidemment) :

qu'il existe un terme Mp, de l'un, et un terme Ng, de l'autre,
qui soient conjugués ;

ou qu'il existe un terme et un terme N^_x, qui soient associés,

relativement à leur racine finale, commune.
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Chacune des deux conditions entraîne l'autre; les deux cycles
ont alors le même nombre h de termes et les indices des idéaux

qui se correspondent par conjugaison, ou par association, ont
une somme constante, mod. h\

Mj et Ny conjugués o i +j /?+?> (mod. A),

Mv et Ny associés o ï+f /?+?— 1? (mod. h).

Pour la première condition, on vérifie que:

et Ng conjugués Mp+1 et conjugués,

ce qui résulte des égalités de définition de la succession dans les cycles
considérés (44), qui peuvent être mis sous les formes suivantes, en

tenant compte de la réciprocité de la conjugaison et de l'association

(associé de lSq_1) (conjugué de Nq) Mp
=> Nfi_x (associé de Mp) =* (conjugué de Mp+1).

On en déduit, par récurrence sur les indices, X étant a priori, indéfini,

Mi-+A et N9_a conjugués;

En outre si h est le nombre d'idéaux Mf, leur périodicité entraîne:

Mp+ft Mp => N Na.

Le nombre d'idéaux Nj est aussi h et l'égalité des sommes d'indices
est une congruence, mod. h.

D'autre part l'égalité de succession entraîne:

associé de N9_A_1 (conjugué de N?_A) Mp+;;

de sorte que la relation entre les indices i' et j' d'idéaux respectivement

associés est bien:

i'+j' sü (p+X) + (q—X—1) eee p+q—1, (mod. h).

La démonstration est corrélative et la propriété reste valable
pour la deuxième condition (existence d'un couple d'idéaux associés).

Cette propriété acquise, on obtient les trois premiers types
de cycles, en considérant un cycle (ou deux cycles égaux) qui
renferme les conjugués, et par suite les associés de chacun de ses
termes. Il suffit, pour cela, de constater qu'il renferme:

L'Enseignement matliém., t. VII, fasc. 1. 6
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le conjugué d'un de ses idéaux (éventuellement double);
ou Vassocié dun de ses idéaux (éventuellement réfléchi).

1. Si un tel cycle a un nombre impair d idéaux, il contient
un (et un seul) idéal double et un (et un seul) idéal réfléchi; il est
du type 1.

Les idéaux conjugués et associés étant respectivement définis

par les congruences:

i+j a; i'+j' a—1, (mod. h);

l'indice x, d'un idéal double et l'indice x' d'un idéal réfléchi sont
déterminés par les équations congruentielles :

2x a\ 2x' a—1, mod. h.

Comme h est impair (premier avec 2) chacune a une et une seule

solution.

2 et 3. Si un tel cycle a un nombre pair d idéaux, il contient,
ou bien deux idéaux doubles, ou bien deux idéaux réfléchis ; il est
soit du type 2, soit du type 3.

Comme h est pair, une seule des équations congruentielles
précédentes est possible; celle dont le second membre, a ou a—1 est un
entier pair. Elle a alors deux solutions de différence h:2 (mod. h).

Pour h 2, le type 2 est le seul possible (ainsi qu'il a déjà été

dit), car si deux idéaux successifs M0 et du cycle étaient associés,

ils seraient aussi conjugués, puisque:

associé de M0 — conjugué de Mv

Les deux idéaux auraient des normes égales et des racines égales,

donc seraient égaux; le cycle n'aurait qu'un seul terme, l'idéal unité.

4. Par contraposition des propriétés précédentes, un cycle

qui ne contient pas d idéal semi réduit remarquable, ne peut
contenir de couples, ni d'idéaux conjugués, ni d'idéaux associés;
il n'est pas égal à son cycle conjugué, qui lui est aussi associé, il
est du type 4.

Dans la notation indicielle, de deux cycles conjugués, de type 4,

d'ordre h, les indices d'idéaux conjugués ont une somme constante,
qui peut être choisie arbitrairement (notamment 0, mod. h)\ les
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indices des idéaux associés ont alors pour somme constante a 1

(notamment —1, mod. h). Ce sont ces constantes 0 et —1 qui ont été

adoptées dans l'exemple des tableaux XXII et XXIV.
La constante de la somme des indices d'idéaux correspondants,

dont, par ailleurs les points correspondants ont même abscisse, ou

même ordonnée, explique la différence des sens de parcours sur les

schémas. On peut aussi remarquer que les conjugués d'un idéal et

de son suivant sont un idéal et son précédent.

51. Structure du groupe des classes d'idéaux.

Dans un corps réel, pour établir la table de Pythagore (de la

multiplication) des classes d'idéaux, il suffît d'établir celle des

cycles qui les caractérisent, ou les représentent proprement.
Pour multiplier deux cycles, on en choisit des représentants,

qui figurent dans des décompositions (convenables) de valeurs
de la table (éventuellement prolongée). Comme, dans le cas

d'un corps imaginaire, on cherche, au besoin par récurrence, un
idéal semi réduit qui soit congru à ce produit; le cycle auquel
appartient cet idéal est le produit des cycles considérés; ou,
plus exactement, détermine la classe qui est le produit des

classes représentées par les cycles multipliés.
Dans un corps qui n'a qu'un petit nombre de cycles (ce qui

est le cas pour des discriminants relativement petits), la
détermination de la structure du groupe des classes (ou des cycles)
est, en général aisée; elle peut être facilitée par la considération
du nombre de cycles, qui est l'ordre du groupe. Si cet ordre est

un nombre premier le groupe est cyclique et chacun de ses

termes, différent de l'unité (ou de la classe principale) en est un
générateur. Si l'ordre est un produit de nombres premiers
différents, le groupe est encore cyclique, mais il y a lieu de chercher
ses générateurs; ce sont les termes dont l'ordre est égal à celui
du groupe. Dans le cas général, la comparaison de l'ordre de
certains termes à l'ordre du groupe peut permettre d'affirmer
que le groupe est, ou n'est pas cyclique.

Le tableau XXVII donne un exemple de recherche de la structure
du groupe des classes, pour un corps de discriminant assez élevé;
62 501; dont le polynôme fondamental est F(x) x2j\-x—15 625.
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F(x) x2-\-x—i

c • —F(c)

0 15 625 5x25x125
1 623 17 X 919
2 619
3 613 73x1201
4 605 5x3121
5 15 595 « 5x3119
6 583
7 569
8 553 103x151
9 535 « 5x13x239

10 15 515 5x29x107
11 493
12 469 31X 499
13 443
14 415 5X3083
15 15 385 5x17 x 181
16 353 13X1181
17 319
18 283 17 X29X31
19 245 5X3049
20 15 205 5 X 3041
21 163 «R 5PX257
22 119 m 13X1163
23 073
24 025 52 X 601
25 14 975 52 X 599
26 923
27 869
28 813
29 755 5x13x221
30 14 695 5x2939
31 633
32 569 17X857
33 503
34 435 5X2885

Tableau XXYII.

5 625; D 62 501; r 56.

c -F(c)

35 14 365 5xl7x 132
36 293
37 219 59x241
38 143

39 065 5x29x97
40 13 985 5x2797
41 903
42 819 13X1063
43 733 31X443
44 645 5x2729
45 13 555 5x2711
46 463
47 369 29x461
48 273 13X1021
49 175 « 52 X17 X 31

50 13 075 52 x 523
51 12 973
52 869 - 17X757
53 763
54 655 5x2531
55 12 545 =B 5x13x593

56 433
57 319 97X127
58 203
59 085 5x2437
60 11 965 5X2393
61 843 13x911
62 719
63 593
64 465 — 5X2293
65 11 335 5x 2287
66 203 17x659
67 069
68 10 933 13 X 292

69 795 5X17X127

97x145; K5xK1,

85 x 155 ; Ii^ X Lg

127x97; K4xK2'

85x127; K3X Kg



LES CORPS QUADRATIQUES 85

c -F(c)

70 10 655 _ 5X2131
71 513
72 369
73 223

74 075 52X 13x31
75 9 925 52 X 397
76 773 29X337
77 619
78 463
79 305 5X1861
80 9 145 5X31X59
81 8 983 13X691
82 819
83 653 17x509
84 485 5X1697
85 8 315 5X1663
86 143 17X479
87 7 969 13X613
88 793
89 615 5X1523
90 7 435 5X1487
91 253
92 069
93 6 883
94 695 sa 5X13X103
95 6 505 5X1301
96 313 59X107
97 119 29x211
98 5 923
99 725 52 X 229

100 5 525 52 X 13 X 17

101 323
102 119
103 4 913 173
104 705 — 5x941

155x65; J4XJ0

59x155; J3XJi

103 x65; K4 x K5

107x59; J2XJ2

29x211; L3xLi

c —F(c)

105 4 495 5 X 29 X 31 155x29;
145x31;

106 283
107 069 13x313
108 3 853
109 635 5x727
110 3 415 5 X 683

111 193 31X103 31x103;
112 2969

113 743 13X211 211x13;
114 515 5x503
115 2 285 — 5 X 457
116 053

117 1 819 17X107 17x107;
118 583
119 345 5 X 269

120 1 105 5X13X17 65x17;
13x85;
221x5;

121 0 863
122 619
123 373
124 125 =« 53 1X125;

5x25;
125 —125

25x221; IiXli
65x85; K2xK4

(6—124) r0~i;
(9—103) J® — 1 ;

(0—49) I2 X Ji X K0 ~ 1 ;

(0—120) IoXL0X il ~ 1.
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Devant chaque valeur —-F(c), est inscrite sa décomposition en
facteurs premiers et une sous ligne indique ceux de ces facteurs, ou

produits de facteurs qui sont des normes d'idéaux réduits (38); la

majorante de leurs racines est r — 56.

D'autre part, devant certaines valeurs (positives de —F{c)),
l'indication d'un produit égal, de deux nombres (en caractères gras),
est celle de normes d'un couple d'idéaux semi réduits associés, de

racine finale c. Le produit suivant de deux lettres, est une représentation

de ces idéaux: la lettre (U, I, J, K, L) désigne le cycle; l'indice
désigne la succession dans ce cycle. On peut vérifier que chacun de ces

couples renferme au moins un des idéaux réduits, signalés par ailleurs.
Il y a neuf cycles; l'un d'eux de trois termes, désignés par la

lettre U est du type 1; il contient un idéal double (1, 6—124) et un
idéal réfléchi (125, 0); ses idéaux sont principaux, c'est le cycle
principal.

Les autres cycles se répartissent en quatre couples de cycles
conjugués; désignés respectivement par la même lettre, avec et sans

accent, dont les nombres de termes sont: trois pour I et F; cinq pour
J et J' ; sept pour K et K' ; cinq pour L et L' ; ces nombres sont impairs,
comme celui des idéaux du cycle U. La somme des indices des idéaux
conjugués est congrue à 0, celle des idéaux associés est congrue à

—1 (49).
Dans le groupe chacun des huit termes, différents de l'unité U,

est d'ordre 3. Le groupe est produit direct de deux groupes cycliques
d'ordre 3, engendrés respectivement par les puissances de deux cycles,

non conjugués, par exemple I et J.

Cette structure résulte immédiatement des décompositions de

certaines des valeurs de la table. Celles de:

i?(124) 53 => (0—124) (5, 6—124)3 1^ ;

.F(103) 17® =5- (6—103) (17, 6—103)3 (17, 6—117)3 J?

montrent que les cycles I et J, ainsi que leurs conjuguées I' et J' sont
des termes d'ordre 3 du groupe. Par suite ce groupe qui est d'ordre 9,

ne peut être cyclique (si non il ne contiendrait que deux termes
d'ordre 3, puissances 3 et 6 d'une base). Il est donc produit de deux

groupes cycliques, d'ordre 3. Ses termes peuvent notamment être

exprimés par:
I*xJy; xr y entiers, mod. 3.
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On peut compléter cette indication en cherchant les expressions

de K et de L. Elles résultent notamment des décompositions :

^(49) 25x17x31 => (25, 0—49)x(17, 0—49) x (31, 0—49)

(25, 0—124) x (17, 0—117) x (31, 0—111) ~ 1

F(120) 5x13x17 => (5, 0—120) x (13, 0—120) x (17, 0—120) ~ 1.

Elles entraînent:

K-IxJ2; L Ix J.

Les cycles conjugués sont aussi inverses, l'un de l'autre, de sorte

que chacun d'eux est égal au carré de l'autre (exposant 2, mod. 3).

52. Corps de discriminant premier.

On va examiner quelques unes des circonstances qui peuvent
se présenter dans la structure du groupe des classes des idéaux
semi réduits^ ou des cycles.

Dans un corps réel, dont le discriminant est un nombre

premier, nécessairement congru à +1, mod. 4, il n'y a qu'^e seule

classe double, caractérisée par un cycle, du type 1, d'un nombre

impair d'idéaux. Il peut exister en outre des couples de cycles

conjugués, et associés, du type 4, qui ont aussi un nombre impair
d'idéaux.

Si le cycle principal existe seul, le corps est principal. Dans
le cas contraire l'ordre du groupe des classes est impair et supérieur
à 1 ; si cet ordre est un nombre premier, ou un produit de nombres
premiers différents, le groupe est cyclique, mais cette condition
suffisante n'est pas nécessaire.

Un corps, de discriminant premier ne contient qu'un idéal double
de norme 1, qui engendre un cycle de type 1, évidemment principal.
Ce cycle doit donc contenir un idéal semi réduit réfléchi, ce qui
entraîne l'existence d'une décomposition du discriminant en une
somme de carrés de deux nombres entiers.

C'est là une nouvelle preuve de la propriété déjà établie par la
considération du corps R(i): un nombre premier, congru à +1, mod. 4;
est égal à une somme de carrés de deux nombres entiers (20).

Cette démonstration établissait aussi la détermination de ces
deux carrés; il est possible de le vérifier également par des considéra-
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tions simples de congruences, dont le module est le nombre premier
considéré. Cette précision montre qu'il ne peut y avoir d'autre idéal

remarquable dans le corps, donc aucun autre cycle de type 1, 2, ou 3.

Le tableau XXI donne deux exemples de corps, de discriminants
premiers, 317 et 193, dont la considération des idéaux réduits permet
d'affirmer qu'ils sont principaux. Le tableau XXVIII indique
comment ceci peut être établi par la considération des idéaux semi

réduits; la disposition est la même que dans le tableau XXVII; mais
dans chaque corps il n'y a qu'un seul cycle, dont les idéaux sont

désignés par la lettre I: ils sont de trois termes dans le premier corps,
de quinze termes dans le second.

Pour les discriminants peu élevés, on constate que, pour une
très grande proportion d'entre eux, il n'y a pas de cycles de

type 4, et que, par suite, le corps est principal. On indique ci-
dessous la répartition des corps principaux de discriminant
premier inférieur à 1000, suivant le nombre d'idéaux dans le cycle
unique (les corps sont désignés par leurs discriminants):

I idéal dans le cycle: 5, 13, 29, 53, 173, 293;
3 idéaux: 17, 37, 61, 101, 197, 317, 461, 557, 677, 773;
5 idéaux: 41, 149, 157, 181, 269, 397, 941;
7 idéaux: 89, 109, 113, 137, 373, 389, 509, 653, 797, 853, 997;
9 idéaux: 73, 97, 233, 277, 349, 353, 613, 821, 877;

II idéaux: 541, 593, 661, 701, 857;
13 idéaux: 421, 757; 15 idéaux: 193, 281 ;

17 idéaux: 521, 617, 709; 19 idéaux: 241, 313, 449, 829, 953;
21 idéaux: 337, 569, 977; 23 idéaux: 433, 457, 641, 881;
25 idéaux: 929; 27 idéaux: 409;
29 idéaux: 673, 809; 31 idéaux: 937;
33 idéaux: 601; 35 idéaux: 769.

Les six corps, dont le cycle principal n'a qu'un seul idéal,
sont indiqués dans le tableau XX (avec cinq autres, de

discriminant non premier).

Les seuls corps, de discriminant premier, inférieur à 1000,

qui ne sont pas principaux sont ceux de discriminants:

229, 257, 733, 761, qui comprennent chacun trois cycles (ou
classes) formant par suite un groupe cyclique d'ordre 3;
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401, qui comprend cinq cycles, formant un groupe cyclique

d'ordre 5;
577, qui comprend sept cycles, formant un groupe cyclique

d'ordre 7.

Le tableau XXVIII donne aussi les calculs des cycles pour trois
de ces corps, de discriminants:

577: cycle U de trois idéaux; trois couples de cycles conjugués;

I, F et J, J' de chacun trois idéaux; K, K' de chacun cinq
idéaux;

401: cycle U de trois idéaux; deux couples de cycles conjugués;
I, r de chacun trois idéaux; J, J' de chacun cinq idéaux;

761: cycle U de cinq idéaux; deux cycles conjugués, I, F de cha¬

cun sept idéaux.

Pour des discriminants relativement élevés, le groupe de cycles

(ou de classes) peut n'être pas cyclique. L'exemple de calcul de

structure du tableau XXVII concerne un corps dont le discriminant,
62 501, est premier, et dont le groupe des cycles, d'ordre 9 est produit

direct de deux groupes cycliques d'ordre 3.

53. Corps à une seule classe double.

Le corps, de caractère exceptionnel, défini par le polynôme
fondamental:

F(x) — x2—2; D 8;

a un seul idéal semi réduit, à la fois double et réfléchi, qui est
l'idéal unité. Il n'y a donc qu'un seul cycle, d'un seul terme, et
le corps, comme ce cycle, est principal.

A l'exception de ce corps, et en plus de ceux dont le
discriminant est un nombre premier, il existe des corps qui n'ont
qu'une seule classe double (conjuguée d'elle-même); ce sont ceux
dont le discriminant a au plus deux facteurs premiers impairs,
congrus à —1, mod. 4. En tenant compte des conditions de
construction d'un corps réel (1), on obtient l'énoncé suivant:

Un corps réel, dont le discriminant D est:



Tableau XXVIII.
Exemples de corps de discriminant premier (corps principaux).

c —(oc2 + x—79)

0 79
1 77
2 73
3 67
4 59
5 49 7 X 7 ; I2 X I2
6 37
7 23
8 7 1 x 7 ; I0 XI,

-(X2+X--48)

48
46
42 7X6 I6 X l8
36 9X4 6X6; 1-1 x IlO> I? X I7
28 =* 4x7; I5 X I9
18 =» 6x3 2X9; Il X Il3Î I3 X 111

6 1x6 3X2; Io X II 4 *> I2 X Il2

(Corps non principaux.)

C -(X2 +X~-144)

0 144 wa: 12X12; V1XV1
1 142
2 138
3 132 11X12; K3XK;
4 124

5 114

6 102 « 6x17; Ji X Ji
7 88 — 8X11; K2XK;
8 72 4X18; iixi;

12x6 K4XK;
9X8 K,XK;

9 54 18x3 I2 X Io

« 6x9 K0x<
10 34 17X2 J2 X J0

11 12 1 X12; U0XU2
2X6; Jo X J2

3X4; Io X I2
12

13

-(x2 + x—:100)

100 102 Uj_ x U4
98
94

88 8x11; J3 X Ji
80- wi 10x8; J2 x J2

70 5x14; IiXl^
7X10; Ji X J3

58

44 11 X4; J4 x Jq

28 14x2; I2 X Io

» 4X7; Jo X J4

10 1 X 10; U0xU2

2x5; Iq XI2

-(x2 + x—190) c

190
188
184

0

1

2

178 3

170 10X17; I5XI; 4

160 16x10; i4xi; 5

148 6

134 7

118 8

100 20x5; I2 X I4 9

10 X 10; U2xU2
80 4x20; I1XI5 10

5x16; I3 x I3

58
8X10; UlXU3

11

34 « 17x2; 16 X Io 12

8 — 1x8; U0xU4 13

2X4; Io X Iß
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1. impair, nécessairement congru à +1, mod. 4, produit

ttXe, de deux nombres premiers impairs, dont Vun, et par suite

l'autre, est congru à —1, mod. 4;

2. produit par i d'un nombre premier d, impair, nécessairement

congru à —1, mod. 4;

3. produit par 4 du double d — 2d\ dun nombre premier df,
nécessairement impair, mais congru à —1, mod. 4;

ne contient qu'une seule classe double d idéaux, nécessairement

principale, caractérisée par un cycle du type 2, d'un nombre

pair de termes. Il peut y exister, en outre, des cycles du type 4,

répartis par couples de cycles conjugués, chacun ayant aussi

un nombre pair d'idéaux.

Dans les trois cas, le discriminant D, considéré dans le corps R{i)f
est le produit de deux idéaux (principaux), dont l'un au moins est

premier rationnel (m et p; ou d; ou d'; puisque congru à—1, mod. 4).

Il n'est donc pas égal à une somme de carrés de deux nombres entiers

(20) et le corps ne contient pas d'idéal semi réduit réfléchi (deuxième
théorème d'existence de 43).

Par contre il existe deux, et seulement deux idéaux semi réduits
doubles, car D a seulement deux diviseurs dont le carré lui soit
inférieur et qui sont, suivant les cas:

1 et a ou e; 1 et 2

ceci puisque, dans le second cas, d étant au moins égal à 3:

22 < D 4d] et d2 > DA — d;

et que, dans le troisième cas, d'étant au moins égal à 3 (D 8 étant
excepté) :

22 < D : 4 s® 2d' ; et d2> DA 2d'.

Il n'y a donc qu'un seul cycle, du type 2, qui contient deux
idéaux semi réduits doubles.

Les autres cycles, s'il en existe, ne peuvent contenir d'idéaux
semi réduits remarquables et ne peuvent être que du type 4.
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Comme pour un discriminant premier, si le cycle principal
existe seul, le corps est principal.

Dans le cas contraire, Vordre du groupe des classes est impair
(un cycle principal et des couples de cycles). Si cet ordre est un
nombre premier ou un produit de nombres premiers différents,
le groupe est cyclique, mais cette condition suffisante n'est pas
nécessaire.

Pour les discriminants peu élevés, on constate aussi que,
pour une très grande proportion d'entre eux, il n'existe pas de

cycles de type 4, et que, par suite, le corps est principal. On

indique ci-dessous la répartition de ces corps principaux, de

discriminant inférieur à 1000, suivant le nombre d'idéaux dans le

cycle unique. Les corps sont indiqués par les décompositions de

leurs discriminants et dans l'ordre des trois cas:

2 idéaux dans le cycle: 3x7, 7x11, 3x31, 3x79, 19x23,
3x151; 4x3, 4x11, 4x23, 4x83, 4x227; 8x3,
8x19;

4 idéaux: 3 X11, 3x23, 7x19, 3x47, 3x71, 7x59, 3x191,
3x239; 4x7,4x47,4x167; 8x7,8x31;

6 idéaux: 3x19, 11x23, 3x103, 11x31, 3x127, 7x107,
3x271, 19x47; 4x19, 4x59, 4x107, 4x131;
8x11;

8 idéaux: 3x167, 7x83, 3x263, 11x79, 7x131, 23x43;
4x31, 4x71; 8x79, 8x103;

10 idéaux : 3 x 43, 7 x 23, 7 x 43, 11 x 47, 3 x 199, 3 x 223 ; 4 x 43,

4x67, 8x43, 8x59;
12 idéaux: 3x59, 11x19, 3x311, 7x139; 4x103, 4x127,

4x239; 8x23;
14 idéaux: 3x67, 7x71, 23x31; 4x179; 8x67;
16 idéaux: 7x31, 3x83, 7x47, 3x131, 3x179, 19x31;

4x191; 8x47;
18 idéaux: 3 X139, 3x211, 11 x67, 11 x71; 4x139, 4x163;
20 idéaux: 4 x 151, 4 x 199; 22 idéaux: 3 X163; 8 x83;
24 idéaux: 3 x251 ; 26 idéaux: 7 x79; 4x211; 8x107;
32 idéaux: 3 x227, 11 x83; 34 idéaux: 11x59,3x283,

3x307;
36 idéaux: 7x103; 42 idéaux: 7x127.
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Les seuls corps, de discriminant inférieur à 1000, vérifiant
les conditions précédentes et qui ne sont pas principaux, sont

ceux de discriminant:

321 - 3x107, 469 - 7x67, 473 - 11x43, 993 - 3x331;
316 - 4x79, 892 - 4x223; 568 - 8x71;

qui comprennent chacun un cycle principal et un couple de

cycles conjugués formant par suite un groupe d'ordre 3, cyclique,
et le corps de discriminant 817 — 19x43, qui comprend, en

plus du cycle principal, deux couples de cycles conjugués,
formant un groupe dordre 5, cyclique.

54. Corps à deux classes doubles.

Par un raisonnement analogue aux précédents (52 et 53),

on peut caractériser les corps qui ont deux et seulement deux
classes doubles d'idéaux.

Condition suffisante. — Un corps réel a deux, et seulement
deux, classes doubles d'idéaux lorsque son discriminant a l'une
des formes suivantes:

1. il est impair, nécessairement congru à +1, mod. 4, égal à

un produit ux e, de deux nombres premiers, congrus chacun à +1,
mod. 4;

2. il est pair, égal au produit par 4, du double 2d\ dun nombre

premier d, congru à +1, mod. 4;
[Dans ces deux cas les classes doubles sont caractérisées par

deux cycles, soit du type 1 (d'un nombre impair de termes), soit
Vun du type 2 et Vautre du type 3 (tous deux d'un nombre pair
d'éléments).]

3. il est impair, égal à un produit uxvxw, de trois nombres
premiers, dont un est congru à +1 et chacun des deux autres à

—1, mod. 4;

4. il est pair, égal au produit par 4, dun produit d — ^xe,
ou du double d — 2d, d'un produit d — u'xd, de deux nombres

premiers, dont Vun est congru à +1 et Vautre à —1, mod. 4;
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5. il est pair, égal au produit par 4 du double d 2d', d'un
produit d' u'xv', de deux nombres premiers, congrus chacun
à —1, mod. 4.

[Dans ces trois cas, les classes doubles sont caractérisées par
deux cycles du type 2 (d'un nombre pair de termes).]

L'un des cycles contenant nécessairement l'idéal unité est

principal; il peut exister, en outre, des cycles du type 4, répartis
par couples de cycles conjugués, chacun ayant un nombre de

termes de même parité que celui des termes du cycle principal.
Dans les cas 1 et 2, D ou d 2d', considéré dans le corps R(i),

est la norme d'un produit de deux idéaux premiers du premier degré

(non rationnels); il est donc décomposable de deux façons en une

somme de deux carrés et le corps contient deux idéaux semi réduits
réfléchis.

D'autre part, dans chaque cas il existe deux (et seulement deux)
idéaux doubles, dont les normes sont les diviseurs du discriminant:
1 et le plus petit des entiers u et c, pour le premier cas; 1 et 2 pour
le second cas (d'après le raisonnement déjà fait ci-dessus lorsque d'
est congru à —1 ; 53).

Il y a donc quatre (et seulement quatre) idéaux semi réduits

remarquables donc deux cycles contenant chacun deux d'entre eux.
Ils sont du type 1 si chacun contient un idéal double et un idéal

réfléchi; ils sont l'un du type 2, l'autre du type 3, dans le cas contraire.

Dans les cas 3 à 5, D ou d, qui contient au moins un facteur
premier, congru à —1, mod. 4, n'est pas égal à une somme de deux carrés;
le corps ne contient pas d'idéal semi réduit réfléchi.

Par contre il y a quatre (et seulement quatre) idéaux semi réduits
doubles dont les normes sont, suivant le cas:

3 — 1, u ou cxw, c ou wxu, w ou wxc;
4 — 1, 2, u ou c, 2u ou 2c;
5 — 1, 2, u ou 2e', e' ou 2u

Il y a donc encore quatre idéaux semi réduits remarquables, donc

deux cycles, mais chacun d'eux est du type 2.

Dans chacun des 5 cas, le corps a donc deux classes doubles.
Si ces classes (ou ces cycles) existent seules, elles constituent un

groupe, dordre 2, cyclique.
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Dans le cas contraire, Vordre du groupe des classes est pair
(deux classes doubles et des couples de classes conjuguées). Si

cet ordre est le double d'un produit de nombres premiers impairs
différents, le groupe est cyclique. Il l'est encore si ces nombres

premiers comprennent un facteur 2 (notamment si l'ordre est

égal à 4) ; car un produit direct d'un groupe d'ordre pair par un

Tableau XXIX.
Exemples de corps à deux classes doubles.

D 685 5 X 137
c —(x2 + x—171)

0 171
1 169 13X13; V2xV2
2 165 15x11; UxxU5
3 159
4 151

5 141

6 129
7 115

8 99 11X9; U2xU4

9 81 9x9; U3XU3
10 61

11 39 3x13; VlXV3

12 15 1x15; U0XU6
5x3; V0xV4

13

14

15

Ordre 2

(0--i) v2 X V2

D -- 689 1= 13X53
—(x2 -f- x—17 2)

172
170
166
160 16X10; U4xU4
152

142

130 10X13; U2XU3
116

100 5x20; I2 XI2

82
10x10; V2xV2

62

40 20 X 2 ; I3XI0
4x10; V.XY3
8x5; Il x I2

16 1X16; U0xU5
; 2X8; lo X I3

4X4; V0xV0

D --- 904 8 X 113
—(x2—226) C

226 - 0
225 15 X 15; ViXV, 1

222 2

217 3

210 15X14; Kx X Kg 4

201 5

190 10x19; JiX Ji 6

177 7

162 9x18; K3XKi 8

145 9

126 - 6X21; iixi; 10

18x7; K4X<
14x9; K2X<

105 21x5; I2 X lo 11

7x15; K0x<

82 12

57 19x3; J2 X Jo 13

30 2x15; V0xV2 14

3x10; Jo X J2

5x6; lo X I2
1 1 X1 ; U0xU0 15

V2 <

Ordre 4

(6—12) ]

V ~ 1

Ordre 8

(6—8)t x= Jq X Y0

J8 ^ V2 _ l
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groupe d'ordre 2 contient au moins deux termes d'ordre 2; or
la classe double non principale est le seul terme d'ordre 2, du

groupe des classes.

Pour des discriminants peu élevés, on constate encore que,
pour une assez grande proportion d'entre eux, il n'y a pas de

cycles de type 4, et que, par suite leur groupe est d'ordre 2 et

cyclique. Pour les discriminants inférieurs à 1000, il y a ainsi
91 corps qui n'ont que deux classes d'idéaux [la classe

principale et une classe égale à sa conjuguée et de carré
égal à la classe principale]. Ils se répartissent suivant les cinq
conditions précédentes en:

21 (condition 1); 12 (2°); 20 (3°); 32 (4°); 6 (5°).

Les seuls corps qui, en vérifiant les conditions précédentes
ont un groupe d'ordre supérieur à 2 (ou contiennent des cycles
de type 4) sont: ceux de discriminants:

145 5x29, 445 5x89, 505 5x101, 689 13x53,

793 13x61, 901 17x53, 905 5x181; 328 8x41;

777 3x7x37; 897 3x13x23; 876 4x3x73;

qui ont un groupe, cfordre 4, cyclique;
ceux de discriminants:

785 5x157, 985 5x197; 940 4x235;

qui ont un groupe d'ordre 6, cyclique;
et celui de discriminant 904 8x113, qui a un groupe

dordre 8, et qui est cyclique, car il ne contient qu'un seul terme
d'ordre 2.

Le tableau XIX donne des exemples de calcul des idéaux semi

réduits et de vérification de la structure des groupes pour trois corps,
[deux classes doubles] dont les discriminants sont:

685 5 x 137 (premier cas de la condition) qui a deux cycles

d'un nombre impair d'idéaux (7 et 5), du typé 1;
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689 — 13x53 (même cas) qui a deux cycles de type 2 et 3, d'un
nombre pair d'idéaux (6 et 4) et un couple de cycles conjugués
de type 4, de chacun quatre idéaux. Son groupe est d'ordre 4,

cyclique ;

904 8x113 (deuxième cas), qui a deux cycles de type 1 conte¬

nant un et trois idéaux et trois couples de cycles conjugués
de type 4, contenant respectivement trois, trois et cinq idéaux.
Son groupe est d'ordre 2+2x3 8, cyclique.

55. Corps à plus de deux classes doubles.

Les conditions, énoncées ci-dessus, suffisantes pour qu'un
corps contienne seulement une ou deux classes doubles d'idéaux,
sont aussi nécessaires : si elles ne sont pas vérifiées par le
discriminant, le corps a au moins trois classes doubles. Cette propriété
peut être explicitée sous forme d'une condition suffisante
analogue aux précédentes.

Un corps réel a au moins trois classes doubles d'idéaux lorsque
son discriminant D a l'une des formes suivantes:

1. il est impair, nécessairement congru à +1, mod. 4, égal
à un produit uxvxw, de trois nombres premiers, congrus chacun
à +1, mod. 4;

2. il est pair, égal au produit par 4, du double 2df d'un produit

d' u'xv', de deux nombres premiers, congrus chacun à

+1, mod. 4;

3. Il est impair, nécessairement congru à +1, mod. 4, égal
à un produit de plus de trois nombres premiers impairs.

4. Il est pair, produit par 4 d'un nombre impair d, congru
à —1, mod. 4, ou du double 2d' d'un nombre impair d\ produit
d'au moins trois nombres premiers impairs.

Il est équivalent de dire que D vérifie ces conditions, ou ne
vérifie pas les conditions précédentes; c'est ce qui résulte du
tableau des diverses conditions:

L'Enseignement mathém., t. VII, fasc. 1. 7
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D impair +1
D pair 4d

d impair —1 d — 2cZ', d'impair

1 seule
classe

D premier d premier d'premier eis —1

double D uXv
u, c premiers m —1

2

classes
doubles

D ux v

u, v premiers +1

D uXvXw
u, c, m premiers
u et c —1

d uXv
u, c premiers
u —1

d'premier s= +1

d' m7 x c7

u7, c7 premiers ;

u7 —1 ; c7 impair

3 1) ux ex m d' u' x c7

classes
doubles

u, v, w premiers
+1

u7, c7 premiers -f 1

au 4 facteurs premiers,
moins au moins 3 facteurs premiers impairs au moins

Dans les cas 1 et 2, Z) est décomposable de quatre façons en somme
de deux carrés; le corps contient donc quatre idéaux semi réduits
réfléchis.

D'autre part, il existe quatre idéaux doubles, dont les normes
sont 1, u ou cm, c ou uw, uv ou w dans le premier cas, et 1, 2, u' ou
D:Su 2u' ou D'Au' dans le second cas.

Il y a donc huit idéaux semi réduits remarquables, donc quatre
cycles, contenant chacun deux de ces idéaux et définissant chacun

une classe double.

Dans les cas 3 et 4, il y a huit idéaux semi réd uits doubles, au

moins, dont les normes sont suivant les cas:

3 — 1, îi ou D:w, c ou D:c, uv ou D\uv, vv ou D:w,
uw ou D:uw, vw ou D:vw, uvw ou D:uvw,

4 — 1, 2, u ou D:u, 2u ou D:2u, v ou D:c, 2c ou D:2c,
uv ou D\uv, 2uv ou D\2uv\

si m, c, vv sont des facteurs premiers impairs de D.

Il y a au moins huit idéaux semi réduits remarquables, donc au
moins quatre cycles, définissant chacun une classe double.
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Dans chacun de - ces cas, le groupe des classes d'idçaux

contient au moins deux éléments d'ordre 2, donc contient un

sous-groupe, produit direct de deux groupes cycliques d'ordre 2.

Tableau XXX.

Exemples de corps à plus de deux classes doubles.

jD 1 105 - 5X13X17
c —(x2 +x--276)

0 276
1 274
2 270 15x18; T9 X /2
3 264
4 256 16x16; UZXU,
5 246
6 234 13X18; Iq X ^5
7 220 *=» 11 X20; J2 X Jq

10X22; E2XK9
8 204 12X17; K,XK6
9 186

10 166
11 144 12 X12; K0XK0

8X18; /4X/7
9X16; U2xU4t
6X24; /4X/7

12 120 10X12; K10xK1
8X15; ^8 X ^3

6X20; •^8 ^ ^3
5X24; X ^5

13 94
14 66 6x11; J± X J19

3X22; K8XK3
15 36 6x6; JoXJo

4x9; U.XU,
3X12; K^XK7
2x18; h X ho

16 4 2X2; IQXÏO
1X4; U0XU6

D 1 365 3X5X7X13
c —(x2-f-x—-341)

0 341
1 339
2 335
3 329
4 321
5 311
6 299 13x23; J2xJ1
7 285 15x19; K3XK2
8 269
9 251

10 231 11 X21; isxl,
11 209 11 xl9; fjXf,
12 185
13 159
14 131
15 101
16 69 3X23; Jo X J$
17 35 5x7; I0 x h

1X35; U*xux

produit direct de 2 groupes
cycliques d'ordre 2

IxJ ~ K

produit direct de 2 groupes
cycliques d'ordre 2

IxJ ~ K
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Les seuls corps, à plus de deux classes doubles, dont le
discriminant D est inférieur à 1000, sont les cinq corps dont les
discriminants sont:

D 520 8x5x13
D 680 8x5x17
D 840 8x3x5x7
D 780 - 4x3x5x13
D 924 =4x4x7x11

Le groupe des classes d'idéaux de chacun de ces corps est le

produit direct de deux groupes cycliques d'ordre 2.

Le tableau XXX donne deux exemples de calcul des idéaux semi
réduits et de vérification de la structure des groupes pour les corps
dont les discriminants sont:

1 105 5x13x17, qui a un cycle de sept idéaux (U) et trois
cycles de onze idéaux;

1 365 3 x 5 x 7 x 13, qui a deux cycles de deux idéaux, un cycle
de quatre idéaux et un cycle de six idéaux.

On peut encore généraliser la construction des exemples
précédents, pour obtenir des corps contenant exactement n
classes doubles d'idéaux.

NOTE I

La théorie des corps de nombres algébriques, et plus
précisément l'étude des propriétés arithmétiques de leurs entiers, a

pour origine des travaux de K. F. Gauss (1777-1855). Gauss a

introduit la notion d'entier algébrique et établit les propriétés
de divisibilité des entiers de quelques corps particuliers. Mais
c'est seulement E. E. Kummer (1810-1893) qui a introduit la
notion essentielle d'idéal, dans un anneau d'entiers algébriques,
permettant d'obtenir des propriétés arithmétiques dans tout
corps de nombres algébriques de degré fini. Cette notion a été

précisée et développée, dans le cours du xix° siècle, surtout par
l'école allemande: R. Dedekind (1831-1916), L. Kronecker


	CHAPITRE VI  LES CLASSES D'IDÉAUX ET LES DIVISEURS DE L'UNITÉ DANS LES CORPS RÉELS
	38. Corps réels principaux triviaux.
	39. Exemples de vérification de corps principaux.
	40. Idéaux semi réduits.
	41. Couple d'idéaux associés semi réduits.
	42. Construction des idéaux semi réduits.
	43. Idéaux semi réduits remarquables.
	44. Cycles d'idéaux semi réduits.
	45. Multiplicateurs d'un cycle d'idéaux semi réduits.
	46. Suite de bases d'un idéal semi réduit.
	47. Détermination des cycles.
	48. Diviseurs de l'unité.
	49. Les quatre types de cycles.
	50. Justification des types.
	51. Structure du groupe des classes d'idéaux.
	52. Corps de discriminant premier.
	53. Corps à une seule classe double.
	54. Corps à deux classes doubles.
	55. Corps à plus de deux classes doubles.


