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CHAPITRE VI

LES CLASSES D’IDEAUX ET LES DIVISEURS DE L’UNITE
DANS LES CORPS REELS

Dans un corps réel, ou de discriminant positif, la considé-
ration des idéaux réduits (25) suffit pour montrer que le nombre
de classes d’idéaux est fini. Mais elle ne permet plus de déter-
miner toujours, avec certitude, la structure de leur groupe (ou
la table de pyrHAGORE de leur multiplication). On définit
alors une catégorie plus étendue d’idéaux, qui sont appelés
semt réduits. Chaque classe d’idéaux est caractérisée par un
systéme, ou, plus précisément, par un cycle (systeme ordonné)
d’un nombre fint d’'idéaux semv réduits. Ces cycles permettent,
en méme temps, de réaliser la construction, au moins théorique,
des diviseurs de l'unité, dans le corps réel considéré.

Avant d’exposer cette notion nouvelle, on montre d’abord
comment dans certains cas, notamment pour des discriminants
peu élevés, le calcul des seuls idéaux réduits permet encore
d’aboutir & une affirmation.

38. Corps réels principaux triviaux.

Dans un corps réel, la valeur F(c), du polynéme fondamental
est négative, pour un nombre fini de valeurs entiéres, comprises
entre les deux zéros (irrationnels) du polyndéme, qui sont de
signes contraires. La considération de ces valeurs fournit un
criterium, moins strict, pour la détermination des idéaux
réduits.

On peut d’abord modifier une remarque faite pour les idéaux
des corps imaginaires (29): pour un idéal canonique d’un corps
réel, sl existe des racines c¢ qui rendent F(x) négatif, la racine
minimum ¢ est celle, d’entre elles, qut donne a F(z) la plus grande
valeur absolue.
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11 suffit encore de considérer la différence:
F(c+am)—F(c) = am X (2¢c—S+am); A entier rationnel;

si ¢ est racine minimum, |2¢—S| est au plus égal & m, (2c—S-+wm)
est nul, ou du signe de A, supposé non nul; la différence est positive
ou nulle. S’il existe des racines x = ¢-+Am qui rendent F(z) négative
il en est de méme de ¢, puisque F(¢) est au plus égal & F(c+am) et
il en résulte la comparaison des valeurs absolues:

F(©) < Fe4+wm) = |F(@)| > |F@E+ rm)|.

THEOREME caractéristique d’un idéal réduit. — Dans un
corps réel, ou de discriminant positif, pour qu’'un idéal, et, par
suite, son idéal conjugué, soit réduit, il faut et il suffit qu’il ait
au moins une racine c, telle que F(c) soit négative et que le carré
de sa norme soit au plus égal a la valeur absolue |F(c)|:

m diviseur de [F(c)]; F(c) < 0; m?2<|F(c)|.

La condition est nécessaire, car pour un idéal réduit, ces condi-
tions sont vérifiées en prenant pour ¢ la racine minimum ¢ (25).

La condition est suffisante, la racine minimum de 'idéal est alors
I’entier ¢, de plus petite valeur absolue, congru a ¢, mod. m. Il donne
encore une valeur négative a F(x), au plus égale a F(c) en sorte que:

m? < |F(c)| < |F(©)[;
ce qui vérifie la condition de réduction.

On peut encore vérifier que la définition d’un idéal double
et sa propriété caractéristique (7) sont valables: sa norme est
diviseur du discriminant. Mais la condition de réduction donnée
pour les corps imaginaires (29) devient (coefficient 3 remplacé
par 5):

st D est impair;
bm? < D, si D = 4d; d impair; m = 2u’, u’ diviseur
de d;
dm?* < D, si D = 4d, m diviseur de d.

Les idéaux réduits ne représentent plus proprement les
classes d’idéaux; dans chacune d’elles, il peut exister plusieurs
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idéaux réduits, toutefois en nombre fini. Pour rechercher leur
table de multiplication, comme il a été fait pour les corps ima-
ginaires, il faudrait, au moins en principe, avoir préalablement
réparti en classes les idéaux réduits eux-mémes.

On peut cependant affirmer directement le résultat lorsque
les calculs de multiplication des idéaux et les relations résultant

“des décompositions de valeurs du tableau permettent de constater

que tous les idéaux réduits sont principaux, c’est-a-dire que le
corps est principal.

TaBLEAU XX,

Corps réels ou le seul idéal réduit est (1).

D 501321 =83%7|29|53|77 = 7x11{173|293 | 437 = 19X 23 8| 12
r 1 1 11 1] 2 2| 3| & 5 1] 1
—F(0)] 1] 3 50 7113 19| 43| 73 109 2| 3
—F(1) |—1| 1 3| 5|11 17| 41| 71 107 1| 2
—F(2) 7 13| 37| 67 103
—F(3) 31| 61 97
—F(4) 53 89
—F(5) 79

Une premiére circonstance, presque triciale, pour laquelle
cette affirmation est possible est réalisée lorsque Iidéal unité
est le seul qui soit réduit:

pour qu’un corps réel soit principal, il suffit que les r premicres
valeurs du polynome fondamental F(c):

O0<e<r; z>r < lF(x)l < (22—5)2

qui sont négatives, soient toutes des nombres premiers.
Dans le cas des corps imaginaires, cette condition est aussi
suffisante, mais elle est également nécessaire (34).
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Pour les discriminants pairs, elle n’est vérifiée que pour les
valeurs 8 et 12 (polyndémes fondamentaux z2—2 et 22—3); pour
tous les autres, I'idéal, de norme 2 et de racine 0 ou 1 est réduit.

Elle est, d’autre part, vérifiée pour 9 corps, de discriminants
impairs (et aucun autre inférieur & 1000), qui sont donnés
dans le tableau XX. On remarquera que dans ceux de discrimi-
nants 21 et 77, il y a un idéal double, non réduit.

39. Exemples de vérification de corps principaux.

Dans certains cas, la considération des idéaux réduits suffit
encore & constater que le corps est principal. Quelques exemples
de calcul en sont donnés dans le tableau XXI, qui est disposé
de la méme facon que les tableaux X, XII, XVI, donnés en
exemples de corps imaginaires. On a toutefois inscrits, en
caracteres gras, les normes des idéaux réduits.

Une premiere circonstance est 'existence d’un seul couple
d’idéaux réduils conjugués (en plus de I'idéal unité), éventuelle-
ment égaux, dont la décomposition d’une valeur ultérieure du
tableau montre qu’ils sont principaux.

Dans le corps, de discriminant 317 (premiére colonne du tableau
XXI) les 3 seuls idéaux réduits sont 'idéal (1) et le couple d’idéaux
conjugués (inégaux), de norme 7. La valeur F(8) = —7, montre
qu’ils sont principaux (6—8) = (7, 6—S8). La wvaleur antérieure
F(5) = —49 montre aussi qu’ils sont congrus (idéal réfléchi, non
réduit).

Pour le corps de discriminant pair 152 = 8% 19 (deuxieme
colonne du méme tableau), les 2 seuls idéaux réduits sont (1) et
I’idéal double de norme 2. La valeur F(6) = —2 montre que cet
idéal est principal.

De telles vérifications peuvent se faire pour un assez grand
nombre de corps de discriminants inférieurs & 1000, notamment:

impairs: 17, 33, 37, 41, 61, 69, 93, 101, 133, 149, 157, 197,
213, 237, 269, 317, 341, 413, 453, 461, 557, 677, 717, 773, 941 ;

pairs: 24, 28, 44, 56, 92, 152, 188, 248, 332, 668, 908.
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TaBLeEau XXI.

Exemples de corps réels principaux.

(Calculs avec les idéaux réduits.)

D = 317 D = 152 = 8X19 D = 193 D = 184 = 8X23
r =4 r =3 r=3 r =4
79 38 = 2X29 48 = 24X 3 46 = 2X 23
(1, 6) (L, 0) (1, 0) (1, 0)
(2, 0) = (2, 61 (2, 0) (2, 0) (2, 0) = (2, 0)
(3, 0) (3, 0)
(4, 0) (4, 0)
(6, 0) (6, 0)
77 = 311 37 46 = 2 X 23 45 = 32X 5
(7, 6—1) (7, 6'—1) (3, 6—1)|(3, 6/—1) |
(5, 6—1)](5, 6"—1) I
|
73 3k = 2X17 42 = 2XxX3X7 b2 = 2X3X7
(6, 6—2)|(6, 6/—2) | (6, 6—2){(6, 6 —2)
67 29 36 37
59 30
49 = 7X7 18 = 6 X3
2 6= 2X3 10 = 2X5
—3
7
F(8): F(6): F(6): F(7):
(7, 0—1) ~ (1) | (2,0) ~ (1) | (6, 0) ~ (1) (3, 6—1) ~ (1)
F(5): F(1):
(6, 8)x (3, 0) (3, 6—1)2x (5, 0—1)
~ (1) ~ (1)
F(6) F(6):
(2, B)x (3, 0) (2, B)x (5, 6—1)
~ (1) ~ (1)
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‘Une circonstance, moins évidente lorsqu’il existe plusieurs
couples d’idéaux conjugués, est l’existence de valeurs du tableau,
dont les décompositions montrent successivement que certains
des idéaux réduils sont principaux, et qu’il en est, par suite de
meéme de leurs produits mutuels, qui peuvent constituer tous les
autres.

Dans le corps, de discriminant 193 (troisieme colonne du tableau
XVIII), il y a 11 idéaux réduits dont (1) et 5 couples d’idéaux con-
jugués différents. Les décompositions de —F(6) = 1x6, —F(5) =
63, et, & nouveau —F(6) = 2x3 montrent successivement que:
un des couples d’idéaux, de norme 6, puis le couple de norme 3, puis
celui de norme 2 sont principaux. Il en résulte la méme propriété
pour le couple de norme 4 et I’autre couple de norme 6.

Dans le corps de discriminant 184 (quatrieme colonne du méme
tableau), il y a 8 idéaux réduits, dont (1) et I'idéal double, de norme 2.
Les décompositions de —F(7) = 3x1, —F(1) = 32x5, et
—F(6) = 2xb5 montrent successivement que les idéaux, de norme 3,
donc ceux de norme 3% (non réduits), puis ceux de norme 5, puis
I’idéal double, de norme 2 sont principaux. Il en résulte la méme
propriété pour les deux autres idéaux réduits, de norme 6.

De telles vérifications peuvent se faire pour presque tous les
corps principaux, de discriminant inférieur a 500 et pour un
trées grand nombre de ceux dont le discriminant est compris
entre 500 et 1000. Les calculs sont, d’ailleurs, en général plus
simples que dans le cas des corps imaginaires. Cette simplifica-
tion tient, pour une part, au petit nombre de diviseurs des
valeurs F(c), pour ¢ voisin des zéros (irrationnels) de ce poly-
nome.

On est ainsi conduit, pour « distinguer » des 1idéaux (ou des
couples d’idéaux conjugués), a utiliser, au lieuw des racines
mintmums (les plus proches de 0), les racines les plus proches
des zéros (irrationnels) du polyndme, et comprises entre ces
zéros (ou rendant F(x) négatif) c’est-a-dire encore les racines
qut donnent @ —F(x) les plus petites valeurs positives. C'est ce
qui va étre fait dans les considérations et les définitions sui-
vantes.
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40. Idéaux semi réduits.

Pour «étendre » la définition des idéaux réduits, on peut
d’abord déduire de la propriété caractéristique, établie ci-dessus
(38), une remarque complémentaire.

Dans un corps réel, un idéal réduit M = (m, 6—c) @, au
moins, deux racines distinctes, qui donnent a F(x) des valeurs
négatives.

Pour I'idéal réduit M, de racine minimum ¢, la somme:
F(c+m)+-F(e—m) = 2[F(¢c)+m?]

n’est pas positive, puisque F(c) est négative et m? au plus égal &
|[F(¢)|. Il en résulte que I'une au moins des valeurs F(c+m), et
F(c—m), qui ne peuvent étre nulles, est négative, en méme temps
que F(¢). Comme ¢-+m et ¢—m sont différents de ¢, la propriété
est établie.

Ceci suggére la définition suivante: DEriniTION. — Dans
un corps quadratique réel, un idéal canonique est semi réduit,
lorsqu’il a, au moins, deux racines distinctes, qui donnent des
valeurs négatives a F(x):

M = (m, 0—c¢,) = (m, 0—c); ¢—¢, =0, (mod. m);

= 3

¢ # ¢y Fle)) <0, Fle,) <O.

En particulier, un idéal réduit est, a fortiori, semi réduit.
L’idéal M', conjugué, d’un idéal M semi réduit, est ausst semi
réduit, car les racines S—c; et S—c,, de I'idéal M’, donnent a
F(x), les mémes valeurs négatives, que les racines ¢; et ¢,, de M.

Pour un idéal semi réduit, il y a ainsi plusieurs (2 ou plus)
termes successifs de la progression arithmétique des racines qui
donnent une valeur négative & ['(x); ils comprennent la racine
minimum c¢; ils sont en nombre fini [contenus entre les zéros
irrationnels, négatif et positif, de F(z)]; et ils ont deux termes
extrémes. Cecl suggere la définition générale suivante.

DEriNiTION. — Dans un corps quadratique réel, on appelle
racine initiale et racine finale, d’un idéal canonique M, la plus
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petite (ou la premiére) et la plus grande (ou la derniére) des
racines, 8’1l en existe, qui donnent une valeur négative au poly-
nome fondamental F(zx).

Elles sont caractérisées par I’équivalence de conditions:
Flc) <0 <= {ci initiale <C ¢ < ¢ ﬁnale};
ce qui est équivalent a la proposition contraposée (f'(c) ne pouvant
étre nul):
F(c) >0 < {c < ¢ initiale, ou ¢ > ¢, finale }

Les racines initiale et finale de 'idéal M’, conjugué d’un idéal M,

sont respectivement les racines conjuguées:
¢ = S—¢;, c} = S—c¢,,

des racines finale et initiale de M.

Pour un idéal semi réduit, les racines initiale et finale existent
et sont distinctes. En outre le nombre entier (2c—J5) est

positif, pour la racine finale: 2¢,—S§ > 0;

négatif, pour la racine initiale:  2¢,—5 < 0;
(il n’est pas nul).

La différence c,—c; est positive et multiple de m, en sorte que
c;—m > ¢; et ¢;4+m < ¢, donnent des valeurs négatives a F(x). Il en
est de méme des racines conjuguées:

F(S—c,—m]) = F(c;—m) < 0;  F(S—[¢;+m]) = F(c;+m) < 0.

Done S—c,+m et S—c,—m sont, tous deux, inférieurs & c,+m et
supérieurs a c;—m (qui donnent des valeurs positives a F(z)). 1l en
résulte:

S—c,+m < cp4m < 2c,—5 > 0;
S—c,/—m > ¢;4+m < 2¢—S5 <O0.

41. Couple d’idéaux associés semi réduits.

Les idéaux semi réduits se présentent par couples d’idéaux
associés relativement & une racine (26), aussi bien initiale que
finale. Pour les idéaux d’un tel couple on peut en effet donner
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des conditions de semi réduction, qui sont: nécessaires séparé-
ment et suffisantes simultanément.’

THEOREME caractéristique de semi réduction. — Deux
idéaux canoniques M et N, étant associés, relativement a une
racine ¢ qui donne & F(x) une valeur négative:

F(¢) = —mxn; M= (m, 6—c), N =(n, 0—0);
m, n entiers positifs;
pour que un d’eux soit semi réduit, et admette ¢ comme racine

soit initiale, soit finale, il est nécessaire que leurs normes vérifient
l'une des conditions, qui sont équivalentes:

|lm—n| < {2¢—S] ou (m-+n)* <D.

Cette condition est suffisante pour que les deux idéaux soient
simultanément semi réduits.

Pour chaque idéal, la racine est finale ou initiale, suivant que
2¢—S, qui ne peut étre nul, est positif ou négatif.

[équivalence des deux comparaisons résulte du calcul immédiat:

(m—n)? < (2¢—8)? < (m+n)? < 2c—S8)2+4mxn
= (2c—8)>—4F(c) = D.
Pour établir leur nécessité, on calcule les valeurs de F(zx), pour

les racines de M, précédant et suivant immédiatement la racine c.
On obtient aisément les expressions, qui ne peuvent étre nulles:

F(c—m) = m xX[(m—n)—(2c—I)];
Flc+m) = mx[(m—n)4(2¢—S5)].
Pour que M soit semi réduit et que ¢ en soit racine finale, ou
initiale, 1l faut et il suffit que, suivant le cas:
¢ finale:  2¢—S§ > Ov; F(c—m) <0; F(c¢) <0; F(ec+m)>0; .
¢ initiale: 2¢—S8 < 0;  F(e—m)>0; F(c) <0; F(ct+m)<O.
IT est équivalent de dire que les crochets, qui ne peuvent étre nuls,
doivent avoir les mémes signes que leurs seconds termes. Pour cela,

1l est nécessaire et suffisant que la valeur absolue |2c—S| de ces
termes soit supérieure a la valeur absolue |m—n/, des premiers termes.

L’Enseignement mathém., t. VII, fasc. 1. 4
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- Réciproquement si cette condition est remplie, elle I'est & la fois
pour M et N, puisque m—n n’intervient que par sa valeur absolue.
Elle suffit done pour que M et N, associés relativement & la racine c,
soient semi réduits et admettent ¢ comme racine, finale ou initiale
suivant le signe de 2c—S. |

La simultanéité des conditions suffisantes peut encore étre
exprimée sous la forme de Pexistence d’idéaux (en général
différents) associés & un méme i1déal semi réduit:

st un idéal M est semi réduit, les idéauxr N; et N,, associés
a M, relativement a ses racines c; initiale et ¢, finale:

M = (m, 6”“‘0;’); F(c;) = —mXng; N;, = (n;, 0—c));
= (m, O—c;); F(c;) = —mXn;; Np= (ng, 0—c);

sont semi réduits et c;, ¢, en sont, respectivement, les racines
mitiale pour N, finale pour N,.

Sauf précision contraire, on utilisera, de préférence, les couples
d’tdéaux associés, relativement a leur racine finale (en sous enten-
dant I'indication de cette racine), donc pour une valeur positive
de 2¢c—S, et, par suite pour une valeur non négative de c.

Tout idéal réduit est, ainsi qu’il a été dit (40), a fortiori
semi réduit. La réciproque n’est pas vraie, on peut seulement
affirmer que

dans tout couple d’'tdéaux semi réduils, associés, relativement
& une racine c¢ (finale ou initiale):

M= (m, 6—c), N =(n, 6—c); m < n;

N

le premier, au moins, M (de norme au plus égale a celle du second)
est réduit.

La norme m, de l'idéal considéré a un carré au plus égal a
|F(c)| = mXn. On détermine la racine minimum ¢, de cet idéal M;
la valeur F(c) est aussi négative et de valeur absolue maximum (38).

Donc:
F(e)| < |[F(0)|;

m? <

M vérifie bien la condition de réduction (393).
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42. Construction des idéaux semi réduits.

Pour obtenir tous les idéaux semi réduits d’un corps, il
suffit de construire les couples, ou les produits, d'idéaux associés
relativement & leur ractne finale.

On utilise le tableau des valeurs négatives de F(c), pour les
valeurs entiéres de ¢, & partir de 0. Pour chaque valeur |F(c)],
on cherche celles de ses décompositions en produit mXn, de
deux entiers positifs, vérifiant la condition -caractéristique,
|m—n| inférieur a (2¢—S); (ou la condition équivalente (m-+n)?
inférieur a D).

Chaque décomposition donne un des produits chercheés:

(m, 6—c)x(n, 6—c) = (0—c).

Les idéaux ne sont ainsi obtenus qu'une fois, puisque ¢ en est
une racine déterminée (finale). Dans leurs expressions, on peut
évidemment remplacer ¢ par une racine congrue relativement
a la norme.

Pour chaque produit ainsi obtenu, les idéaux respectivement
conjugués, de mémes normes m, n, sont semi réduits, associés relative-
ment a la racine conjuguée ¢’ = S—-¢, qui est leur racine initiale
commune :

|

M = (m, 0'—c) = (m, 0—); N = (n, 0'—c) = (n, 6—")

M'XN = (0/—c¢) = (0—<'); |F()| = |F(c)| = mxn.

Ces 1déaux conjugués sont les mémes que les précédents; mais ils sont
exprimés avec leurs racines initiales et leur répartition en produits,
ou en couples, est différente de la répartition précédente.

ExewpLES. — Le tableau XXII donne des exemples de calcul, &
la fois de couples d’idéaux conjugués réduits, et de produits d’idéaux
semi réduits assoctés a leur racine finale. Pour faciliter les compa-
raisons, les idéaux ont été exprimés avec leur plus petite racine non
négative.

Dans le corps, de discriminant 145, la majorante des racines
minima des 1déaux réduits est r = 3: le carré de (2c—S) devient,
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Tasreav XXII.

Exemples de construction d’idéaux réduits et d’idéaux semi réduits.

F(x) = x2+4+x—36; 1% = 4145 = 5X29 Fx) = x2—58; D = 4232 = 8x29
r = P =
Idéaux Idéaux
c 25 c QSc
- réduits conjugués semi réduits - réduits conjugués semi réduits
0/ 1—36 = —22x 32 0] 0.—58 = —2x29
(1, 6) (1, 0)
(2,0) | (2,0—1) (2,0) = (2,0)
(3,0) | (3,0—2) 1] 2|—57 = —3x19
(4,0) | (4,0—3) (3, 6—1)|(3, 0—2)
(6,0) | (6,06—5) |(6,0)x(6,0) 2| &|—54 = —2x 33
1| 8l—84 — —2x17 (6, 6—2)\(6, 0—4) |(6,0—2) x (9, 6—2)
2] 5 —30=—2X3X5 3| 6|—49 = —72
(5, 0—2) = (5,0—2)|(5, 6—2) x (6, 6—2) (7,0—3) ~ (7, 0—4)|(7, 6—3) x (7, 0—3)
3| 7|—24 = —23%3 4| 8]—h2 = —2X3 X7
(3,0) % (8, 0—3) (6, 6—%) x (7, 0—4)
(4 e__3) ( 6—3) 5/10/—33 = —3 x11
4| 9|—16 = —24 (3,6—2) x (11,6—5)
(2 6) (8 0— ) 6(12|—22 = —2x 11
(4, ) x (4, 0) (2, 0) x (11, 6—6)
5/11|—6 = —2 X3 7114 |—9 = —32
(1, 0) x (6, 6—5) (2, 8) % (9, 6—7)
(2, 06—1) % (3, 6—2) (3, 0—1) x (3, 6—1)
6/ |46 8 |+6
(1, 6—5) ~ (6, ) (3, 6—3) ~ (8, 6—4) (1, 6—7) > (9, 0—2) ~ (6, 6—4) ~ (7, 6—3)
¥ \ V
L6 0—5 t— (2 0—3) b9, 6—7) < (6, 0—2) < (7, 0—4)
(5, 6—2) ~ (6, 0—3) - (4, 0—4) (2, 6——6) - (11, 6—5) - (3, 6—7)
¥ {
e (4, 6—3) b 11, 6—6) < (3, 0—5)
(
(
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pour cette valeur, supérieur & |F(c)|. Il y a 6 couples d’idéaux réduits
conjugués, mais ceux de normes 1 et 5 sont doubles, d’ou seulement
10 idéaux réduits .En outre les idéaux du couple, de racine minimum 0
et de norme 6 sont réfléchis, done congrus; il y a au plus 9 classes.
Ces couples sont inscrits devant la racine minimum (non négative)
de I'un de leurs termes, mais ils sont indiqués avec leur plus petite
racine non négative.

Le tableau a été prolongé, jusqu’a la premiére valeur positive
de F(c); devant chacune de ses valeurs, on a inscrit d’autre part les
produits d’idéaux semi réduits, calculés par les relations:

|F(c)| = mxn; [m—n| < 2c—S; (m, O—c;)X(n, 0—c))

¢; et ¢, sont les plus petites valeurs, non négatives, congrues a c,
relativement aux modules respectifs m et n. Il y a, ainsi, 8 produits
d’idéaux semi réduits, mais pour deux d’entre eux, de racines finales
0 et 4, leurs termes sont égaux, et de normes 6 et 4. Il n’y a donc
que 14 idéaux semi réduits différents, qui comprennent les 10 idéaux
réduits précédents, dont les normes sont en caracteres gras, et en
outre 2 couples d’idéaux conjugués, de normes 6 et 8.

Dans le corps, de discriminant pair 232, la majorante des racines
minima des idéaux réduits est r = 4. Il y a b couples d’idéaux réduits
conjugués, dont deux idéaux doubles, de normes 1 et 2, en tout
8 idéaux réduits différents, dont 2 réfléchis, de norme 7 (au plus
7 classes).

Il y a d’autre part 7 produits d’idéaux associés semi réduvits, dont
2 & termes égaux, de racines finales 3 et 7 et de normes 7 et 3. Il n’y
a donc que 12 idéaux semi réduits différents, qui comprennent les
8 idéaux réduits précédents (dont les normes sont en caractéres gras)
et deux couples d’idéaux conjugués, de normes 9 et 11.

Le tableau XXIII donne, pour les mémes exemples, la corres-
pondance entre les prodvits d’idéaux semi réduits associés a leur
racine finale ¢ (non négative) et les produits conjugués associés a leur
racine initiale S—c (négative). Chacun de ses idéaux est encore
désigné par sa plus petite racine non négative.

On peut résumer comme suit la définition, et la construction,
au moyen du tableau de valeurs, de tout idéal semi réduit, de
son associé (relativement & la racine finale) et de son conjugué.
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TaBrLeau XXIII.

Correspondance des produits conjugués d’idéaux semi réduits associes a
leurs racines finale et initiale.
Fx) = x24+x—36; D — 145 — 529 *
finale (0=2) initiale (0=ei)

0 (6, 0)x (6, 0) —1 (6, 6—5)x (6, 6—5)
2 (5, 6—2)x (6, 6—2) —3 (5, 6—2)x (6, 6—3)
3 (3, 0)x (8, 6—3) —4 (3, 6—2)x (8, 0—4)

(4, 0—3)x (6, 0—3) (4, 0)x (6, 0—2)
A (2, 0)x (8, 0—4) —5 (2, 6—1)x (8, 6—3)

(4, 6)x (4, 6) (4, 6—3)x (4, 6—3)
5 (1, 0)x (6, 6—5) —6 (1, 9)x (6, 6)

(2, 6—1)x (3, 6—2) (2, 9)x (3, 0)

F(x) = x2—58; D = 232 = 8X29
finale (0=2) initiale (0—c)

0 » 0 »
1 » —1 »
2 (6, 0—2)x (9, 0—2) —2 (6, 0—4)x (9, 0—7)
3 (7, 6—3)x (7, 0—3) —3 | (7, 0—4&)x (7, 6—4&)
A (6, 0—=4&)x (7, 0—4&) —4 (6, 0—2)x (7, 6—3)
5 (3, 6—2)x (11, 6—5) —5 (3, 6—1)x (11, 0—6)
6 (2, 0)x (11, 6—6) —6 (2, 6—2)x (11, 6—5)
7 (1, 0)x(9, 6—7) 7 (1, 0)% (9, 6—2)

(3, 6—1)x(3, 6—1) (3, 6—2)%x (3, 6—2)
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Un idéal (canonique) semi réduit M, de racine finale c, est
caractérisé par:

M = (m, 0—c) = (m, 6—c¢); ¢ =¢, (mod. m);
0<2—S; F(c) =—mXn; |m—n|<2c—S[ou (m+n)*<D]

Son idéal associé N (relativement & sa racine finale c), qui
est aussi semi rédait, est:

N = (n, 6—c) = (n, 0—c¢y); ¢, = ¢, (mod.n).

Son idéal conjugué M’, qui est aussi semi réduit, de méme
norme et de racine finale ¢’, est:

M — (m, G_C’); ¢ = S—C, (IIlOd. ”l);
F(¢') < 0 < F(c'+m);

on peut évidemment remplacer la racine finale ¢’ par tout
entier ¢;, congru & ¢’ (ou & S—c), mod. m.

43. Idéaux semi réduits remarquables.

Par analogie avec la notion des idéaux réduits remarquables
dans un corps imaginaire (29), on peut donner les définitions
sulvantes.

DEriNITIONS. — Dans un corps quadratique réel, parmeu les
idéaux semi réduits (42), on peut remarquer, ou appeler remar-
quables :

1. un idéal qui est double (7) et qui est ainsi semi réduit
double; il est égal & son conjugué.

2. un idéal qui est réfléchi, ou égal & son associé relativement
a sa racine finale et qui est ainsi semi réduit réfléchi (puisque

la différence des normes des idéaux associés qui est nulle est
inférieure & 2c—3S, qui ne l'est pas).

TutoriME d'existence d’un idéal semi réduit double. —
Pour qu’un idéal soit semi réduit double, il faut et il suffit que

sa norme m soit un diviseur du discriminant D et vérifie les compa-
raisons: | |
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1. Si D est impair, ou si D = 4d, d timpair et m pair: m? < D.
2. S1 D = 4d et m diviseur de d: m* < d = D:4.

Comme D ne peut avoir d’autre facteur carré que 4 (éven-
tuellement), m? ne peut étre égal, ni & D, ni ad = D:4 (iln’y
a pas de corps réel, de discriminant égal a 4).

Pour qu’un idéal canonique soit double (7), il faut et il suffit que
sa norme divise le discriminant; c¢’est la conséquence de I'étude de
la congruence fondamentale (6). La coundition supplémentaire de
semi réduction résulte de I’examen des devx cas.

Dans le premier cas, m ne divisant pas D:4, on utilise Pexpression
du polynéme:
LF(x) = (20—S8)>—D;

on obtient des zéros conjugués, mod. m:
c= (S+m):2 ¢ = 8§——c=(§—m):2; (¢ = c—m);

qui sont des racines consécutives de I'idéal, de norme m, pour lesquelles
les valeurs du polyndéme sont égales:

4F(c) = 4F(c") = m>—D.

Si m? < D, ces deux valeurs sont négatives, ¢’est la propriété
caractéristique de semi réduction (40) de I'idéal, de norme m et de
racines ¢ ou ¢'.

Si m? > D, les deux racines c et ¢’ et tous les autres termes de la
progression:

c¢’—hm; c¢+rm; A entier positif

donnent a F(z) des valeurs positives; 'idéal ne peut étre réduit.
Dans le deuxiéme cas, on utilise expression du polynome:
F(z) = 2>—d; D = 4d.

m étant un diviseur de d, les entiers —m, 0, +m sont des racines
consécutives de 'idéal double, de norme m.
Si m? < d, les valeurs:

F(é—m) = F(+m) = mz%d,

sont négatives, de méme que F(0) = —d; I'idéal est semi réduit.
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Si m? > d, la valeur F(0) = —d est encore négative, mais toutes
les autres valeurs F(am), pour tout entier A non nul, sont positives,
il n’existe pas de racines consécutives de I'idéal qui donnent a F'(z)
des valeurs négatives; 1'idéal n’est pas semi réduit.

TurorEME d’existence d’un idéal semi réduit reéfléchi. —
Pour qu’un idéal, de norme m, soit semi réduit réfléchi, il faut
et il suffit que le discriminant D soit égal & la somme des carrés de
deux nombres entiers, dont un égal a 2m:

a impair, si D est impair;

D — a®-bm?
@ am { a pair, si D est multiple de 8.

Il n’y a pas d’idéal semi réduit réfléchi, dans un corps dont le

discriminant est quadruple d’un nombre impair (D = 4d;

d impair).

Ainsi qu’il a été déja vérifié (16), la condition de décomposition
est manifestement nécessaire et suffisante pour que I'idéal:

M= (m, 0—¢); 20—§ =a;

soit réfléchi, relativement a la racine ¢, qui donne & F(x) la valeur
négative —m?.

Il n’y a pas de condition de comparaison: les deux facteurs de la
décomposition de —F(c) étant égaux, leur différence est nulle, donc
inférieure & 2c—S = a, qui ne peut étre nul.

ExempLES. — Dans le corps de discriminant impair 145 = 5x 29
(tableau XXII), les facteurs du discriminant D, de carré au plus égal

a D sont 1 et 5, qui sont les normes des deux idéaux semi réduits
doubles:
1, 0) (35, 6—2).

Aux deux décompositions du discriminant:
145 = R+4x 42, 145 = 121462,
correspondent les idéaux semi réduits réfléchis:
(4, 0—4) =@, 0); (6, 0),

de racines finales respectives 4 et 0.
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Les idéaux conjugués:

également semi réduits, sont réfléchis, mais relativement & leurs
racines tnitiales —5 et —1 (tableau XXTII).

Dans le corps de discriminant pair 232 = 8X29 = 4 x 58
(tableau XXII), la congruence fondamentale, qui a une racine double,
mod. 2, est impossible mod. 4. Les normes des idéaux doubles ne
peuvent étre divisibles par 4 et sont des diviseurs de 58. Les seuls
dont le carré est inférieur a 58 sont 1 et 2, qui sont les normes des
idéaux réduits doubles (1, 0) et (2, 0).

Aux deux décompositions du discriminant:

232 = 62+4x72%; 232 = 14244 x 32

(qui sont composées des mémes termes, mais ou le quadruple du
carré mis en évidence n’est pas le méme) correspondent les idéaux
semi réduits réfléchis:

de racines finales respectives 3 et 7. Les idéaux conjugués sont encore
en évidence dans le tableau XXIII.

L’tdéal unité est, dans tous les cas un idéal semi réduit double,
sa norme 1 est diviseur de D comme de D:4 et son carré est
inférieur & cette valeur. Sa racine finale est le plus grand entier
¢, qui donne & F(x) une valeur négative; son idéal associé est
Pidéal principal (—F(c), 0—c) == (8—c).

Si cet entier ¢ donne a F(x) la. valeur —1, I'idéal associé est
égal & l'idéal unité, qui est alors, a la fois, semi réduit double
et réfléchi.

44. Cycles d’idéaux semi réduits.

On va établir que, dans un corps quadratique réel, les idéaux
semi réduits peuvent étre répartis en (un ou plusieurs) cycles,
d’idéaux congrus entre eux. Par cycle, on entend un systeme
de termes, en nombre fini, ordonnés circulairement.

A cet effet on définit et on justifie la relation d’ordre, puis
la répartition qui en résulte; on vérifie la congruence, ou I'appar-
tenance 4 une méme classe des idéaux d’un cycle. -
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Dans une deuxiéme étape, moins évidente (45 & 47), on
établit que chaque classe d’idéaux d’un corps contient un et
un seul cycle, en sorte que, pour la détermination et le calcul
des classes, les cycles jouent, dans un corps réel, le role rempli
par les idéaux réduits dans un corps imaginaire (30 et 31).

DErFINITIONS. — On appelle suivant, d’un idéal semi réduit
M, 'idéal N’, égal au conjugué de lidéal N, associé & M (rela-
tivement & sa racine finale):

suivant de M = conjugué de [I’associé de M]

On appelle précédent, d’un idéal semi réduit N’, I'ideal M,
égal & Dassocié (relativement & la racine finale) de I'idéal N,
conjugué de N':

précédent de N’ = associé de [le conjugué de N']

Le conjugué et lassocié d’un idéal semi réduit étant aussi
semi réduits, il en est de méme des idéaux précédent et suivant.
En outre leurs constructions sont manifestement déterminées
et réciproques; c’est ce qu’exprime le théoréme suivant.

TutorEME de la réciprocité de la succession. — Tout idéal
semi réduit est le suivant d’'un et un seul idéal semi réduit, qui est
l'idéal précédent;

il est le précédent d'un et un seul idéal semi réduit qui est
lidéal suivant:

précédent du suivant de M = suivant du précédent de
M =M.

Le suivant et le précédent sont déterminés comme le sont le
conjugué et l'associé; leurs constructions sont d’ailleurs évidentes
sur le tableau des valeurs négatives de F(c); pour ¢ entier croissant
a partir de 0. |

Un 1déal semi réduit M étant donné par sa norme m et sa racine
finale ¢, on calcule la norme n, puis la racine finale ¢’, de 1'idéal
suivant N’ par les formules:

n=—F(c)y:m; ¢ = 8—ct+rn;

A étant choisi par la condition que ¢’ soit le dernier terme de la pro-
gression arithmétique, qui figure dans le tableau, c’est-a-dire qui
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donne a F(x) une valeur négative. Ce choix est possible, puisque N’
étant semi1 réduit, il existe dans le tableau, au moins un terme de la
progression (de ses racines).

Inversément un idéal semi réduit N’ étant donné par sa norme n
et sa racine finale ¢’, on calcule la racine finale ¢, puis la norme m,
de I'idéal précédent M par les formules:

c =S—~c+m; m=—F():n;

A étant choisi par la condition que c soit le dernier terme de la pro-
gression arithmétique qui figure dans le tableau. Ce choix est aussi
possible, puisque I'idéal M est semi réduit.

Ces deux constructions et leur détermination prouvent que:

N’ = suivant de M < M = précédent de N'.

THEOREME de répartition en cycles. — Dans un corps qua-
dratique réel, les idéaux semi réduits peuvent étre répartis en
(un ou plusieurs) eycles (ou systemes d’un nombre fini d’1déaux),
tels que: ,

un cycle contient le précédent et le suivant de chacun de ses
idéaux.

Par «répartition », on entend que chaque idéal semi réduit
appartient a un et un seul cycle, de sorte que deux cycles diffé-
rents n’ont pas d’élément commun et que la réunion des cycles
est égale au systéme des idéaux semi réduits.

D’autre part, un cycle ayant un nombre fini £, de termes,
I’appartenance du précédent et du suivant peut étre exprimée
par la possibilité d’affecter, a chaque idéal du cycle, un indice i,
entier défini mod. A, tel que:

suivant de M; = M;,,; précédent de M; = M,_,.

Construction d’un cycle. — Un idéal semi réduit étant choisi arbi-
trairement et affecté de I'indice 0, on construit les suivants successifs,
affectés des indices i, a priori entiers positifs successifs

M, = suivant de My; ... M;,; = suivant de M;;

Ils ne peuvent étre indéfiniment différents, puisque les idéaux semi
réduits sont en nombre fini. On désigne par M, le premier idéal ainsi
construit, qui soit égal a un idéal déja obtenu M;, donc d’indice i,
au plus égal & h. Ce ne peut étre que My; si non M; aurait un précé-
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dent M,_,, & qui serait égal le précédent M,_y, de M,, ce qui serait
contraire & la détermination de A.
Les h idéaux, ainsi construits de M, a M,_, sont différents et:

M.

i

== suivant de M,_, (0 < i <h); et M, suivant de M,_;.

En affectant chaque idéal de l'indice i+AA, (ou i, défini mod. %) ces
deux relations sont équivalentes & la relation unique:

M, = suivant de M;,_;; ¢, i—1, définis mod. A.

La réciprocité de la succession entraine M; = précédent de M, ;.
On a ainsi établi appartenance de tout idéal semi réduit a un
cycle et ordonnance des idéaux d’un cycle.

Répartition. — La méme construction faite en partant d’un idéal
quelconque M, du cycle, désigné par P, redonne évidemment les
mémes 1déaux, dans la méme ordonnance circulaire, ou, plus préci-
sément avec la correspondance

P,=M,.;; (¢, a, at1, définis mod. h).

La propriété est évidente par récurrence sur i: P, ., et M, ;. étant
respectivement les suivants de P; et M, ;. Cette remarque montre
que deux cyeles qui ont un élément commun sont égaux (propriété
de répartition). ‘

Il peut se faire qu’'un cycle ne contienne qu'un seul idéal, ou que
h = 1. Pour cela il faut et il suffit que I’idéal M, choisi pour ’engendrer
soit égal a4 son suivant et & son précédent, c’est-a-dire encore au
conjugué de son associé et a I’associé de son conjugué. Sa norme m,
et sa racine finale ¢, doivent vérifier:

Fley) = —mg; 2¢co =5, (mod. my).

L’idéal est, & la fois semi1 réduit double et associé. Les égalités vérifiées
par un idéal réfléchi:

D = (2co4+1)*+4m3, ou D:4 = ce+ms; (co, My impairs)

jointes a celles de I'idéal double, montrent que mg doit diviser D ou
D:4. Cect n’est possible que pour m, = 1, ¢’est-a-dire pour le seul
idéal unité, et dans un corps dont le discriminant a une valeur de la
forme:

(2¢4+1)2+4, ou 4.(c2+1), ¢ entier impair.
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C’est le cas déja signalé ci-dessus (43); alors:
Flc)y=—-—1 e M=(1, 6—c).

ExEmMPLES. — D _ 13; F(x) = 22+2—3; M = (1, 6—1).
D =173; F(x) = 224+2—43; M = (1, 0—6).
D = 104; F(z) = 22—26; M = (1, 6—5).

THEOREME de congruence. — Tous les idéaux (semi réduits)
d’un cycle sont congrus entre eux. La congruence d’un idéal M,
et de son suivant M;,, définis respectivement par leurs normes
m;, m;+, et leurs racines finales ¢;, ¢;,, peut étre explicitée par
Pégalité:

(M) XM; = (0—c) XM ;; ou M; = ([0—c;]:m; 1) XMy,

On peut considérer que les parenthéses représentent soit des
éléments du corps, soit les idéaux principaux qui ont ces éléments
pour bases respectives.

On a indiqué que deux idéaux associés, M, N, relativement a une
racine ¢, appartiennent & des classes inverses, ou conjuguées (24),
puisque leur produit M N est égal & un idéal principal (0—c). Le
conjugué N, de 'un d’eux N, appartient donc a la classe définie par
Pautre M, ou lui est congru. On peut d’ailleurs le vérifier directement
par la suite d’égalités (o n est la norme de N):

() XM = (N'XN) XM = MxN)xN" = (6—c) xN'.

[’égalité des termes extrémes est celle qui a été indiquée entre un
idéal et son suivant, dans un cycle.

ExemprLes. — On a complété le tableau XXII en indiquant la
répartition en cycles, des idéaux semi réduits, désignés par leurs
racines finales et séparés par des fleches qui indiquent le passage
d’un idéal a son suivant.

Dans le corps de discriminant 145, i1 y a 4 cycles, I’'un contient
I’idéal unité (de racine finale 5) et deux autres idéaux (conjugués)
de norme 6 qui, étant congrus a (1), sont aussi principaux [c’est
d’ailleurs ce que montre la décomposition de F(c) = —1x6]. Un
autre cycle de 5 idéaux comprend un idéal double, de norme 5 et un
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idéal réfléchi, de norme 4; les idéaux de ce cycle appartiennent par
suite & une méme classe double. Enfin deux autres cycles, de chacun
3 jdéaux ne comprennent pas d’idéaux remarquables, leurs 1déaux
sont respectivement conjugués (de normes 3, 8, 2) dans chaque cycle,
mais dans un ordre différent. Ces cycles appartiennent par suite &
deux classes conjuguées; ou inverses, ou dont le produit est égal a la
classe principale.

TABLEAU XXIV
C |-F©)|
0] 36 | 4
Al 34|

21300 ...
3124 .
4

| Y
! |2
56

|
]
|
1
Normes| 1 4

Dans le corps de discriminant 232, il y a deux cycles. L’un contient
I'idéal unité (de racine finale 7) et 6 autres idéaux (deux a deux
conjugués) qui sont par suite principaux. Cette qualité est d’ailleurs
mise en évidence par les décompositions successives des valeurs:

F1) = —1x9= (9, 6—7) ~ (1) et (9, 0—2) ~ 1;
F(2) = —9x6 = (6, 6—2) ~ (1) et (6, 0—4) ~ 1;
F(4) = —6x7 = (7, 0—4) ~ (1) et (7, 0—3) ~ 1.

[autre cycle de 5 idéaux contient un idéal double, de norme 2, un
idéal réfléchi, de norme 3, son conjugué et deux idéaux conjugués de

norme 11. Les idéaux de ce cycle appartiennent donc & une classe
double.

Le schéma XXIV illustre la construction des cycles; ils. sont
représentés par des lignes polygonales fermées: & un idéal correspond
un sommet, dont I'abscisse est la norme et dont I’ordonnée est la
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racine finale. Les cotés orientés de la ligne indiquent les passages
d’un idéal & son suivant. (Pour la clarté des figures, on a consacré
deux graphiques, chacun a deux cycles.)

Un idéal double, qui est le suivant d’un idéal, de méme racine
finale, est représenté par l'extrémité d’un coté, parallele & 'axe des
normes. Un idéal réfléchi, qui a la méme norme que son suivant, est
représenté par l'origine d’un coté, parallele & I'axe des racines. On
peut encore remarquer que les idéaux suivant et précédent d’un
idéal double ont des normes égales; les sommets voisins (précédent
et suivant) du sommet représentatif sont sur une méme parallele a
laxe des racines.

45. Multiplicateurs d’un cycle d’idéaux semi réduits.

On peut exprimer les relations de congruence entre les
idéaux d'un cycle, en utilisant une suite d’éléments du corps,
dont les termes se reproduisent en progressions géométriques.

DeriniTioN. — Relativement a un cycle d’idéaux semi
réduits:
M.

1

= (m;, 0 —c;); 1, mod. h;

on appelle multiplicateurs une suite, doublement illimitée,
d’éléments o, du corps, vérifiant la relation de récurrence:

(0—c,) Xp; = Mm;+1 Xp@iv1; L entier quelconque;

dont les coefficients sont, avec une transposition, ceux de la
relation de récurrence entre les idéaux du cycle.
On convient, en outre, de prendre p, = 1, ce qui revient a
distinguer, plus spécialement 'idéal M,, affecté de I'indice nul
guer, p p 0 & ;
dans le cycle.

De cette construction, on déduit ’expression des multipli-
cateurs au moyen de 'un d’entre eux (notamment de pg):
ors s = @r X[II(0—c;— )] : [IIm;]; vder+1ar+i;

A entier positif.
or— 2 = pp X[IImyy 1] : [T(0—c,)]; vder—rar—I; 1T pOSIU

En particulier, on obtient o, et p_;, en prenant r nul et p, = 1.
On aurait pu, plus généralement, choisir arbitrairement la valeur
d’un des multiplicateurs p,, toutefois égale & un élément du corps.
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La périodicité des coefficients 6—c; et m,; (¢ défini mod. A)
entraine une répartition en % progressions géométriques des
multiplicateurs p;; (ou une périodicité de multiplication):

TutoriME de la périodicité de multiplication. — Pour des
indices en progression arithmétique, de raison h (nombre d’élé-
ments du cycle), les multiplicateurs forment une progression
géométrique, dont la raison est un élément w, du corps:

oragn = pr X" @ =[I(6—¢;)]:[1Im;]; j de 0 & h—1;
w entier quelconque. |

En remplagant A par k, dans I'expression des multiplicateurs, au
moyen de p,, on obtient:

eren = prX@; o = [H(0—c;_)]:[IIm;]; vder+1ar+n.

Mais, en raison de la périodicité de c; et de m;, les deux produits
I1(0—c;), et IIm; ont des valeurs déterminées, quand ; prend &
valeurs entieres successives quelconques, ce qui est le cas pour les
deux termes du quotient précédent; sa valeur o est donc indépen-
dante de r et notamment est égale a lexpression de I’énoncé du
théoreme. ,

L’expression de g, ,;, s’en déduit immédiatement, par récurrence
sur @ (positif ou négatif).

La relation entre multiplicateurs et idéaux du cycle est
alors exprimée par I'égalité:

le produit p; xM;, ou (p;) XM;, de chaque idéal M;, du cycle
par le multiplicateur p;, de méme indice (défini, mod. ), ou
par P'idéal principal (p;) qui a ce multiplicateur pour base, est
égal a Uidéal My d’indice nul (on a convenu g, = 1):

e;XM; ou (p) XM; =M,

Il est équivalent de dire que.lidéal (p;) x M, est un idéal invariant
dont une expression est notamment (1) x M,. On peut vérifier d’abord
cette invariance lorsque ¢ est remplacé par (1. Elle résulte du rappro-
chement des deux relations de récurrence, entre les idéaux et entre

L’Enseignement mathém., t. VII, fasc. 1. 5
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les multiplicateurs, qu’on peut remplacer par les idéaux principaux
qui les ont pour bases:

(M) XM; = (0—c;) XM, 15 () X (0—c¢;) = (p;41) X (M;44):

en les multipliant membre & membre, puis en divisant par le produit
des idéaux principaux (m;,,) X (6—c;), qui n’est pas nul, on obtient:

(e) XM; = (p;41) XM, ;.

La relation s’étend au remplacement de ¢ par ¢+, par récurrence
sur A entier quelconque.

Si p, (au lieu de p,) était choisi égal & un élément v du corps, la
valeur commune des idéaux (p;) XM, serait (y) xM,.

On déduit encore de cette propriété que les produits d’un
1déal M; par tous les multiplicateurs, d’indice 14k, sont égaux;
notamment:

My = (o) XM, = () XM,

TueorEME des diviseurs de I'unité (I). — Les puissances et
leurs opposés, + w*, de lélément  construit au moyen des

idéaux (m;, 0—c;), semi réduits d’un cycle:

o = [II{8—c¢;)]:[1Im;]; jde O ah—1; Aentier;
sont des diviseurs de I'unité du corps (3).

[’égalité de M, et de son produit par I'idéal principal (w?), exige
que cet idéal soit égal a I'idéal unité (14) et par suite que sa base w*,
et 'opposé —w* soient des diviseurs de I'unité du corps (11).

On montre ci-dessous que, réciproquement, tous les diviseurs
de I'unité du corps sont obtenus ainsi; il en résulte notamment
que les valeurs de 4 w, sont les mémes pour chacun des cycles
d’idéaux semi réduits, (48).

ExempLEs. — Dans le corps de discriminant 145 (tableau XXII),
les idéaux semi réduits, du cycle engendré par 'idéal unité peuvent
étre affectés des indices (¢, mod. 3):

les racines étant, bien entendu finales. Les multiplicateurs sont:

oo=1; p; = (6—5):6; o, =p;X(0:6) = (0—5)x 0:36 = (—0+6):6
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Les autres multiplicateurs sont des produits de ceux 14 par des puis-
sances de w = pg, qui est égal a:

® = pg = pg X (0—5):1 = (—0+46)x (6—5):6 = 20—11.

On vérifie aisément que w et, par suite ses puissances et leurs opposées
sont des diviseurs de Punité; il suffit de calculer la norme de w:

No) = oxXe = (20—11)x (20'—11) = —4x 364224121 = —1.
Pour le cycle de 5 1déaux:
MO = (9, 6—2), Ml = (6, 0—3), M2 = (4, 6—4‘)7
M3 — (47 6_3)7 M4 — (67 6—2),
les multiplicateurs sont:
Co = 17 1= (6—2) :67 P2 = (_—6+7) . 47 Ps = (36—46) . 47
0, = (—70439):6; w = p; = 20—11.

On retrouve la valeur précédente.

Dans le cas d’un cycle d’un seul idéal (1, 6—c), les multiplica-
teurs sont les puissances de:

w = p; = (0—);
cet élément est d’ailleurs manifestement un diviseur de 'unité:

(0—c) X (6'—c) = F(c) = —1.

46. Suite de bases d’un idéal semi réduit.

A un cycle d’idéaux semi réduits M; auquel est associé une
suite de multiplicateurs p;, on peut aussl associer une suite de
bases, arithmétiques libres de I'idéal M, (qui peut étre choisi

arbitrairement dans le cycle, ou méme étre remplacé par un
idéal (v) xM,).

TuEOREME de la suite des bases. — Dans l'idéal M, d’un
cycle d'idéaux semi réduits M; = (m;, 6—c;), on peut construire

une suite, doublement illimitée, d’éléments «; (entiers de M,),
par les relations:

a; = m;Xg; = (0—c;_q) Xpi—q;

Rpy = Miry X4y = (0—c;) Xpy;
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Tout couple d’éléments successifs o;, a;., constitue une base
arithmétique libre de M,

Les p; sont les multiplicateurs définis ci-dessus par la relation de
récurrence, de coefficients m;, 0—c;; il en résulte I’égalité des deux
expressions données pour chaque élément.

D’autre part le couple d’éléments m;, 6—c; est la base canonique,
donc arithmétique libre, de I'idéal M;; son produit par p; est donc
encore une base arithmétique libre de l'idéal congru (p;) xM;, qui
est précisément M, (24). Notamment pour i = 0, on trouve la base
canonique de My: m, et O0—c,.

On peut calculer directement les «, par la relation de récur-
rence, déduite de leur définition:

g = my; My Xy = (0—c¢;) X,

Ils ont la méme périodicité de multiplication que les multipli-
cateurs p;; I'expression de « résulte immédiatement de leur
récurrence:

ar.*.uh — OC,.XQ)”; W = [H(e“—cl)]:[IIWLl]; I/ de O él h“—‘i.

On vérifie ci-dessous (48) par un calcul direct, que les o,
sont bien des entiers de I'idéal et on indique une loi de récurrence
linéaire.

ExempreEs. — Corps de discriminant 145 (tableau XXII) et
cycle engendré par I'idéal unité M, = (1, 6—5):

—1 b 6 o_q = 1:[(0—5):6] = —0'+5 = 0+6;
0 5 1 o, =1
1 0 6 oy = 1x[(0—bH):1] = 6—5;

oy X[0:6] = [(6—5)0]:6 = —6+6

bO
3
N

5
]

3 5 1 oy = og X[(0—H):6] = (—0+6)x (6—5H):6
= 20—11 = o.
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Dans le cas d’un cycle d’un seul idéal (1, 6—c), les multiplica-
teurs p; et les termes des bases «; sont les puissances de 6—c:

c(0—c)"t = —0'4¢, 1, O6—c, (0—0)% ...

On peut caractériser les bases ainsi construites par des compa-
raisons de grandeurs entre leurs éléments et, éventuellement, avec
les éléments de I'idéal, considérés comme des nombres réels. Pour ce
faire il convient de distinguer les deux zéros (irrationnels, mais réels)
de F(z); on convient de désigner par O (lettre non accentuée) celul
qui est positif. On peut alors énoncer une autre condition de semi
réduction.

THEOREME caractéristique de semi réduction. — Pour qu'un
idéal M = (m, 0—c) soit semi réduit, et admette ¢ comme racine
finale, il faut et il suffit que: les nombres qui constituent sa base
vérifient les conditions de comparaison:

0 <(0—c)y:m<1; (0/—c)im < —1.

Les conditions de semi réduction peuvent étre exprimées par le
signe des valeurs de F(x) pour les trois racines successives, encadrant
la racine finale c:

F(e—m) < 0; F(c) < 0; F(c+m) > 0.

11 est équivalent de dire que c—m et ¢ sont compris entre les zéros 6’
et 0 et que c4-m est supérieur & 0 (sans égalités possibles, F(z) n’ayant
pas de zéro rationnel). Cette condition peut étre exprimée par:

0 <e—m<c<b<ctm < (0'—c)<—m<0<(0—c)<m
. (6'——0):m<—1 et 0<<(0—c):m < +1.

De cette condition, on déduit les propriétés suivantes des
multiplicateurs p; et de la suite des termes «; des bases de M,.

Les multiplicateurs p; sont positifs et tendent vers 0, lorsque
: tend vers -+ oo et vers -4 oo lorsque ¢ tend vers — oco.

Les éléments o; de la suite des bases réduites sont positifs
décroissants, de oo & 0 (pour ¢ de —o0 & + o).

Les conjugués «; de ces éléments sont alternativement positifs
et négatifs; leurs valeurs absolues sont croissantes, de 0 & - oo
(pour ¢ de — o0 & + o).
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Les limites pour ¢ infini des multiplicateurs p; et des éléments «;
résultent de leur appartenance a des progressions géométriques. La
raison «, de ces progressions est le produit de quotients (6—c;): m;
(t de 0 & A—1) positifs et inférieurs & 1; elle est done inférieure a 1,
d’ou les limites des termes des progressions.

La croissance des éléments o, et de leurs conjugués o, et la com-
paraison (des signes) des éléments consécutifs, résulte de leur cons-
truction au moyen des bases de M;, qui sont semi réduits:

iyt 0y = [P X (0 —¢)]:[es xmy] = (O0—c))im; < 4,

’

oc,-ﬂ:oc; = [pgx(e’—ci)]:[pQXmi] = (0'—c¢,):m; < —1.

47. Détermination des cycles.

La considération de la suite des bases de M, permet d’établir
que les cycles d’idéaux semi réduits représentent les classes
proprement.

THEOREME de la détermination des cycles. — Dans un corps
réel, chaque classe d’idéaux contient un et un seul cycle d’idéaux
semi réduits.

En définissant les idéaux (canoniques) réduits (20), pour un
corps quadratique quelconque (réel ou imaginaire), il a été établi
que toute classe d’idéaux contient au moins un idéal M, réduit, qui,
pour un corps réel, est, a fortiori, semi réduit (40). La classe ren-
ferme, par suite, le cycle des idéaux réduits M;, obtenus en formant
les suivants successifs de M, puisque ces idéaux sont congrus a M,,.

0» PUISq 0

Pour établir que le cycle ainsi construit est unique, on peut
d’abord démontrer que: |

dans un idéal M, semi réduit, pour qu'une base arithmétique
libre, de deux éléments positifs yv; > v;q, appartienne a la suite
des bases, o; a; 41, associée au cycle d’idéaux semi réduits engendré
par My, il faut et il suffit que: ces termes et leurs conjugués
vérifient les comparaisons:

'Yj+13Yj<1; Y;'+1:Y;'<—‘1;

la premiere résulte de I'ordre adopté pour numéroter les deux
termes.
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La condition est nécessaire puisqu’elle a été vérifiée ci-dessus
pour la suite des bases «;.

Pour démontrer qu’elle est suffisante, il peut étre commode
d’établir d’abord que pour un idéal qui a une base vérifiant ces condi-
tions (méme s’il n’est pas semi réduit):

tout élément non nul &, de cet idéal, dont la valeur absolue n’est
égale ni & v;, ni & v;4q, vérifie lune, au moins, des comparaisons:

€l > ;> vin; 0w [E]> il > vl

Cet élément £ peut étre construit par additions et soustractions

au moyen des termes de la base considérée, de sorte que:

£ = 2y4yvje1; & = ay;4+yvje1; &,y nombres entiers.

Il suffit alors d’examiner les divers cas, dépendant des signes et de
la nullité des entiers z, y:

zy > 0: [E] = |oy;+yy] = eyl +lyyieal > vss

xy < 0: [E'[ = Ixy;-—{—y'y;-HI = ]xY;"i‘l?fY;‘ﬂl > !'Y;'+1|;
y=0 et |g| #1:[5 = |ay;| > v}

r=20 et [yl #1:E = ]?JY;'HI = ,Y;'+1’-

On peut mettre la disjonction ainsi vérifiée sous la forme d’impli-
cations:

€l <vi = [E] > lyjul;

Bl <kl = [ >,
Ceci acquis, on compare, dans M, a la suite des bases o; ;. ,
une base y; y;.; vérifiant la condition indiquée. La suite des «;

décroissant de 4 co & 0,v; est situé dans I'un des intervalles, il existe ,
tel que:

Uy =Y > %y

Ii y a égalité, si non d’aprés la propriété précédente, appliquée
a y; comparée a la base des «, puis & «;,,, comparée & la base des v

Y <o = lYJ‘ > )“;+1l = U1 > Y5

ce qui est contradictoire avec le choix de «;.
On peut alors comparer «;,, &la base v; = «;, Y;j+1; 1l en résulte:

Rjpy < & =7y; = l“;+1' = IY;‘HI'
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La derniére comparaison est une égalité, si non la comparaison de
vj+1 & la base des o entrainerait:

Cir1] = Y41 S % = Y

Yie] <

ce qui est contradictoire avec la définition de la base des +.
L’6galité des valeurs absolues |y ;| = |#;4,| entraine celle des
conjugués vy, = ®;4+q, puisqu’ils sont positifs.

Le théoréme résulte aisément de cette propriété préalable:
si un idéal M = (m, 0—c), semi réduit, de racine finale ¢, est
congru aux idéaux M; d’un cycle et notamment a M,;, dans
lequel est construit une suite de bases o;o;44, 1 existe un
élément p, qui peut étre choisi positif, tel que (p) XM soit égal
a M,. Le couple d’éléements:

Y, = eXm yjy = p X(0—c)

est une base arithmétique libre de M,, qui vérifie les conditions
précédentes et qui par suite est égale & une des bases de la
suite:

eXm = o; = g;Xm; pX(0—c) = a;4; = pi( X 0—c)).

Dans la derniere égalité, la comparaison des coefficients de 6
montre que:

P =eH M =m; C=C<C, M = Mi'

Tout tdéal M, semi réduit, congru auz idéaux d'un cycle d'idéaux
semi réduits est égal a un idéal de ce cycle.

48. Diviseurs de I'unité.

TutorEME des diviseurs de 'unité (II). — Dans un corps
réel, pour chacun des cycles d’idéaux semi réduits, désignés par
leurs racines finales:

M, = (m;, 6—c;); i1deOahr—1;

i

les diviseurs de I'unité sont égaux aux produits par -1 et —1 des
puissances »”, (d’exposants A entiers quelconques) de:

o = [II(0—c¢,)]:[lIm;]; ¢ de 0 a ~—1.

Cette expression a la méme valeur pour tous les cycles du corps.
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On a déja indiqué (Théoréme I des diviseurs de I'unité, 45) que
les éléments +w? et —w* sont des diviseurs de 'unité. Réciproque-
ment, les opposés de diviseurs de I'unité étant encore des diviseurs
de 'unité, on péut se borner a chercher ceux qui sont positifs.

On considére un cycle, engendré par un idéal semi réduvit
M, = (my, 6—cy), dans lequel on a construit une suite de bases de
termes positifs «;. Le produit nxM,, de cet idéal par un diviseur
positif v, de I'unité, lui reste égal et les éléments positifs n X m, et
7 X (B—c¢,y) en constituent une base arithmétique libre. Comme cette
base vérifie les relations:

[ % (0—cg)]: (n X mg) = (B—co):my < 1
[ X (0"—co)]: (0" X mg) = (8'—cy):my < —1;
elle est égale & 'une des bases de la suite, de sorte que:
DX (0—Co) = o4y = ;X (0—¢y);
ce qui entraine:
N =g, C=2¢ = 1=»M; 1n=wr" A\ entier.

La démonstration montre notamment que la valeur de U'expression
qui donne o est indépendante du cycle utilisé. On peut obtenir cette
valeur par un calcul de multiplication, dans le corps quadratique (en
utilisant la relation 02 = —S0-+N), notamment en cherchant de
proche en proche les valeurs o;;; = ;X (0—¢;): m,.

On peut aussi utiliser une relation linéaire qui existe entre
trois termes successifs de la suite des «;:

Fity = %i—1— i X0 ¢ = (¢itci-1—S):m,.

Cette égalité résulte de la construction des idéaux successifs du
cycle: l'idéal M; = (m;, 0—c;) est le conjugué de 'associé de son
précédent M;_;, de sorte que:

¢itci-y =S, (mod. my); ou ¢ = S—C;—1+¢; X my;

q; étant le nombre entier positif, indiqué plus haut.
En transportant cette valeur dans la relation de récurrence mul-
tiplicative des «;, on obtient:

%41 = [(0—c):m X0y = [(0—S4-c;_y):m;] Xo—q; X ot
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Mais le premier terme du second membre est égal & o;_,, on le vérifie
en exprimant o;, par la relation de récurrence; le terme devient:

[(—0"4¢;—): m I X[(O—c;—q) s my (] X ot; 4
et le facteur de o;_; est égal a:
—[(0"—c;—1) X (0—¢;—)]: (myXm;—q) = [—F(c;—))]: (myXm;—y) = 1

la derniére égalité résulte de I’association de M;_; et du conjugué
de M,.

La relation de récurrence linéaire peut étre mise sous forme
matricielle. Les bases, disposées en colonnes (comme il a été
fait ci-dessus; 9), vérifient ’égalité:

Xit+1 —q; 1 o

; q; = (¢j—y+c;—S):m,.

I
X

&; 1 0 xi—1q

Cecl appliqué a 2 bases consécutives (par exemple aux £ pre-
mieres) donne une propriété de :

o X oy O+ 1 —q; 1 %y

o X o ol 1 0 oo

|

les matrices sont prises de ¢ =1 a ¢t = h, mais disposées de
droite @ gauche. Toutes les matrices multipliées ayant un déter-
minant égal & —1, la matrice produit a un déterminant égal
a —1 ou a 41, suivant que k&, nombre d’idéaux du cycle, est
impair, ou pair. Ce produit est donc de la forme:

g, 1 U v
11 — L UXU—VXV =¢e(4+1 ou —1).
1 0 i

La relation obtenue entraine:

o X oty uv oy U—o V |
== X = déterminant =0
o X o VU | V' U—o
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I1 en résulte que le diviseur de I'unité o vérifie 'équation du
second degré:

0> —(U+U') Xw-+e = 0;

et la norme o X’ est égale & €; sa valeur absolue est 1 et son
signe est — ou -, suivant que h est impair ou pair.

Il en résulte que tous les cycles, d’'un méme corps quadra-
tique, ont la méme parité du nombre de leurs idéauz.

Les matrices multipliées étant symétriques (égales respectivement
& leurs transposées), la transposée de leur produit est égale a leur
produit, mais disposé dans I'ordre inverse:

—q; 1 u v
I1 == ;1del ah.
1 0 Vv U

(On obtiendrait d’ailleurs ces produits en disposant les termes des
bases en lignes.) L’équation en  reste la méme.

ExempPLES. — On a indiqué ci-dessus (46) le calcul de » dans le
corps de discriminant 145, en utilisant la relation de récurrence
(multiplicative) entre deux o; successifs. L’emploi de la récurrence
linéaire conduit aux calculs suivants (pour le méme cycle):

M, = (1,0—5) | M; = (6,0—0) |M,=(6,6—5) |M,= (1, 06—5)
i = « cv oo o |(BF0+1):6 =1 (04+54+1):6 =1 | (b+5+1):1 =11
oy == 1 oy =60—D| ay = atg—1 X0y | o3 = ot;—1 X,
—0-+6 20—11 = o

Le produit des matrices (i de 1 & 3, de gauche & droite) est:

—1 1 —1 1 —11 1 —23 2

10 1 0 10 12 —1
Péquation vérifiée par w est:
w?+240—1 = 0;
ce quon peut constater directement.

Le tableau XXV donne encore un exemple de calculs des idéaux
seml réduits dans le corps de discriminant 377. Il y a 2 cycles de 4 et
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de 6 idéaux. Il indique, pour le premier de ces cycles, le calcul des «;
et du diviseur de 'unité w, par récurrence multiplicative et par récur-
rence linéaire, ainsi que le produit des substitutions linéaires (ou des
matrices unimodulaires).

La norme de « est 1, puisque les nombres d’idéaux de chaque
cycle sont pairs.

TaBLEAU XXV.

Exemples de calculs de cycles et de diviseurs de ’'unité.
Flx) = x*+2—9%4; D = 377 = 13x29

c ] ECS —F(c) Idéaux semi réduits
0 1 | 94 = 2 X &7 C |Fle)
1 3 192 =22x23 4
2 5 | 88 ==23x11| (8, 6—2)x (11, 6—2) 2
3 71 82 =2%x41 3
4 9 | 74 = 2x37 4
5| 11 | 64 = 26 (8, 6—5)x (8, 6—05) 5
6] 13 | 52 = 22x13 | (4, 6—6)x (13, 6—6) 6 |
7115 | 38 = 2x19 7
8 17 | 22 =2x11 | (2, 6—8)x (11, 06—8) 8
- (2, 6—9)x (2, 6—9) 9
9 19 [,I: - 22 ] [} 1 ‘

(1, 0—9)x (&, 6—9) Normes | 4 2 & 8 a4 13

. 1) ¥ ¢ v
(&, 0—9) <« (13, 6—6) (2, 6—9) < (11, 6—8) « (8, 0—2)
Calcul des diviseurs de ’unité.
M,=(1,0—9) | M, = (4, 6—6) |M,= (13,60—6) |M;= (4, 6—9) |M,= (1,06—9)
g, = - (9+6+1):b=4]|(64+5+1):13=1|(6+9+1):b=14|(94+9+1):1 =19
o = 1 oy = (6—9) oy X (6—6) :4 oty X (6—6):13 oy X (0—9) :4
oy = og—L4oy og = o;—1 Xty | otg = aty—4b Xog
—46-+37 50—46 —246-+-221
—4 1 —1 1 —4 1 —19 1 461 -—24
X X X =
1 0 1 0 1 0 1 0, —96 5

0*—466w-+1 = 0
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49. Les quatre types de cycles.

Le numérotage (par indice i, mod. &) des termes d’un cycle
d’idéaux semi réduits permet d’établir aisément qu’il existe
seulement 4 types de cycles. On indique d’abord leurs caracté-
ristiques en les illustrant par des exemples déja cités; la justi-
fication en est explicitée au numéro suivant.

1. Le cycle contient un idéal semi réduit double et un idéal
semi réduit réfléchi. 11 a alors un nombre impair de lermes et
contient leurs conjugués et leurs associés (relativement & la
racine finale).

Pour le corps de discriminant 145 (tableaux XXII et XXIV),
dans le cycle de trois idéaux:

(1, 6—=5) — (6, 0) — (6, 0—5);

le premier est double, le second est réfléchi (F(0) = —62).
De méme dans le cycle de cing idéaux:

le premier idéal est double (5 diviseur du discriminant), le troisiéme
est réfléchi (F(4) = —42).

Dans le corps de discriminant D = 232 (mémes tableaux), un
cycle de 7 termes comprend un idéal double (1, 6—7) et un
idéal réfléchi (7, 6—3). Un autre cycle de 5 termes comprend un
idée]l double (2, 0—6) et un idéal réfléchi (3, 0—7).

Dans ce type de cycles rentrent les cycles d’un seul terme,
constitués par l'idéal unité, lorsqu’il est, & la fois double et
réfléchi, ce qui se présente dans les cas signalés ci-dessus (43
et 44). S1 le corps ne contient que ce seul cycle, il est principal
et 1l présente le caractére trivial signalé ci-dessus (38); c’est le
cas de 7 des corps du tableau XX ; de discriminants:

5,13, 29, 53, 173, 293 et 8.

2. Le cycle contient deux idéaux semt réduits doubles. 11 a
alors un nombre pair de termes et contient aussi leurs conjugués
et leurs associés (relativement & la racine finale).




78 A. CHATELET

Dans le corps de discriminant 377 (tableau XXV), le cycle de
quatre termes contient deux idéaux doubles, de normes 1 et 13,
diviseurs du discriminant. Dans le graphique représentatif, ce sont
les extrémités de cotés paralleles & ’axe des normes.

Un cycle de deux termes est nécessairement de ce type 2, les
deux idéaux qui le constituent sont doubles.

En effet, les deux idéaux doivent étre donnés par des décompo-
sitions:

(6—c) = (m, 6—c)X(n, 6—c), (0—') = (m, 6—c)x(n, 6—c')

et ¢, ¢’ doivent étre conjugués relativement & m et n et congrus suivant
ces mémes nombres qui sont par suite des normes d’idéaux doubles
(donc diviseurs du discriminant).

Un tel cycle peut notamment contenir 1'idéal unité (ce qui
est une condition nécessaire pour qu’il n’y ait pas d’autre cycle
et que le corps soit principal). Il est alors obtenu par la décom-
position de la derniére valeur négative de F(c) = 1 Xm, lorsque
m est diviseur du discriminant.

Cette circonstance se présente notamment dans les corps de dis-
criminants:

2 = 3x7, 77 =Tx11, 437 = 19%23,

signalés ci-dessus (tableau XX) comme corps principaux triviaux et
pour lesquels les décompositions des derniéres valeurs négatives de
F(x) sont, respectivement:

F(l) = —3, F@3) = —17, F(9) = —19.

Cette circonstance se produit encore pour les corps dont le dis-
criminant est de la forme D = 4x(c2+2); ils contiennent un cycle
de deux idéaux de normes 1 et 2, parmi les premiers desquels ceux
de discriminants:

12 = 4.(142), 2 = 4.(4+2), 44 = 4.(942), 152 = 4.(36+2),
332 — 4.(81+2), 908 = 4.(225--2)

n’ont pas d’autres cycles, donc sont principaux. Il n’y a pas de corps
de discriminants 72, 108, 684, 792, donnés par les valeurs de c: 4, 5,
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13, 14. Les corps, de discriminants 204, 264, 408, 492, 584; donnés
par les valeurs de ¢: 7, 8, 10, 11, 12 contiennent d’autres cycles et ne
sont pas principaux.

3. Le cycle contient deux idéaux semi réduits réfléchis. 11 a un
nombre pair de termes et contient leurs conjugués et leurs associés
(relativement a la racine finale).

Dans le corps de discriminant 377 (tableau XXV), le cycle de
six termes contient deux idéaux réduits réfléchis, donnés par les
décompositions

(0—9) = (2, 6—=9)x(2, 6-9); (6-b) = (8, 6—H)x(8, 6—-5);

dans le graphique représentatif, ce sont les origines des ctés paralléles
a I’axe des racines.

Un cycle de ce type doit contenir au moins quatre éléments et ne
peut contenir d’'idéal unité. 11 ne peut en exister dans un corps prin-
cipal.

Le tableau XXVI donne un exemple de corps, de discriminant
205, qui contient deux cycles de quatre termes; 'un de type 2,
Pautre de type 3. |

TasLEau XXVI.
Exemple de calculs de cycles.
F(z) = 2?+2—51; D = 205 = 5X41.

¢ ECS —F(c) Idéaux semi réduits
C [F)
0| 1 |51=23x17
1| 3 |49=72 (7, 6—1)x (7, 6—1) 1149
2| 5| 45=232x5 | (5, 6—2)x(9, 6—2) 2 |45
31 7 |39=3x13 3
)9 |31 .
5011 |21 =38x7 | (3, 6—5)x(7, 6—5) 5|
| (3, 6—6)x (3, 6—6) 69| .
6|13 | 9 =32 .
(1, 6—6)x (9, 6—6) Normes| 1 3 5 7

(1, 6—6) - (9, 6—2) (3, 6—6) - (3, 6—)

4 v 4 ¥
(9, 6—6) < (5, 0—2) (7, 6—5) < (7, 6—1)
Les normes des idéaux remarquables sont en caractéres gras.
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4. Le cycle ne contient pas d’idéaux remarquables, notamment
pas d’idéal unité. Les conjugués de ses idéaux forment un cycle
différent, dont les idéaux sont respectivement associés a ceux
du précédent. Les deux cycles peuvent étre qualifiés conjugués
et assoctés; 1ls définissent deux classes d’idéaux différentes
conjuguées et inverses.

Les cycles des trois premiers types (précédents) sont con-
jugués et associés a eux-mémes; ils définissent des classes doubles.

Le corps de discriminant 145 (tableaux XXII et XXIV) contient,
en plus de deux cycles de type 1, deux cycles conjugués (et associés),
de chacun trois idéaux:

(3, 0—3) = (8, 0—4) - (2, 6—5H); (3, 6—DH) — (2, 6—4) — (8, 6—3).

Les conjugués des idéaux, d’indices 0, 1, 2, du premier cycle sont
respectivement les idéaux d’indices 0, 2, 1, du second cycle (somme
des indices congrue a 0, mod. 3); leurs associés sont respectivement,
les idéaux d’indices 2, 1, O (somme des indices congrue a —1, mod. 3).
Les sens de circulation sur les deux schémas sont opposés.

50. Justification des types.

Pour établir que les quatres types de cycles sont les seuls
possibles, on va étudier, comme 1l a été dit, le numérotage des
éléments des cycles; en comparant deux cycles, non nécessaire-
ment différents, dont chacun contient les associés et par suite
aussi les conjugués (dans un ordre différent) des termes de
Pautre.

TutoriME de la correspondance des indices. — Dans un
corps réel, pour que deux cycles (éventuellement égaux), d’idéaux
semi réduits, M; et N;, contiennent chacun les idéaux associés, et,
par suite aussi, conjugués, des idéaux de Uautre, il suffit (et il
faut évidemment) :

qu’tl existe un terme M, de l'un, et un terme N,, de I'autre,
qui sotent cOnjugueés ;

ou qu’il existe un terme M, et un terme N, _, qut sotent associes,
relativement a leur racine {inale, commune.
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Chacune des deux conditions entraine Pautre; les deux cycles
ont alors le méme nombre % de termes et les indices des 1déaux
qui se correspondent par conjugaison, ou par association, ont
une somme constante, mod. A:

M; et N; conjugués < 1 -+] = p+g, (mod. A),
M; et N; associées < i'+j =p+g—1, (mod. ).
Pour la premiére condition, on vérifie que:

M, et N, conjugués = M, ; et N,_; conjugués,

ce qui résulte des égalités de définition de la succession dans les cycles
considérés (44), qui peuvent étre mis sous les formes suivantes, en
tenant compte de la réciprocité de la conjugaison et de ’association

(associé de N,_;) = (conjugué de N)) =M,
= N,_; = (associé de M) = (conjugué de M. ,).

On en déduit, par récurrence sur les indices, A étant a priori, indéfini,

M, et N, conjugués;  [(p+N)-+(¢—2) = p+ql.
En outre si & est le nombre d’idéaux M;, leur périodicité entraine:

Mp+h:M = Nq—h:N

p q°

Le nombre d’idéaux N; est aussi % et I'égalité des sommes d’indices
est une congruence, mod. A.

D’autre part 1’égalité de succession entraine:
associé de N,_, ; = (conjugué de N,_;) = M, ;;

de sorte que la relation entre les indices ¢" et j* d’idéaux respective-
ment associés est bien:

(] = (PN Hg—2—1) = ptg—1, (mod. ).

La démonstration est corrélative et la propriété reste valable
pour la deuxiéme condition (existence d’un couple d’idéaux associés).

Cette propriété acquise, on obtient les trois premiers types
de cycles, en considérant un cycle (ou deux cycles égaux) qui
renferme les conjugués. et par suite les associés de chacun de ses
termes. Il suffit, pour cela, de constater qu’il renferme :

L’Enseignement mathém., t. VII, fasc. 1. 6
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le conjugué d’un de ses idéaux (éventuellement double);
ou l'associé d’un de ses idéaux (éventuellement réfléchi).

1. S1 un tel cycle a un nombre tmpair d’idéaux, il contient
un (et un seul) tdéal double et un (et un seul) idéal réfléchi ; il est
du type 1.

Les 1déaux conjugués et associés étant respectivement définis
par les congruences:

i+ =a; U'4) =a—1, (mod.h);

I'indice x, d’un idéal double et Pindice z’ d’un idéal réfléchi sont
déterminés par les équations congruentielles:

20 = a; 22" = a—1, mod.A.

Comme % est impair (premier avec 2) chacune a une et une seule
solution.

2 et 3. Siun tel cycle a un nombre pair d’idéaux, il contient,
ou bien deux idéaux doubles, ou bien deux idéaux réfléchis ; il est
soit du type 2, soit du type 3.

Comme £ est pair, une seule des équations congruentielles précé-
dentes est possible; celle dont le second membre, @ ou a—1 est un
entier pair. Elle a alors deux solutions de différence 2:2 (mod. A).

Pour 2 = 2, le type 2 est le seul possible (ainsi qu’il a déja été
dit), car si deux idéaux successifs M, et M; du cycle étaient associés,
ils seraient aussi conjugués, puisque:

M, = associé de M, = conjugué de M;.

Les deux idéaux auraient des normes égales et des racines égales,
donc seraient égaux; le cycle n’aurait qu’un seul terme, I'idéal unité.

4. Par contraposition des propriétés précédentes, un cycle
qut ne contient pas didéal semi réduit remarquable, ne peut
contenir de couples, ni d’idéaux conjugués, ni d’1déaux associés;
il n’est pas égal a son cycle conjugué, qui lui est aussi associé, il -
est du type 4. |

Dans la notation indicielle, de deux cycles conjugués, de type 4,
d’ordre A, les indices d’idéaux conjugués ont une somme constante,
qui peut étre choisie arbitrairement (notamment 0, mod. &); les
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indices des idéaux associés ont alors pour somme constante a—1
(notamment —1, mod. %). Ce sont ces constantes 0 et —1 qui ont été
adoptées dans 'exemple des tableaux XXII et XXIV.

La constante de la somme des indices d’idéaux correspondants,
dont, par ailleurs les points correspondants ont méme abscisse, ou
méme ordonnée, explique la différence des sens de parcours sur les
schémas. On peut aussi remarquer que les conjugués d’un idéal et
de son suivant sont un idéal et son précédent.

51. Structure du groupe des classes d’idéaux.

Dans un corps réel, pour établir la table de PyrraGorE (de la
multiplication) des classes d’idéaux, il suffit d’établir celle des
cycles qui les caractérisent, ou les représentent proprement.

Pour multiplier deux cycles, on en choisit des représentants,
qui figurent dans des décompositions (convenables) de valeurs
de la table (éventuellement prolongée). Comme, dans le cas
d’un corps imaginaire, on cherche, au besoin par récurrence, un
idéal semi réduit qui soit congru a ce produit; le cycle auquel
appartient cet idéal est le produit des cycles considérés; ou,
plus exactement, détermine la classe qui est le produit des
classes représentées par les oycles multipliés.

Dans un corps qui n’a qu'un petit nombre de cycles (ce qu1
est le cas pour des discriminants relativement petits), la déter-
mination de la structure du groupe des classes (ou des cycles)
est, en général aisée; elle peut étre facilitée par la considération
du nombre de cycles, qui est 'ordre du groupe. Si cet ordre est
un nombre premier le groupe est cyclique et chacun de ses
termes, différent de I'unité (ou de la classe principale) en est un
générateur. Si Pordre est un produit de nombres premiers diffé-
rents, le groupe est encore cyclique, mais il y a lieu de chercher
ses générateurs; ce sont les termes dont l'ordre est égal a celui
du groupe. Dans le cas général, la comparaison de I'ordre de
certains termes a I'ordre du groupe peut permettre d’affirmer
que le groupe est, ou n’est pas cyclique.

Le tableau XXVII donne un exemple de recherche de la structure
du groupe des classes, pour un corps de discriminant assez élevé:
62 501; dont le polynéme fondamental est F(x) = 22++2—15 625.




84

F(z) = x*+2—15 625;

—F(c)

15625 = §X 26X 125
623 = 17x 919
619
613 = 13x 1201
605 = 5x 3121

15595 = 5% 3119
583
569
553 = 103 %151
535 = §xX 13x239
15515 = 5 X 29x 107

493
469 = 31 X499
443
415 = 5x 3083

15385 = §X17x181|

353 = 13X 1181

319

283 = 17X29%x31

245 = 5 X 3049
15205 = 5 X 3041

163 = 59X 257

119 = 13X 1163

073

025 = 52X 601
14975 = 52X 599

923

869

813

755 = §X 13 %227
14 695 = 5Xx 2939

633

569 = 17 X 857

503

435 = 5 X 2885

1252; -
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TasLeau XXVII.

2
T
G,

D = 62 501;

r = 56.

—F(c)

35
36
37
38
.39
40
41
42
43
&4
45
46
47
48
49
50
51
52
53
5%
55

57
58
59
60
61
62
63
64
65
66
67
68

69

56

14 365 = & X 17X 132
293
219 = 59 X 241
143
065 = 5X29x97

13 985 = 5x 2797
903
819 = 131063
733 = 31 X 443
645 = 5X 2729
13 555 = 5 X 2711
463
369 = 29 X461
273 = 13 x1021

175 = 52x17x 31
13075 = 52 523

12973
869 = 17X 757
763
655 = 5X 2531

12 545 = 5 X 13X 593
433
319 = 97 x127
203
085 = 5x 2437

11 965 = 5 X 2393
843 = 13 X911
719
593
465 = 5X 2293

11 335 = 5x 2287
203 = 17 X659
069

10 933 = 13 x 292

795 = 5X17x127

97x145; K, xK’

85x155; L, XL,

127x97; K,xK,

’

85x127; K;xK,



—F(c)

70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

88|

89
90
N
92
93
94
95
96

97
98
99
100

101
102
103
104

10 655 = 5 X 2131
513 ‘
369
223
075 = 52x13x31

9925 = 52X 397

773 = 29 X337
619
463

© 305 = 5x1861

9145 = 5X31x59
8983 = 13X 691
819
653 = 17 X509
485 = 5X 1697
8315 = 5X 1663
143 = 17 X 479
7969 = 13 X613
793
615 = 5x 1523
7 435 = 5 X 1487
253
069
6 883

695 = 5xX13x103
6505 = 5x1301

313 = 59 x107

119 = 29 X 211
5923

725 = 5% x 229
5525 = 52X 13X 17

323

119
4913 = 173

705 = 5 X941
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155% 65; J,xJ,

59x155; J,xJ;

103 X 65;

3. %7,
L, XL,

107 < 59;
29 x 211;

25x% 221; ‘I, X1,

65 % 85;

K, xK;

—F(c)

105

106
107

108/

109
110

111
112
113
114
115
116
117
118
119
120

121
122
123
124

125

4 495 = 5 X 29x 31
283
069 = 13 x 313
3853
635 = 5x 727
3415 = 5X 683
193 = 31 X103
2969
743 = 13 X 211
515 = 5x 503

2285 = 5X 457
053

1819 = 17 X107
583
345 = 5X269

1105 = 5X13X17

0863
619
373
125 = 5°

— 125

K,x K,

(0—124) =I5 ~1;
(6—103) = J1 ~1;
(
(

85

155 29;
145 % 31;

31x103;

211 % 13;

17 x107;

65x<17;
13 % 85;
221X 5;

1x125;

. 153%x25;

0—120) = I;XLyx Ji ~ 1.

L, x L,
K, x K,

K, x K,

L,x Ly

3, x7J,

Jox 1,
L,x L,
LxI,

U, X U,
I, <1,
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Devant chaque valeur —F(c), est inscrite sa décomposition en
facteurs premiers et une sous ligne indique ceux de ces facteurs, ou
produits de facteurs qui sont des normes d’idéaux réduits (38); la
majorante de leurs racines est r = 56.

D’autre part, devant certaines valeurs (positives de —F(c)),
I'indication d’un produit égal, de deux nombres (en caractéres gras),
est celle de normes d’un couple d’idéaux semi réduits associés, de
racine finale c¢. Le produit suivant de deux lettres, est une représen-
tation de ces idéaux: la lettre (U, I, J, K, L) désigne le cycle; I'indice
désigne la succession dans ce cycle. On peut vérifier que chacun de ces
couples renferme au moins un des idéaux réduits, signalés par ailleurs.

Il y a neuf cycles; 'un d’eux de trois termes, désignés par la
lettre U est du type 1; il contient un idéal double (1, 6—124) et un
idéal réfléchi (125, 0); ses idéaux sont principaux, c’est le cycle
prineipal. ,

Les autres cycles se répartissent en quatre couples de cycles
conjugués; désignés respectivement par la méme lettre, avec et sans
accent, dont les nombres de termes sont: trois pour I et I'; cing pour
JetJ'; sept pour K et K'; cing pour L et L; ces nombres sont impairs,
comme celui des idéaux du cycle U. La somme des indices des idéaux
conjugués est congrue a 0, celle des idéaux associés est congrue a
—1 (49).

Dans le groupe chacun des huit termes, différents de I'unité U,
est d’ordre 3. Le groupe est produilt direct de deux groupes cycliques
d’ordre 3, engendrés respectivement par les puissances de deux cycles,
non conjugués, par exemple I et J.

Cette structure résulte immédiatement des décompositions de
certaines des valeurs de la table. Celles de:

F(124) = 5% = (6—124) = (5, 0—124)3 = I3;
F(103) =173 = (6—103) = (17, 6—103)3 = (17, 6—117)3 = J3}

montrent que les cycles I et J, ainsi que leurs conjuguées I' et J’ sont
des termes d’ordre 3 du groupe. Par suite ce groupe qui est d’ordre 9,
ne peut étre cyclique (st non il ne contiendrait que deux termes
d’ordre 3, puissances 3 et 6 d’une base). 1l est donc produit de deux
groupes cycliques, d’ordre 3. Ses termes peuvent notamment étre
exprimeés par:

I*x<J¥; =,y entiers, mod. 3.
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On peut compléter cette indication en cherchant les expressions
de K et de L. Elles résultent notamment des décompositions:

F(49) — 25x17x31 = (25, 0—49)x (17, 0—49)x (31, 0—49)
— (25, 0—124) % (17, 6—117)x (31, 6—111) ~ 1

F(120) = 5x13 %17 = (5, 6—120) % (13, 6—120) % (17, 6—120) ~ 1.

Elles entrainent:

K=1IxJ%; L=Ix]J.

Les cycles conjugués sont aussi inverses, I'un de lautre, de sorte
que chacun d’eux est égal au carré de Pautre (exposant 2, mod. 3).

52. Corps de discriminant premier.

On va examiner quelques unes des circonstances qui peuvent
se présenter dans la structure du groupe des classes des idéaux
semi réduits, ou des cycles.

Dans un corps réel, dont le discriminant est un nombre pre-
mier, nécessairement congru a -+1, mod. 4, 1l n’y a qu’une seule
classe double, caractérisée par un cycle, du type 1, d’'un nombre
impair d’idéaux. Il peut exister en outre des couples de cycles
conjugués, et associés, du type 4, qui ont aussi un nombre 1impair
d’1déaux. _

Si le cycle principal existe seul, le corps est principal. Dans
le cas contraire 'ordre du groupe des classes est impair et supérieur
& 1; sicet ordre est un nombre premier, ou un produit de nombres
premiers différents, le groupe est cyclique, mais cette condition
suffisante n’est pas nécessaire.

Un corps, de discriminant premier ne contient qu’un idéal double
de norme 1, qui engendre un cycle de type 1, évidemment principal.
Ce cycle doit donc contenir un idéal semi réduit réfléchi, ce qui
entraine I'existence d’une décomposition du disecriminant en une
somme de carrés de deux nombres entiers.

C’est 1a une nouvelle preuve de la propriété déja établie par la
considération du corps R(t): un nombre premier, congru & -1, mod. 4:
est égal a une somme de carrés de deux nombres entiers (20).

Cette démonstration établissait aussi la détermination de ces
deux carrés; il est possible de le vérifier également par des considéra-
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tions simples de congruences, dont le module est le nombre premier
considéré. Cette précision montre qu’il ne peut y avoir d’autre idéal
remarquable dans le corps, donc aucun autre cycle de type 1, 2, ou 3.

Le tableau XXI donne deux exemples de corps, de discriminants
premiers, 317 et 193, dont la considération des idéaux réduits permet
d’affirmer qu’ils sont principaux. Le tableau XXVIII indique
comment ceci peut étre établi par la considération des idéaux semi
réduits; la disposition est la méme que dans le tableau XXVII; mais
dans chaque corps il n’y a qu'un seul cycle, dont les idéaux sont
désignés par la lettre I: ils sont de trois termes dans le premier corps,
de quinze termes dans le second.

Pour les discriminants peu élevés, on constate que, pour une
trés grande proportion d’entre eux, il n’y a pas de cycles de
type 4, et que, par suite, le corps est principal. On indique ci-
dessous la répartition des corps principaux de discriminant pre-
mier inférieur a 1000, suivant le nombre d’idéaux dans le cycle
unique (les corps sont designés par leurs discriminants):

1 idéal dans le cycle: b, 13, 29, 53, 173, 293;

3 idéaux: 17, 37, 61, 101, 197, 317, 461, 557, 677, 773;

5 idéaux: 41, 149, 157, 181, 269, 397, 941;

7 idéaux: 89, 109, 113, 137, 373, 389, 509, 653, 797, 853, 997;
9 idéaux: 73, 97, 233, 277, 349, 353, 613, 821, 877,

11 idéaux: 541, 593, 661, 701, 857,

13 1déaux: 421, 757, 15 idéaux: 193, 281;

17 idéaux: 521, 617, 709; 19 idéaux: 241, 313, 449, 829, 953;
21 idéaux: 337, 569, 977; 23 idéaux: 433, 457, 641, 881;

25 idéaux: 929; 27 idéaux: 409;
29 idéaux: 673, 809; 31 idéaux: 937;
33 idéaux: 601; 35 idéaux: 769.

Les six corps, dont le cycle principal n’a qu’un seul idéal,
sont indiqués dans le tableau XX (avec cinq autres, de discri-
minant non premier).

Les seuls corps, de discriminant premier, inférieur a 1000,
qui ne sont pas principaux sont ceux de discriminants:

229, 257, 733, 761, qui comprennent chacun trois cycles (ou
classes) formant par suite un groupe cyclique d’ordre 3;
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401, qui comprend cing cycles, formant un groupe cyclique
d’ordre 5;

577, qui comprend sept cycles, formant un groupe cyclique
d’ordre 1.

Le tableau XXVIII donne aussi les calculs des cycles pour trois
de ces corps, de discriminants:

577: cycle U de trois idéaux; trois couples de cycles conjugués;
I, T et J, J' de chacun trois idéaux; K, K’ de chacun cinq
idéaux; |

401: cycle U de trois idéaux; deux couples de cycles conjugués;
I, I' de chacun trois idéaux; J, J' de chacun cinq idéaux;

761: cycle U de cinq idéaux; deux cycles conjugués, I, I' de cha-
cun sept idéaux.

Pour des discriminants relativement élevés, le groupe de cycles
(ou de classes) peut n’étre pas cyclique. L’exemple de calcul de
structure du tableau XXVII concerne un corps dont le discriminant,
62 501, est premier, et dont le groupe des cycles, d’ordre 9 est pro-
duit direct de deux groupes cycliques d’ordre 3.

53, Corps a une seule classe double.

Le corps, de caractére exceptionnel, défini par le polynome

fondamental:
F(r) = a*—2; D =8;

a un seul idéal semi réduit, & la fois double et réfléchi, qui est
Iidéal unité. Il n’y a done qu’un seul cycle, d’un seul terme, et
le corps, comme ce cycle, est principal.

A Texception de ce corps, et en plus de ceux dont le discri-
minant est un nombre premier, il existe des corps qui n’ont
qu’une seule classe double (conjuguée d’elle-méme); ce sont ceux
dont le discriminant a au plus deux facteurs premiers impairs,
congrus & —1, mod. 4. En tenant compte des conditions de
construction d’un corps réel (1), on obtient 1’énoncé suivant:

Un corps réel, dont le discriminant D est:




TasLeauv XXVIII.
Exemples de corps de discriminant premier (corps principaux).

c —(x24+x—79) —(x2+x—48)
0] 79 48
1] 77 46
2 73 42 = 7X6 I, <1y
3| 67 36 = 9x4 = 6x6; I,xI,; ILxI,
4 59 28 = 4X7; I, xI,
5| 49 = 7x7; LxL, 18 = 6x3 = 2x9; I xIy I;xI,
6| 37 6 =1%x6 =3x2; IxL,; LxI,
70 28
8 7 = 1x7; I;xL,
(Corps non principaux.)
C —(x24-ax—144) —(x24x—100) —(x24+x—190) c
0144 = 12x12; U, x U, 100 = 102 U, %0, 190 0
1142 98 188 1
21138 94 184 2
31132 = 11x12; K;xK; 88 = 8x11: Jyx1I, 178 3
4| 124 80 = 10x8; J,x1J, 170 = 10x17; LxI, | &4
5114 70 = 5x14; I, xI, 160 = 16 x10; LxI, | 5
= 7%10; J,x17.
6102 = 6x17; J,x7J, 58 148 6
7] 88 = 8x11; K,xK, &G = 11x4; I, x7J, 134 7
72 = 4x18; I xI, 28 = 14x2; L xI, 118 8
—12x6; K,xK, = 4x7; JoxI.
= 9x8; K, xK, |
9| 54 = 18x3; ILxI, 10 = 1x10; Uyx U, 100 = 20x5; LxI, | 9
= 6x9; K,xK, = 2x5; I xI, = 10x10; U,x U,
10| 34 = 17x2; J,xJ, 80 = 4x20; I xI, |10
= 5x16; I xI,
11] 12 = 1x12; Uyx U, 58 11
= 3Xk; IOXI; ,
12 36 = 17x2; I xI, |12
= 2x4; I xIg
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1. impair, nécessairement congru & 41, mod. 4, produt
u X, de deux nombres premiers impairs, dont Uun, et par suite
Pautre, est congru ¢ —1, mod. 4;.

2. produit par 4 d’un nombre premier d, impair, nécessaire-
ment congru ¢ —1, mod. 4;

3. produit par 4 du double d = 2d’, d’un nombre premier d',
nécessairement impair, mais congru a —1, mod. &;

ne contient qu’une seule classe double d’idéaux, nécessairement
principale, caractérisée par un cycle du type 2, d'un nombre
pair de termes. Il peut y exister, en outre, des cycles du type 4,
répartis par couples de cycles conjugués, chacun ayant aussi
un nombre pair d’idéaux.

Dans les trois cas, le discriminant D, considéré dans le corps R(z),
est le produit de deux idéaux (principaux), dont 'un au moins est
premier rationnel (z et ¢; ou d; ou d'; puisque congru & —1, mod. 4).
Il n’est donc pas égal & une somme de carrés de deux nombres entiers
(20) et le corps ne coutient pas d’idéal semi réduit réfléchi (deuxieme
théoreme d’existence de 43).

Par contre il existe deux, et seulement deux idéaux semi réduits
doubles, car D a seulement deux diviseurs dont le carré lui soit
inférieur et qui sont, suivant les cas:

letuoupg; 1et?2

cecl puisque, dans le second cas, d étant au moins égal & 3:
< D=4d; et d®>D:4=d;

et que, dans le troisiéme cas, d’ étant au moins égal & 3 (D = 8 étant
excepté):
2 < Db =2d"; et d2>D:4=2.

Il n’y a donc qu’un seul cycle, du type 2, qui contient deux
1déaux semi1 réduits doubles.

Les avtres cycles, s’il en existe, ne peuvent contenir d’idéaux
semi réduits remarquables et ne peuvent &tre que du type 4.
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Comme pour un discriminant premier, si le cycle principal
existe seul, le corps est principal.

Dans le cas contraire, Uordre du groupe des classes est impatr
(un cycle principal et des couples de cycles). Si cet ordre est un
nombre premier ou un produit de nombres premiers différents,
le groupe est cyclique, mais cette condition suffisante n’est pas
nécessaire.

Pour les discriminants peu élevés, on constate aussi que,
pour une tres grande proportion d’entre eux, il n’existe pas de
cycles de type 4, et que, par suite, le corps est principal. On
indique ci-dessous la répartition de ces corps principaux, de dis-
criminant inférieur a 1000, suivant le nombre d’idéaux dans le
cycle unique. Les corps sont indiqués par les décompositions de
leurs discriminants et dans ’ordre des trois cas:

2 idéaux dans le cycle: 3 x7, 7x11, 3x31, 3x79, 19x23,
3X1561; 4x3, 4x11, 4x23, 4 xX83, 4x227; 8x3,
8 x19;

4 idéaux: 3 x11, 3 x23, 7x19, 3x47, 3x71, 7x59, 3 x191,
3%x239; 4xT, L&x4T7, 4x167; 8x7, 8x31;

6 idéaux: 3 x19, 11x23, 3x103, 11x31, 3x127, 7x107,
3X2T1, 19x47; 4x19, 4x59, 4x107, 4x131;
8 x11;

8 idéaux: 3 X167, 7x83, 3x263, 11x79, 7x131, 23 x43;
4x31, 4xT71; 8x79, 8x103;

10 idéaux: 3 X 43,7 x23,7 x43, 11 x47, 3 X199, 3 x223; 4 X43,
4x67, 8x43, 8 x5H9;

12 idéaux: 3 x5b9, 11x19, 3x311, 7x139; 4x103, 4x127,
4x239; 8x23;

14 idéaux: 3 xX67, 7x 71, 23 x31; 4x179; 8x67;

16 idéaux: 7x31, 3x83, 7Tx4&7, 3x131, 3x179, 19x31;
4x191; 8x47;

18 idéaux: 3 X139, 3 x211, 11x67, 11 x71; 4x139, 4x163;

20 idéaux: 4 x 151, 4x199; 22 idéaux: 3x163; 8x83;

24 idéaux: 3 x251; 26 idéaux: 7x79; 4x211; 8x107;

32 idéaux: 3 X227, 11 x83; 34 idéaux: 11 x59, 3 X283,
3 x307;

36 idéaux: 7x103; 42 idéaux: 7 x127.
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Les seuls corps, de discriminant inférieur & 1000, vérifiant
les conditions précédentes et qui ne sont pas principaux, sont
ceux de discriminant:

321 = 3% 107, 469 — Tx67, 473 = 11x43, 993 = 3x331;
316 — 4 %79, 892 —4x223; 568 = 8X71;

qui comprennent chacun un cycle principal et un couple de
cycles conjugués formant par suite un groupe d’ordre 3, cyclique,

et le corps de discriminant 817 = 19 x 43, qui comprend, en
plus du cycle principal, deux couples de cycles conjugués, for-
mant un groupe d’ordre 5, cyclique.

54. Corps a deux classes doubles.

Par un raisonnement analogue aux précédents (52 et 53),
on peut caractériser les corps qui ont deux et seulement deux
classes doubles d’idéaux.

Condition suffisante. — Un corps réel a deux, et seulement
deux, classes doubles d’idéaux lorsque son discriminant a I'une
des formes suivantes:

1. il est impair, nécessairement congru a -1, mod. 4, égal a
un produit u X ¢, de deux nombres premiers, congrus chacun a -1,
mod. 4;

2. il est pair, égal au produit par 4, du double 2d’, d’un nombre
premzuer d', congru a +1, mod. 4;

[Dans ces deux cas les classes doubles sont caractérisées par
deux cycles, soit du type 1 (d’un nombre impair de termes), soit
Pun du type 2 et U'autre du type 3 (tous deux d’un nombre pair
d’éléments).]

3. 1l est impair, égal @ un produit u Xy Xw, de trois nombres

premiers, dont un est congru @ +1 et chacun des deux autres d
—1, mod. 4;

4. 1l est pair, égal au produit par &, d’un produit d = uxy,
ou du double d = 2d’, d’un produit d' = u’' X ¢', de deuxr nom-
bres premuers, dont I'un est congru & +1 et Pautre @ —1, mod. 4;
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5. 1l est pair, égal au produit par 4 du double d = 2d’', d'un
produit d' = u’' Xv¢', de deux nombres premiers, congrus chacun
a —1, mod. 4.

[Dans ces trois cas, les classes doubles sont caractérisées par
deux cycles du type 2 (d’un nombre pair de termes).]

L’un des cycles contenant nécessairement I'idéal unité est
principal; 1l peut exister, en outre, des cycles du type 4, répartis
par couples de cycles conjugués, chacun ayant un nombre de
termes de méme parité que celui des termes du cycle principal.

Dans les cas 1 et 2, D ou d = 2d’, considéré dans le corps R(7),
est la norme d’un produit de deux idéaux premiers du premier degré
(non rationnels); il est donc décomposable de deux facons en une
somme de deux carrés et le corps contient deux idéaux semi réduits
réfléchis.

D’autre part, dans chaque cas il existe deux (et seulement deux)
idéaux doubles, dont les normes sont les diviseurs du discriminant:
1 et le plus petit des entiers u et ¢, pour le premier cas; 1 et 2 pour
le second cas (d’apreés le raisonnement déja fait ci-dessus lorsque d’
est congru a —1; 53).

Il y a donc quatre (et seulement quatre) idéaux semi réduits
remarquables donc deux cycles contenant chacun deux d’entre eux.
Ils sont du type 1 si chacun contient un idéal double et un idéal
réfléchi; ils sont 'un du type 2, ’autre du type 3, dans le cas contraire.

Dans les cas 3 4 5, D ou d, qui contient au moins un facteur pre-
mier, congru a —1, mod. 4, n’est pas égal & une somme de deux carrés;
le corps ne contient pas d’idéal semi réduit réfléchi.

Par contre il y a quatre (et seulement quatre) idéaux semi réduits
doubles dont les normes sont, suivant le cas:

3 — 1, wuwou¢xw, ¢ ou wxu ® 0oU uX¢;
4 — 1, 2, wuouvy¢, 2u ou 2v;
5 — 1, 2, u ou 2, ¢ ou 2u.

I1 v a donc encore quatre idéaux semi réduits remarquables, donc
deux cycles, mais chacun d’eux est du type 2.

Dans chacun des 5 cas, le corps a donc deux classes doubles.
Si ces classes (ou ces cycles) existent seules, elles constituent un
groupe, d’ordre 2, cyclique.
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Dans le cas contraire, 'ordre du groupe des classes est pair
(deux classes doubles et des couples de classes conjuguées). Si
cet ordre est le double d’un produit de nombres premiers impairs
différents, le groupe est cyclique. Il Iest encore si ces nombres
premiers comprennent un facteur 2 (notamment si 'ordre est
égal & 4); car un produit direct d’un groupe d’ordre pair par un

TasrLeau XXIX.

Exemples de corps a deux classes doubles.

D = 685 = 5X137

—(x24+ax—171)

D = 689 = 13X 53
—(x24+x—172)

D = 904 = 8 X113
—(x2—226)

-

0171 172 226 0
11169 = 13x13; V,xV, 170 225 = 15x15; V,;xV, | 1
2|165 = 15x11; U, x U, 166 222 2
31159 160 = 16 x10; U, x U, 217 3
& | 151 152 210 = 15x14; K, xK;| 4
5| 141 142 201 5
6129 130 = 10x13; U,x U, 190 = 10x19; J, xJ. | 6
70115 116 , 177 7
8| 99 = 11x9; U,xT, 100 = 5x20; IxI, 162 = 9x18; K,xK,| 8
= 10Xx10; Vy,xV,
9| 81 = 9x9; UyxTU, 82 145 9
10| 61 62 126 = 6x21; I, xI, |10
—18x7; K,xK;
= 14%x9; K,xK,
11| 39 = 3x13; V,xV, 40 = 20x2; I xI, 105 = 21x5; ILxI, |11
= 4x10; V,xV, = 7x15; KyxK,
= 8x5; ILxI,
12| 15 = 1x15; Uy,x U, 16 = 1x16; Uyx U, 82 12
= 5x%3; VyxV, = 2x8; I xI;
= 4X4; VyxV, ,
13 C 57 = 19%x3;  J,xJ, |13
14 30 = 2x15; VyxV, |14
— 3x10; J,x1J,
= 5x6; I,xI,
15 1= 1x1; UyxU, |15
Ordre 2 Ordre 4 ~ Ordre 8
(6—1) = V,x V, (6—12) = I (0—8) = Jyx V,
V2 ~1 It ~1 JB~ V2~ 1
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groupe d’ordre 2 contient au moins deux termes d’ordre 2; or
la classe double non principale est le seul terme d’ordre 2, du
groupe des classes.

Pour des discriminants peu élevés, on constate encore que,
pour une assez grande proportion d’entre eux, il n’y a pas de
cycles de type 4, et que, par suite leur groupe est d’ordre 2 et
cyclique. Pour les disecriminants inférieurs a 1000, il y a ainsi
91 corps qui n’ont que deux classes d’idéaux [la classe
principale et une classe égale & sa conjuguée et de carré
égal a la classe principale]. Ils se répartissent suivant les cing
conditions précédentes en:

21 (condition 1); 12 (20); 20 (3°); 32 (4°); 6 (5°).

Les seuls corps qui, en vérifiant les conditions précédentes
ont un groupe d’ordre supérieur a 2 (ou contiennent des cycles
de type 4) sont: ceux de discriminants:

145 — 529, 445 —5%89, 505 = 5x101, 689 = 13 x53,
793 — 1361, 901 — 1753, 905 — 5x181; 328 — 8 x4l
777 = 3x7x37; 897 = 3x13%x23; 876 = 4x3X73;

qui ont un groupe, d’ordre 4, cyclique ;
ceux de discriminants:

785 — 5% 157, 985 = 5x197; 940 = 4 x235;

qui ont un groupe d’ordre 6, cyclique;

et celui de discriminant 904 = 8 x 113, qui a un groupe
d’ordre 8, et qui est cycligue, car il ne contient qu’un seul terme
d’ordre 2.

I.e tableau XIX donne des exemples de calcul des idéaux semi
réduits et de vérification de la structure des groupes pour trois corps,
[deux classes doubles] dont les discriminants sont:

685 = Hx 137 (premier cas de la condition) qui a deux cycles
d’un nombre impair d’idéaux (7 et 5), du type 1;
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689 = 13 x53 (méme cas) qui a deux cycles de type 2 et 3, d’un
nombre pair d’idéaux (6 et 4) et un couple de cycles conjugués
de type 4, de chacun quatre idéaux. Son groupe est d’ordre 4,
cyclique;

904 = 8x 113 (deuxiéme cas), qui a deux cycles de type 1 conte-
nant un et trois idéaux et trois couples de cycles conjugués
de type 4, contenant respectivement trois, trois et cinq idéaux.
Son groupe est d’ordre 2-+2x 3 = 8, cyclique.

55. Corps a plus de deux classes doubles.

Les conditions, énoncées ci-dessus, suffisantes pour qu’un
corps contienne seulement une ou deux classes doubles d’idéaux,
sont aussi nécessaires : si elles ne sont pas vérifiées par le discri-
minant, le corps a au moins trois classes doubles. Cette propriété
peut étre explicitée sous forme d’une condition suffisante ana-
logue aux précédentes.

Un corps réel a au moins trois classes doubles d’idéaux lorsque
son discriminant D a 'une des formes suivantes:

1. 1l est impair, nécessairement congru a -+1, mod. 4, égal
a un produtt u X ¢ X w, de trois nombres premiers, congrus chacun
a +1, mod. 4;

2. il est pair, égal au produit par 4, du double 2d’ d’un pro-
duit d’ = u’ x¢’, de deux nombres premiers, congrus chacun d
+1, mod. 4;

3. Il est impair, nécessairement congru & -+1, mod. 4, égal
a un produit de plus de trois nombres premiers tmpairs.

4. 11 est pair, produit par 4 d’un nombre impair d, congru
a —1, mod. 4, ou du double 2d" d’un nombre impair d’, produit
d’aw moins trots nombres premiers impairs.

[1 est équivalent de dire que D vérifie ces conditions, ou ne
vérifie pas les conditions précédentes; c’est ce qui résulte du

tableau des diverses conditions:

L’Enseignement mathém., t. VII, fasc. 1. 7
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‘ ' N D pair = 4d
D impair = 41 — ;
' ' | dimpair = —1 d = 2d’, d’ impair
1 seule | D premier d premier d’ premier = —1
classe |—————— — —
double | D = uxo
u, v premiers = —1
2 D= uxy ‘ d= uxy d’ premier = -1
classes | u, ¢ premiers = +1 | u, ¢ premiers |— — — — — — — —
doubles |— — — — — — — u = —1 d = u Xy
D= uxXoxw u’, ¢’ premiers;
u, ¢, w premiers u' = —1; ¢’ impair
uety =-—1
3 D= uxoxw d = u Xy’
classes | u, ¢, w premiers , u’, o’ premiers = -+1
doubles | =+1 |  —— -
au 4 facteurs premiers,
moins au moins : 3 facteurs premiers impairs au moins

Dans les cas 1 et 2, D est décomposable de quatre facons en somme
de deux carrés; le corps contient donc quatre idéaux semi réduits
réfléchis.

D’autre part, 1l existe quatre idéaux doubles, dont les normes
sont 1, u ou ¢w, ¢ ou uw, ue ou w dans le premier cas, et 1, 2, u’ ou
D:8u’, 2u’ ou D:4u’ dans le second cas.

Il y a donc huit idéaux semi réduits remarquables, donc quatre
cycles, contenant chacun deux de ces idéaux et définissant chacun
une classe double.

Dans les cas 3 et 4, il y a huit idéaux semi réd uits doubles, au
moins, dont les normes sont suivant les cas:

3— 1, uou D, ¢ ou D, uv ou D:wue, w ou D:w,
uw ou D:uw, ew ou D:iww, uew ou D:uvw,

4 — 1, 2, u ou D:u, 2u ou D:2u, ¢ ou D:, 2¢ ou D:2v,
uy ou D:uv, 22uv ou D:2uv; |

si u, ¢, w sont des facteurs premiers impairs de D.
Il y a au moins huit idéaux semi réduits remarquables, donc au
moins quatre cycles, définissant chacun une classe double.
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Dans chacun de . ces cas, le groupe des classes d’idéaux
contient au moins deux éléments d’ordre 2, donc contient un
sous-groupe, produit direct de deux groupes cycliques d’ordre 2.

TaBLEAU XXX,

Exemples de corps & plus de deux classes doubles.

c D = 1105 = 5X13X17 c D = 1365 = 3X5XT7X13
—(x2 4 x—276) —(x2+x—341)
-0 | 276 0 | 341
1 | 274 1 | 339
2 | 270 = 15x18; IyxI, 2 | 335
3 | 264 3 | 329
& | 256 = 16Xx16; Uzx U, L | 321
5 | 246 ' ‘ 5 | 311
6 | 234 = 183x18; IgxI; 6 | 299 = 13x23; JyxJ,
7 | 220 = 11x20; JyXJ, 7 | 285 = 15%x19; K3X K,
= 10x22; K,xK, 8 | 269
8 | 204 = 12X17; KyX Kq4 9 | 251
9 | 186 10 | 231 = 11x21; K ;X K,
10 | 166 11 | 209 = 11x19; K, xK,
11 | 144 = 12x12; K X K, 12 | 185
= 8x18; I,xI, 13 | 159
= 9x16; U,xU, 14 | 131
= 6X2&; JyxJ, 15 | 101 ;
12 | 120 = 10x12; K, x K, 16 | 69 = 3x23; JoxJ; |
= 8x15; IgxlI, 17 35 = H5X7; Iy x 1, ‘
= 6X20; JgxJg = 1x35; UygxU,
= 5X2h;  JeXJ5 | e e
13 94
14 66 = 6xX11; JyXJq,
o | ae = 2??}2, i8;£3 produit direct de 2 groupes
— 4x9 U, U. cycliques d’ordre 2
= 3x12; K,xK, IXJ ~ K
= 2x18; I;xI,
16 | 4= 2x2; I, <1,
= 1Xk&; Uyx Ug

prodult direct de 2 groupes
cycliques d’ordre 2

IxJ ~K




100 A. CHATELET

Les seuls corps, & plus de deux classes doubles, dont le dis-
criminant D est inférieur a 1000, sont les cinq corps dont les
discriminants sont:

D =520 = 8x5Hx13
D = 680 = 8xbHx17
D = 840 = 8x3xbHxT7
D =780 = 4x3xbx13
D =924 = 4x4xT7x11

Le groupe des classes d’idéaux de chacun de ces corps est le
produit direct de deux groupes cycliques d’ordre 2.

Le tableau XXX donne deux exemples de calcul des idéaux semi
réduits et de vérification de la structure des groupes pour les corps
dont les discriminants sont:

1105 = 5%x13x17, qui a un cycle de sept idéaux (U) et trois
cycles de onze idéaux;

1365 = 3x5x7x13, qui a deux cycles de deux idéaux, un cycle
de quatre idéaux et un cycle de six idéaux.

On peut encore généraliser la construction des exemples
précédents, pour obtenir des corps contenant exactement n
classes doubles d’idéaux.

NOTE 1

La théorie des corps de nombres algébriques, et plus préci-
sément 1’étude des propriétés arithmétiques de leurs entiers, a
pour origine des travaux de K. F. Gauss (1777-1855). Gauss a
introduit la notion d’entier algébrique et établit les propriétés
de divisibilité des entiers de quelques corps particuliers. Mais
c’est seulement E. E. Kummer (1810-1893) qui a introduit la
notion essentielle d’idéal, dans un anneau d’entiers algébriques,
permettant d’obtenir des propriétés arithmétiques dans tout
corps de nombres algébriques de degré fini. Cette notion a été
précisée et développée, dans le cours du x1x° siecle, surtout par
I’école allemande: R. DEpeEkinD (1831-1916), L. KRONECKER
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