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INTRODUCTION |
A LA THEORIE DE LA RELATIVITE RESTREINTE

par PEAM Mau Quan.

(Regu le 28 jancier 1961).

. 1. L ESPACE-TEMPS.
1. Iniroduction.

Historiquement la théorie de la relativité restreinte est née
de I’échec des expériences que MicHELSON entreprit en 1881
pour montrer la dépendance de la vitesse de la lumiére vis-a-vis
du mouvement de I'observateur par rapport & un éther hypo-
thétique. Cette vitesse mesurée est la méme quel que soit le
mouvement de l'observateur. Ce résultat négatif a recu des
essais d’explication par Lorentz, Minkowski, EINSTEIN et
c’est EINSTEIN qui a formulé les bases de la théorie de la rela-
tivité restreinte en posant le principe de constance de la vitesse
de la lumiére dans le vide. En réalité c’est une prise de position
du point de vue mathématique devant le fait déja signalé par
PoIiNcARE que les équations de la mécanique et les équations
de I'électromagnétisme sont invariantes dans deux groupes de
transformations différents: le groupe de Galilée et le groupe de
Lorentz.

Comme le principe de constance de la vitesse de la lumiére
est virtuellement contenu dans les équations de MAXWELL, pour
résoudre ce conflit entre mécanique et électromagnétisme clas-
siques, EINSTEIN proposa de conserver la théorie électromagné-
tique de MaAxwELL et de modifier la dynamique newtonienne de
fagon & la mettre en accord avec la premiére. Pour cela il prit
comme point de départ les deux principes suivants déduits des
résultats de DPexpérience de MricuELsoN et des travaux de
LorENTZ:

Prixcire 1. — Par rapport a tous les repéres de Galilée, dans le
vide et dans tous les sens, la vitesse de la lumiére est la méme.
Cette vitesse constante ¢ voisine de 300.000 km/sec, est la
vitesse limite des phénoménes physiques observables.
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Principe II. — Aucune expérience physique, mécanique ou élec-
tromagnétique, faite .a Uintérieur d’un repére de Galilée, ne
doit permetire de mettre en évidence le mouvement de ce repére
de Galilée par rapport a un autre.

Ce sont les conséquences mathématiques de ces deux prin-
cipes qui constituent la théorie de la relativité restreinte. Le
premier principe montre que I’espace et le temps possédent un
caractere relatif, et conduit a définir & partir de I’existence du
groupe de Lorentz, une structure géométrique pour la variété
espace-temps a quatre dimensions. Le second principe conduit
& donner aux équations de la mécanique et de I’électromagné-
tisme une forme géométrique indépendante de tout systéme de
coordonnées choisi pour rapporter 'espace-temps, de facon a ce
qu’elles restent en particulier invariantes par les transformations
de Lorentz.

2. L’espace-temps de MINKOWSKI.

L’espace-temps est une variété différentiable a quatre dimen-
sions V, sur laquelle est définie une métrique improprement
euclidienne de signature hyperbolique normale (+ — — —).
Rapportée a des coordonnées orthonormales (z,), cette métrique
a la forme

2.1 ds® = dx}— dx? — dx? — dx?

ou zo = ct, t étant la variable temps classique et ¢ la vitesse de
la lumiére dans le vide.

(est I'espace-temps de MiNnkowskI. Les coordonnées ortho-
normales (z,) sont appelées coordonnées lorentziennes. Le repére
associé s’appelle repeére lorentzien. L’axe des z, est axe de temps
et le 3-plan (z, z,, ;) 'espace associé. Nous réservons le terme
«repere galiléen » & tout repére du 3-plan espace en mouvement
de tranclation rectiligne uniforme au sens classique. Les variables
(2, 2y, o, x3) sont dites coordonnées galiléennes.

Il résulte de ces définitions et des principes I et II les énoncés
suivants.

1. Les changements de coordonnées loreniziennes permis sont
ceur qui laissent invariante la forme quadratique fondamentale
(2. 1). Ils forment le groupe de Lorentz.
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L’espace et le temﬂps sont relatifs & chaque repére lorentzien
et:diﬁérent d’un repeére a un autre. Leurs relations sont définies
par les formules de transformations de Lorentz.

2. Le déplacement d’une onde lumineuse est telle que ds? = 0.
Sa vitesse est donc invariante par changement de repére (c’est c).

Toute vitesse réelle est inférieure 4 celle de la lumiére, done
telle que ds?>0.

3. Le principe II entraine que toute loi mécanique ou électro-
magnétique s’exprime par une équation invariante par changement
de repére (ou indépendante du choix des coordonnées de V,) et
‘afortioriinvariante par les transformations. du groupe de Lorentz.
C’est ce qui conduit & Pexpression tensorielle des grandeurs en
relativité.

3. Le groupe de transformations de Lorentz.

Les transformations de Lorentz laissent invariante la forme
quadratique fondamentale dzg — dz? — dzi — dz?. On démontre
qu’a une translation prés, ce sont des transformations linéaires
de matrice a = (a,,)

X, =Ya,.x, ou x =ax
telles que
‘X' nx" = Yax)n (ax) = x'anax = 'xnx,
soit |
(3. 1) - ‘ana =,

ou v = (n,p) est la matrice d’éléments noo = 41, 0y = Mgy =
N33 = —1, Ny = 0 81 # .

Ces transformations forment le groupe dit général de Lorentz.
En fait on se limite & des transformations propres qui conservent
Porientation du temps et I'orientation de Iespace: elles sont
telles que ~

(3.2) gy =1 et deta=— 1.

L’Enseignement mathém., t. VI, fasc. 3. A
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Elles forment le groupe propre de Lorentz sous-groupe du groupe
général. :

A toute transformation de coordonnées z, correspond un
changement de repeére lorentzien qui leur est associé. On voit
alors que par des rotations purement spatiales (¢, et ¢, restent
fixes), on peut amener’e; et e; dans le 2-plan (‘eo, eo), €, et e;
en e, et e3. Autrement dit, toute transformation propre de
Lorentz peut étre réalisée comme produit de transformations
spatiales pures (ne portant que sur les z;) et d’'une transformation
dite spéciale de Loreniz de la forme

Xo = oo Xo + Aoy X1
Xy = Gy X+ X

X5, == X3

X3 = X3 .

En exprimant les conditions (3. 1) et (3. 2), on trouve

Xo = Xo Cho — x;, Sho

. 3)l Xy = — Xo Sho + x; Chy
X3 = X
X3 = X3

¢ désignant un paramétre. Ces formules traduisent une rotation
d’argument ¢ dans le plan hyperbolique (z,, x;). La transforma-
tion inverse de (3.3) s’en déduit immédiatement. On peut
encore introduire le nombre § = The (—1<B<{+1) et écrire
ces transformations sous la forme devenue classique:

, Xo— [Bxy - , X =+ Bx;
Xg = —— Xg = ———

’ — Bxo + x4 Bxo + x4
G.4 (@ xi= \/1?—(32 (b) S oy
x;=x2 x2=x'

=
w
|
><
w
%
N
|
%
N
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II. LA CINEMATIQUE DU POINT.

4. Interprétation.

Les formules (3. 4) des transformations propres spéciales de
Lorentz peuvent étre interprétées en termes clasmques d’espace
et de temps.

Supposons que le point M €V, ait une projection d’espace liée
au repére (‘e,), ¢’est-a-dire telle que les z; restent constants. On
aura en différentiant la seconde équation de (3. 4a)

dx,

—Bdxy =0 it = —
Bdx, soi 7,

: : 7
En revenant a la variable ¢ (z, = ct), on voit que p = I

désigne la vitesse d’un point lié¢ au repére de Galilée (0, ;) dans
son mouvement, par rapport au repere de Galilée (0, ¢;). Comme
Ty = Xy, Ty = X3, €5 = e, €t ¢35 = e5. Par suite le second repére
de Galilée a ses axes 0’y’ et 0’2’ de méme direction et de méme
sens que les axes Oy et Oz du premier repére. de Galilée, I’axe
O’x’ étant orienté dans le sens de Oz glisse sur Oz avec la Vltesse
constante ¢.

Pour @ petit, on obtient en premiére approximation les for-
mules des transformations de Galilée

' =t
x = x—vt
y =y
' =7z,

Des formules de la transformation spéciale de Lorentz (3. 4),

on peut déduire une formule intrinséque en langage classique.
Il est clair que

’CDJr

i ¥

e =e; = —

™

B étant le vecteur vitesse réduite. Soit 7 = OM le vecteur
d’espace de composantes z; (i = 1, 2, 3) dans le premier repére
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de Galilée et 7' = O’ M le vecteur homologue de composantes z;
dans le second repére de Galilée. Nous avons

—)/’—>
/ -~ r.p

X _-—‘_;" e
1 * 1 B

Il vient de la premiére équation (3. 4b)

_ Xy —|—7~’.§
=

puis des trois équations suivantes, en formant la combinaison

4. 1) X,

in_éi :_;' .
= ___7/+ (on+x1_ ’ >

J1—

soit }
| NS, 1 7 .B> Xq -
4. 2) r=r 4+ |———1 2BB+ B.
J1— B2 3 J1—p2
On établit de méme les formules inverses:
Xo

(4.3) | Xo =

N 1 FRN N Xo =
44 rr=r+|l-—=-—-1—45"p — ———38
<J L= p >

Les formules (4.1) et (4.2) sous forme vectorielle ne
dépendent pas des rotations spatiales portant sur 'un ou I'autre
repére de Galilée. Elles constituent donc linterprétation en
termes classiques de la transformation propre la plus générale
de Lorentz. On notera cependant que cette interprétation est
faite dans la variété numérique V, non organisée, I'espace seul
est ’espace euclidien, le temps est un paramétre scalaire.

Les formules de transformation propre de Lorentz permettent
de calculer I'espace et le temps définis dans un repére de Galilée
par le principe de constance de vitesse, lorsqu’on connait son
mouvement par rapport & un autre repére de Galilée et ’espace
et le temps définis dans celui-ci.
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5.. Cinématique relativiste.

Appelons &, E, E" respectivemént la vitesse absolue, la vitesse
d’entrainement et la vitesse relative d’un point

L dr > do S d¥

= e P T am =T

Par dérivation de (4. 2) par rapport a z,, il vient
d?_dxod ey Ed‘?'ﬁJr B
de a dxo \/1___32 : . dx(; BZ ./1_52

Or (4. 1) donne
| dx, J1—B?

dxo 1+Eg,

11 vient ainsi
5 1 B.
5.1) a=—5—51/1—p2p + (1— /1—p2
iy B{J p V1—)

Cette relation montre que o, 8 et B’ sont coplanaires. On
peut la transformer de fagon & mettre en évidence au second

membre un vecteur paralléle a 78> et un autre orthogonal & _ﬁ:

——( Bf)M\/l—B"{B—(B'f)E”
1+6.p & SVaNT|

Si B est petit, on a en premiére approximation
o= B+p.
Cest la formule classique de la composition des vitesses en
mecamque newtomenne En théorie de la relativité, la relation

(5.1 &=

entre o B, B qui donne la loi relativiste de composition des

vitesses est plus compliquée. Elle entraine plusieurs consé-
quences:

1. Le carré du vecteur vitesse résultant a pour valeur
1—pHA—p?
(148 .82

0(2:1___
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Pour § et B’ inférieurs & 1, «®><<1. Il est donc impossible par
composition de deux vitesses inférieures a celle de la lumiére,
de dépasser celle-ci.

2. Pour 8 =1 ou P’ =1, «> = 1. On voit que quelle que
soit la vitesse d’entrainement B, on obtient a® = 1, résultat qui
est bien en accord avec le principe de constance de la vitesse
de la lumiére. L

3. Dans le cas ou B et B’ sont colinéaires, on a la relation
algébrique

B+F
X = r
1488
(’est la relation établie par EinsTeiN. On remarque que ce

résultat correspond a la composition de deux rotations dans le
plan hyperbolique. En effet

Tho + The" B+
1+ ThoThe' 1+ 88"

La loi relativiste de composition des vitesses donne une
interprétation satisfaisante de la formule de FRESNEL relative &
Iexpérience de l’entrainement partiel de la lumiére par un
milieu réfringent en mouvement, comme elle rend compte par-
faitement de ’échec de I’expérience de MicHELSON.

o = Th(p+¢') =

6. Les vecteurs vitesse unitaire et accélération d’univers.

Un point matériel M en mouvement décrit dans 'espace-
temps V, une trajectoire d’univers C. Comme sa vitesse est
inférieure & ¢, 'arc s de trajectoire est tel que ds?*>0. On dit
que sa trajectoire est une courbe orientée dans le temps.

On appelle vecteur vitesse unitaire de M le vecteur de com-
posantes contravariantes

: ’ o dxa
6.1) | u* = A
On appelle vecteur accélération de M le vecteur de composantes
contravariantes
. aut
(6.2) =
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On interpréte immédiatement ces définitions en rapportant
’espace-temps V, & un repére lorentzien. On a

ds? = dx?2 —dx? —dx? —dx? = (1 —p2) dx}

ds* = \/1—@2de = J1—p%cdt .

soit

Par suite

1 . Th ‘
W=t = (i1=1,23)

J1—p? e J1—p?

ol désignent les composantes du vecteur vitesse ordinaire dans le
" repére de Galilée correspondant. On interpréte alors le vecteur
accélération d’univers J% Pour B petit c’est-a-dire ¢ petit
devant ¢, on a en premiére approximation les définitions clas-
siques. |

III. LA DYNAMIQUE DU POINT.

7. Le principe de U'inertie.

Supposons qu'un point matériel ait une accélération d’univers
constamment nulle. De ' |

1

y0 = 4_1 __y
o ds J1—p*
on tire B* = constant; puis de
v : i v—l =0
dsc\/l_——_ﬁi

on tire ¢* = const. Dans le repére de Galilée associé, le point M
a-un mouvement rectiligne uniforme. Cette propriété traduit le
principe de l'inertie en mécanique classique d’aprés lequel un
point matériel isolé a une accélération nulle c’est-a-dire un
mouvement rectiligne uniforme. La réciproque est immédiate.
Or si J* = 0, le point M décrit une droite ou géodésique de
I'espace-temps. On postule ainsi en relativité restreinte.
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PRINCIPE DE L'INERTIE. — Un point matériel isolé admet pour
trajectotre d’univers une géodésique orientée dans le temps
(ds*>0) de Uespace-temps de MINKOWSKI.

Les géodésiques pour lesquelles ds* = 0, correspondent dans
I'espace aux droites parcourues avec la vitesse ¢, c¢’est-a-dire
aux rayons lumineux, trajectoires des photons. On voit alors
que la théorie de la relativité restreinte se trouve liée d’une
maniére simple & la géométrie de espace-temps de MINKOWSKI.

8. L’équation fondamentale de la dynamique relativiste du point.

L’espace-temps de Minkoswkr sert seulement de cadre
géométrique pour le déroulement des phénoménes physiques
de 'univers. Toute origine du mouvement lui est étrangére. On
doit introduire les notions d’inertie, de forces. Une force est
représentée par un vecteur d’univers ®%: elle est proportionnelle
au vecteur accélération du point M, ce qui se traduit par I’équa-
tion fondamentale

(8. 1) KJ* = @~

ou K est un coefficient caractérisant l'inertie du point matériel
M : c’est un scalaire. En vertu de (6. 2), J* est orthogonal & u*
il en est de méme de 9% on a

(8. 2) Oy, =0 .

On peut écrire (8. 1) sous la forme

d : ~dK
(8. 3) — (Ku*) = ©* + — y*
ds = ds

Le vecteur p* = Ku” est appelé le vecteur impulsion rela-
tiviste. Sa mesure le long de 7 est égale a 'inertie du point. Nous
verrons qu’il est possible d’interpréter K comme Dénergie du
point. o \ |

L’inertie K dépend d’abord du point considéré lui-méme,
ensuite du champ de forces dans lequel se meut le point. Si on
suppose que le champ de forces n’apporte aucune modification
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4 linertie propre du point, K est une propriété intrinséque du
point: c’est une constante E, appelée énergie propre du point.
Cette hypothése peut é&tre considérée comme une premiere
approche de la dynamique relativiste du point matériel.

9. Interprétation de Déquation fondamentale dans le cas K = E.

Dans ce cas I’équation fondamentale s’écrit
d
.1 — (Eyu®) = ®*.
ds

~ De I'orthogonalité de-® et u, on tire

di

c

oYY ¥ ) L. S (| L —

Dans un systéme de coordonnées galiléennes (¢, z, y, z) pour

—
lequel v est le vecteur vitesse ordinaire et f le vecteur d’espace

de composantes
' f‘iz,(I)i /1_32

on peut exprimer (9. 1) commie

d EO | — -
o, 2 — — | =
oY Z (Nl—@”) ’

d/ E, .

En donnant & f la signification d’un vecteur force galiléenne,
on dira que (9. 3) est ’équation du mouvement de M dans le
repere galilée considéré et que (9. 3) est l'intégrale de la force
vive. | |

 On est conduit & définir énergie et la masse du point M
respectivement par

E R
©. 4) Ee_ 0 me_ o _E

J1—8 CPJ1—pr
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Celles-ci varient avec la vitesse. Si M est au repos dans le repéere
de Galilée, E = E, et m = m, = E/c*. E, et m, sont appelés
énergie et masse au repos de M : elles sont égales & 1’énergie propre
et & la masse propre de M. Si B est petit, on a en premiere

approximation

C’est ’énergie cinétique classique.

10. Le principe de Uinertie de U'énergie.

La seconde relation (9. 4) exprime I’équivalence entre masse
et énergie. Si on congoit que la masse m caractérise la quantité
de matiére concentrée en M, on obtient le principe de I'inertie
de 1’énergie exprimé par la relation d’EINSTEIN

AE = c2Am

selon lequel une disparition d’une masse Am de matiére entraine
’apparition d’une quantité équivalente d’énergie.

Le principe de Pinertie de I’énergie a pour conséquence qu’il
faut réunir les deux principes classiques de conservation de la
masse et de énergie sous le méme et seul énoncé. D’ailleurs les
considérations du §9 montrent que c¢’est I’énergie qui se trouve
naturellement définie en relativité. Il est préférable de ne parler
que de ’énergie.

Le résultat précédent constltue a cOté de la notion d’espace-
temps, Lapport le plus fécond qu’ait apporté EINSTEIN & la
physique moderne dans I’étude des phénomenes atomiques et
nucléaires.

Puam Mau QUAN
Faculté des Sciences de Besancon
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