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INTRODUCTION
A LA THÉORIE DE LA RELATIVITÉ RESTREINTE

par Pham Mau Quan.

(Reçu le 28 janvier 1961).

1. L'espace-temps.
1. Introduction.

Historiquement la théorie de la relativité restreinte est née
de l'échec des expériences que Michelson entreprit en 1881

pour montrer la dépendance de la vitesse de la lumière vis-à-vis
du mouvement de l'observateur par rapport à un éther
hypothétique. Cette vitesse mesurée est la même quel que soit le
mouvement de l'observateur. Ce résultat négatif a reçu des
essais d'explication par Lorentz, Minkowski, Einstein et
c'est Einstein qui a formulé les bases de la théorie de la
relativité restreinte en posant le principe de constance de la vitesse
de la lumière dans le vide. En réalité c'est une prise de position
du point de vue mathématique devant le fait déjà signalé par
Poincaré que les équations de la mécanique et les équations
de l'électromagnétisme sont invariantes dans deux groupes de
transformations différents: le groupe de Galilée et le groupe de
Lorentz.

Comme le principe de constance de la vitesse de la lumière
est virtuellement contenu dans les équations de Maxwell, pour
résoudre ce conflit entre mécanique et électromagnétisme
classiques, Einstein proposa de conserver la théorie électromagnétique

de Maxwell et de modifier la dynamique newtonienne de
façon à la mettre en accord avec la première. Pour cela il prit
comme point de départ les deux principes suivants déduits des
résultats de l'expérience de Michelson et des travaux de
Lorentz:
Principe I. — Parrapport à tous les repères de Galilée, dans le

vide et dans tous les sens, la vitesse de la lumière est la même.
Cette vitesse constante c voisine de 300.000 km/sec, est la
vitesse limite des phénomènes physiques observables.
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Principe II. — Aucune expérience physique, mécanique ou élec¬

tromagnétique, faite à Vintérieur d'un repère de Galilée, ne
doit permettre de mettre en évidence le mouvement de ce repère
de Galilée par rapport à un autre.

Ce sont les conséquences mathématiques de ces deux principes

qui constituent la théorie de la relativité restreinte. Le
premier principe montre que l'espace et le temps possèdent un
caractère relatif, et conduit à définir à partir de l'existence du
groupe de Lorentz, une structure géométrique pour la variété
espace-temps à quatre dimensions. Le second principe conduit
à donner aux équations de la mécanique et de l'électromagné-
tisme une forme géométrique indépendante de tout système de
coordonnées choisi pour rapporter l'espace-temps, de façon à ce
qu'elles restent en particulier invariantes par les transformations
de Lorentz.

2. Uespace-temps de Minkowski.
L'espace-temps est une variété difîérentiable à quatre dimensions

V4 sur laquelle est définie une métrique improprement
euclidienne de signature hyperbolique normale (H

Rapportée à des coordonnées orthonormales (xa), cette métrique
a la forme

(2. 1) ds2 dxl — dx\ — dx\ — dx2

où Xq et, t étant la variable temps classique et c la vitesse de
la lumière dans le vide.

C'est l'espace-temps de Minkowski. Les coordonnées
orthonormales (Xa) sont appelées coordonnées lorentziennes. Le repère
associé s'appelle repère lorentzien. L'axe des x0 est l'axe de temps
et le 3-plan (xx, x2, x3) l'espace associé. Nous réservons le terme
« repère galiléen » à tout repère du 3-plan espace en mouvement
de translation rectiligne uniforme au sens classique. Les variables
(t, xx, x2, x3) sont dites coordonnées galiléennes.

Il résulte de ces définitions et des principes I et II les énoncés
suivants.

1. Les changements de coordonnées lorentziennes permis sont
ceux qui laissent invariante la forme quadratique fondamentale
(2. 1). Ils forment le groupe de Lorentz.



THÉORIE DE LA RELATIVITÉ RESTREINTE 289

L'espace et le temps sont relatifs* à chaque repère lorentzien
et'difïèrent d'un repère à un autre. Leurs relations sont définies

par les formules de transformations de Lorentz.

2. Le déplacement d'une onde lumineuse est telle que ds2 0.
Sa vitesse est donc invariante par changement de repère (c'est c).

Toute vitesse réelle est inférieure à celle de la lumière, donc
telle que ds2> 0.

3. Le principe II entraîne que toute loi mécanique ou
électromagnétique s'exprime par une équation invariante par changement
de repère (ou indépendante du choix des coordonnées de F4) et
a fortiori invariante par les transformations.du groupe de Lorentz.
C'est ce qui conduit à l'expression tensorielle des grandeurs en
relativité.

3. Le groupe de transformations de Lorentz.

Les transformations de Lorentz laissent invariante la forme
quadratique fondamentale dxl — dx\ — dx\ — dx\. On démontre
qu'à une translation près, ce sont des transformations linéaires
de matrice a (aXa)

x'x£ xxou x' ax
a

telles que

V7]xr t(ax)ri (ax) txtar)ax txr\x,
soit

(3- 1) tay\a — 7),

où y] (7]ajff) est la matrice d'éléments y)00 +1, 7)n y)22

^33 —1, y\aß 0 si a ^ ß.

Ces transformations forment le groupe dit général de Lorentz.
En fait on se limite à des transformations propres qui conservent
l'orientation du temps et l'orientation de l'espace: elles sont
telles que

(3.2) #oo 1 et deta ~f~l •

L'Enseignement mathém.» t. VI, tasc. 3. 4
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Elles forment le groupe propre de Lorentz sous-groupe du groupe
général.

A toute transformation de coordonnées xa correspond un
changement de repère lorentzien qui leur est associé. On voit
alors que par des rotations purement spatiales Çe0 et^e'0 restent
fixes), on peut amener"^ et~e[ dans le 2-plan (~e0, ^o),^?2 et~e3

en ~e2 et ~e'3. Autrement dit, toute transformation propre de

Lorentz peut être réalisée comme produit de transformations
spatiales pures (ne portant que sur les xt) et d'une transformation
dite spéciale de Lorentz de la forme

*o ^oo x0 + a01 x-±

x'i ci10x0 + a11x1

x2 *2
*3 *3 •

En exprimant les conditions (3. 1) et (3. 2), on trouve

x'o x0 Chy — x± Shy

(3. 3) x\ — x0 Shy + x1 Chy

x2 x2

V3 x3

9 désignant un paramètre. Ces formules traduisent une rotation
d'argument 9 dans lè plan hyperbolique (x0, xj. La transformation

inverse de (3. 3) s'en déduit immédiatement. On peut
encore introduire le nombre ß Thy (—l<ß< + l) et écrire
ces transformations sous la forme devenue classique:

*0
*0 — ß*i x'o + ß*i

Vi-ß2

„ / — ß^O + *1 + x'l
(3.4) (a) xt — (b) xt

Vi—ß2 A-ß2
/

X2

*3

x2

X3

X2

x2

/
x2

/
x2
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II. LA CINÉMATIQUE DU POINT.

4. Interprétation.
Les formules (3. 4) des transformations propres spéciales de

Lorentz peuvent être interprétées en termes classiques d'espace
et de temps.

Supposons que le point M eV4 ait une projection d'espace liée
au repère (e'a), c'est-à-dire telle que les restent constants. On
aura en difîérentiant la seconde équation de (3. 4a)

dx»
d*i — ß^*0 0 soit ß —

dxQ

En revenant à la variable t (xQ et), on voit que ß -, ç

désigne la vitesse d'un point lié au repère de Galilée (0', ~e[) dans
son mouvement par rapport au repère de Galilée (0,"e*). Gomme
x2 x2, x3 x3,~e2 ~e2 et~e3 ~e3. Par suite le second repère
de Galilée a ses axes O'?/' et OY de même direction et de même
sens que les axes Oy et Oz du premier repère de Galilée, l'axe
OY' étant orienté dans le sens de Ox glisse sur Ox avec la vitesse
constante e.

Pour ß petit, on obtient en première approximation les
formules des transformations de Galilée

t' t
x x — vt.

y' y

Des formules de la transformation spéciale de Lorentz (3. 4),
on peut déduire une formule intrinsèque en langage classique.
Il est clair que

- ß
ei= ei — —

ß

ß étant le vecteur vitesse réduite. Soit ~r OM le vecteur
d'espace de composantes xt (i 1, 2, 3) dans le premier repère
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de Galilée et ~r' 0'M le vecteur homologue de composantes x\
dans le second repère de Galilée. Nous avons

?.ß
Xl =r .ex

ß

Il vient de la première équation (3. 4b)

x0 + r • ß
(4. 1) x0

x/l-ß2
puis des trois équations suivantes, en formant la combinaison

I xt et — 7 :

Wi-ß2 /
soit

-* -* / 1 \ "r'• ß ^ x'0
(4.2) 7-=?+ l-T=-l —fß+ ,-^-ß.

W1—ß2 / ß yi-ß2
On établit de même les formules inverses :

*o - " ~r
(4.3) x0

V1 -ß2

^ r-' + (7r=7-')V?-
Les formules (4. 1) et (4. 2) sous forme vectorielle ne

dépendent pas des rotations spatiales portant sur l'un ou l'autre
repère de Galilée. Elles constituent donc l'interprétation en
termes classiques de la transformation propre la plus générale
de Lorentz. On notera cependant que cette interprétation est
faite dans la variété numérique V4 non organisée, l'espace seul

est l'espace euclidien, le temps est un paramètre scalaire.
Les formules de transformation propre de Lorentz permettent

de calculer l'espace et le temps définis dans un repère de Galilée

par le principe de constance de vitesse, lorsqu'on connaît son

mouvement par rapport à un autre repère de Galilée et l'espace
et le temps définis dans celui-ci.
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5.. Cinématique relativiste.
^ ^

Appelons a, ß, ß' respectivement la vitesse absolue, la vitesse
d'entraînement et la vitesse relative d'un point

d'r dO d~rf

dx0 dx0 dxo

Par dérivation de (4. 2) par rapport à x0, il vient

*î_d*\*V +
ß 1

dx0 dx0\dx0VV'l — ß2 / \ ß2 ^/l — ß2

Or (4. 1) donne

Il vient ainsi

dx'p
_ Vl-ß2

1 + ß-ß'

(5-1) .^=|+|,^{^1~ß2ß,+ —V1 —ß2) ^1- ß + ß}

Cette relation montre que a, ß et ß' sont coplanaires. On
peut la transformer de façon à mettre en évidence au second
membre un vecteur parallèle à ^ et un autre orthogonal à ~ß:

Si ß est petit, on a en première approximation

a ß+ß'
G est la formule classique de la composition des vitesses en
mécanique newtonienne. En théorie de la relativité, la relation

-5» ->
"

entre a ß, ß' qui donne la loi relativiste de composition des
vitesses est plus compliquée. Elle entraîne plusieurs
conséquences :

1. Le carré du vecteur vitesse résultant a pour valeur

(i-+arß">
(i+p-f)2
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Pour ß et ß' inférieurs à 1, a2<l. Il est donc impossible par
composition de deux vitesses inférieures à celle de la lumière,
de dépasser celle-ci.

2. Pour ß 1 ou ß' 1, a2 1. On voit que quelle que
— y

soit la vitesse d'entraînement ß, on obtient a2 1, résultat qui
est bien en accord avec le principe de constance de la vitesse
de la lumière.

3. Dans le cas où ß et ß' sont colinéaires, on a la relation
algébrique

_
ß + ß'

1 + ßß'

C'est la relation établie par Einstein. On remarque que ce
résultat correspond à la composition de deux rotations dans le
plan hyperbolique. En effet

tu( 'ï Th(? + Th(?' ß +
a Th (cp+cp —

l+Thy Thy 1 + ßß'

La loi relativiste de composition des vitesses donne une
interprétation satisfaisante de la formule de Fresnel relative à

l'expérience de l'entraînement partiel de la lumière par un
milieu réfringent en mouvement, comme elle rend compte
parfaitement de l'échec de l'expérience de Michelson.

6. Les vecteurs vitesse unitaire et accélération cfunivers.

Un point matériel M en mouvement décrit dans l'espace-
temps V4 une trajectoire d'univers C. Comme sa vitesse est
inférieure à c, l'arc s de trajectoire est tel que ds2>0. On dit
que sa trajectoire est une courbe orientée dans le temps.

On appelle vecteur vitesse unitaire de M le vecteur de

composantes contravariantes
dxa

(6. 1) u* —
as

On appelle vecteur accélération de M le vecteur de composantes
contravariantes

du*
(6.2) r —

ds



THÉORIE DE LA RELATIVITÉ RESTREINTE 295

On interprète immédiatement ces définitions en rapportant
l'espace-temps V4 à un repère lorentzien. On a

ds2 dxl— dx\— dx\ — 3 (1 — ß2)

soit
__

ds2 -v/l — ß2 dx0 1 — ß2 cdt

Par suite
1 vl

ul — : (/= 1,2,3)
V1—ß2 c yi—ß

c1 désignent les composantes du vecteur vitesse ordinaire dans le

repère de Galilée correspondant. On interprète alors le vecteur
accélération d'univers Ja. Pour ß petit c'est-à-dire v petit
devant c1 on a en première approximation les définitions
classiques.

III. La dynamique du point.

7. Le principe de Vinertie.

Supposons qu'un point matériel ait une accélération d'univers
constamment nulle. De

n d 1

y - 0
ds^l_ß2

on tire ß2 — constant; puis de

d v1

Y #
o

ds C y/1 — ß2

on tire c1 const. Dans le repère de Galilée associé, le point M
a un mouvement rectiligne uniforme. Cette propriété traduit le

principe de l'inertie en mécanique classique d'après lequel un
point matériel isolé a une accélération nulle c'est-à-dire un
mouvement rectiligne uniforme. La réciproque est immédiate.

Or si /a 0, le point M décrit une droite ou géodésique de

l'espace-temps. On postule ainsi en relativité restreinte.
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Principe de l'inertie. — Un point matériel isolé admet pour
trajectoire d'univers une géodésique orientée dans le temps
(<ds2>0>) de Vespace-temps de Minkowski.

Les géodésiques pour lesquelles ds2 0, correspondent dans
l'espace aux droites parcourues avec la vitesse c, c'est-à-dire
aux rayons lumineux, trajectoires des photons. On voit alors
que la théorie de la relativité restreinte se trouve liée d'une
manière simple à la géométrie de l'espace-temps de Minkowski.

8. L'équation fondamentale de la dynamique relativiste du point.
L'espace-temps de Minkoswki sert seulement de cadre

géométrique pour le déroulement des phénomènes physiques
de l'univers. Toute origine du mouvement lui est étrangère. On
doit introduire les notions d'inertie, de forces. Une force est
représentée par un vecteur d'univers #a: elle est proportionnelle
au vecteur accélération du point ilf, ce qui se traduit par l'équation

fondamentale

(8. 1) KJ* Oa

où K est un coefficient caractérisant l'inertie du point matériel
M:-c'est un scalaire. En vertu de (6. 2), Ja est orthogonal à ua,

il en est de même de 3>a, on a

(8. 2) (D* ua 0

On peut écrire (8. 1) sous la forme

(8.3) ~ (Ku") 0« + —ds ds

Lé vecteur p* — Kua est appelé le vecteur impulsion
relativiste. Sa mesure le long de m est égale à l'inertie du point. Nous
verrons qu'il est possible d'interpréter K comme l'énergie du
point.

L'inertie K dépend d'abord du point considéré lui-même,
ensuite du champ de forces dans lequel se meut le point. Si on
suppose que le champ de forces n'apporte aucune modification
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à l'inertie propre du point, if est une propriété intrinsèque du

point: c'est une constante E0 appelée énergie propre du point.
Cette hypothèse peut être considérée comme une première

approche de la dynamique relativiste du point matériel.

9. Interprétation de Véquation fondamentale dans le cas K E.

Dans ce cas l'équation fondamentale s'écrit

(9.1) y (E0u*) <!>«

as

De l'orthogonalité de O et u, on tire

v1
<£>0 u° — 2 <Pl vt 0° —S

Dans un système de coordonnées galiléennes (£, x, y, z) pour

lequel est le vecteur vitesse ordinaire et / le vecteur d'espace
de composantes

f <Di 7l -ß2

on peut exprimer (9. 1) comme

(9-2)

(9-3) -(~==\ =/-vdt Vi-p:
En donnant à / la signification d'un vecteur force galiléenne,

on dira que (9. 3) est l'équation du mouvement de M dans le
repère galilée considéré et que (9. 3) est l'intégrale de la force
vive.

On est conduit à définir Vénergie et la masse du point M
respectivement par

(9.4) rE' =E
Vl-p1 e
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Celles-ci varient avec la vitesse. Si M est au repos dans le repère

de Galilée, EE0et m m0EJc2. E0 et m0 sont appelés

énergie et masse au repos de M : elles sont égales à l'énergie propre
et à la masse propre de M. Si ß est petit, on a en première

approximation

Cestl'énergie cinétique classique.

10. Le principe de l'inertie de Vénergie.

La seconde relation (9. 4) exprime l'équivalence entre masse

et énergie. Si on conçoit que la masse m caractérise la quantité
de matière concentrée en M,onobtient le principe de l'inertie
de l'énergie exprimé par la relation d'EiNSTEiN

A Eca A

selon lequel une disparition d'une masse Am de matière entraîne

l'apparition d'une quantité équivalente d'énergie.
Le principe de l'inertie de l'énergie a pour conséquence qu'il

faut réunir les deux principes classiques de conservation de la

masse et de l'énergie sous le même et seul énoncé. D'ailleurs les

considérations du §9 montrent que c'est l'énergie qui se trouve
naturellement définie en relativité. Il est préférable de ne parler

que de l'énergie.
Le résultat précédent constitue à côté de la notion d'espace-

temps, l'apport le plus fécond qu'ait apporté Einstein à la

physique moderne dans l'étude des phénomènes atomiques et

nucléaires.

Pham Mau Quan
Faculté des Sciences de Besançon
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