Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 6 (1960)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: LES CORPS QUADRATIQUES

Autor: Châtelet, A.

Kapitel: 29. Successions de nombres premiers.

DOI: https://doi.org/10.5169/seals-36342

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 11.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

29. Successions de nombres premiers.

Dans le deuxième exemple traité, les quinze premières valeurs de |F(x)| sont des nombres premiers ou des doubles de nombres premiers. Cette particularité tient à ce que les valeurs de |F(x)| pour x < r, sont des nombres premiers relativement grands, qui ne se retrouvent, par suite, dans la table, qu'à des rangs relativement éloignés. Il existe d'autres exemples de ce même phénomène.

Un exemple (bien connu, au moins depuis Euler) est constitué par les valeurs du trinôme (à discriminant D négatif):

$$F(x) = x^2 + x + 41; \quad D = -163.$$

Le tableau VII en donne les valeurs pour les valeurs entières de x, de 0 à 299; pour celles qui ne sont pas des nombres premiers, on a seulement inscrit leur décomposition en facteurs premiers.

Les quarantes premières valeurs de F(x) sont des nombres premiers.

Le rang r est égal à 4; les quatre premières valeurs sont les nombres premiers:

Ils ne se retrouvent comme facteurs qu'au-delà de x = 39. On peut montrer par récurrence sur c, compris entre 4 et 39 inclus, que F(c) est un nombre premier, de racine minimum égale à c. Car, il en est ainsi pour F(4), et, par hypothèse de récurrence, pour toute valeur F(x), x étant compris entre 0 inclus et c exclus; en outre la racine conjuguée du nombre premier F(x) est supérieure à 39, puisque

$$F(x)-x-1 = x^2+40 \ge 40.$$

Il s'en suit que F(c) ne peut être divisible par aucun des nombres premiers F(x), il est donc premier et de racine minimum c.

A l'exclusion des sept décompositions:

$$F(40) = 41^2$$
, $F(41) = 41 \times 43$, $F(44) = 43 \times 47$, $F(49) = 47 \times 53$, $F(56) = 53 \times 61$, $F(65) = 61 \times 71$,

$$F(76) = 71 \times 83$$

les valeurs de F(40) à F(80), sont des nombres premiers (soient 34 nombres premiers nouveaux).

$A.\ CHATELET$

TABLEAU VII.

 $F(x) = x^2 + x + 41$; discriminant: -163; r = 4.

$\begin{bmatrix} x \\ 0 \\ 1 \\ 2 \\ 3 \\ \hline 4 \\ 5 \\ 6 \\ \end{bmatrix}$	F(x) 41 43 47 53 61 - 71 83 97 113 131	42 43 44 45 46 47 48 49	F(x) 1 847 1 933 43 × 47 2 111 2 203 2 297 2 393	84 85 86 87 88 89	F(x) 43 × 167 7 351 7 523 43 × 179 7 873	126 127 128 129	$F(x)$ 61×263 43×379 16553
1 2 3 4 5 6	43 47 53 61 - 71 83 97 113	43 44 45 46 47 48	$ \begin{array}{c cccc} 1 & 933 \\ 43 \times 47 \\ 2 & 111 \\ 2 & 203 \\ 2 & 297 \\ 2 & 393 \end{array} $	85 86 87 88	7351 7523 43×179	127 128	43×379 16553
1 2 3 4 5 6	43 47 53 61 - 71 83 97 113	43 44 45 46 47 48	$ \begin{array}{c cccc} 1 & 933 \\ 43 \times 47 \\ 2 & 111 \\ 2 & 203 \\ 2 & 297 \\ 2 & 393 \end{array} $	85 86 87 88	7351 7523 43×179	127 128	43×379 16553
$\begin{bmatrix} 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{bmatrix}$	47 53 61 - 71 83 97 113	44 45 46 47 48	43×47 $2 \ 111$ $2 \ 203$ $2 \ 297$ $2 \ 393$	86 87 88	7523 43×179	128	16 553
$egin{array}{c c} 3 \\ \hline 4 \\ 5 \\ 6 \\ \end{array}$	53 61 - 71 83 97 113	45 46 47 48	2 111 2 203 2 297 2 393	87 88	43×179	1	l
4 5 6	61 - 71 83 97 113	46 47 48	2 203 2 297 2 393	88		129	
5 6	- 71 83 97 113	47 48	2 297 2 393		7 873 1		16 811
6	83 97 113	48	2 393	89			
	97 113	1	D C		83×97	130	43×397
	113	49				131	17 333
7	ľ		47×53	90	8 231	132	17 597
8	131	F0		91	47×179	133	17 863
9		50	2 591	92	8 597	134	18 131
	1	51	2 693	93	8 783	135	18 401
10	151	52	2 797	94	8 971	136	71×263
11	173	53	2 903	95	9 161	137	18 947
12	197	54	3 011	96	47×199	138	47×409
13	223	55	3 121	97	9 547	139	19 501
14	251	56	53×61	98	9 743		
15	281	57	3 347	99	9 941	140	131×151
16	313	58	3 463			141	20 063
17	347	59	3 581	100	10 141	142	20 347
18	383			101	10 343	143	47×439
19	421	60	3 701	102	53×199	144	20 921
		61	3 823	103	10 753	145	21 211
20	461	62	3 947	104	97×113	146	21 503
21	503	63	4 073	105	11 171	147	71×307
22	547	64	4 201	106	11 383	148	$22\ 093$
23	593	65	61×71	107	11 597	149	22 391
24	641	66	4 463	108	11 813		
25	691	67	4 597	109	53×227	150	22 691
26	743	68	4 733			151	22993
27	797	69	4 871	110	12 251	152	23 297
28	853		r	111	12 473	153	23 603
29	911	70	5 011	112	12 697	154	23 911
		71	5 1 5 3	113	12 923	155	53×457
30	971	72	5 297	114	13 151	156	24 533
31	1 033	73	5 443	115	13 381	157	24 847
32	1 097	74	5 591	116	13 613	158	$25\ 163$
33	1 163	75	5 741	117	61×227	159	83×307
34	1 231	76	71×83	118	14 083		
35	1 301	77	6 047	119	14 321	160	25 801
36	1 373	78	6 203	•••		161	151×173
37	1 447	79	6 361	120	14 561	162	53×499
38	1 523			121	113×131	163	$\phantom{00000000000000000000000000000000000$
39	1 601	80	6 521	122	$\begin{array}{c} 113 \times 131 \\ 41 \times 367 \end{array}$	164	41 × 661
		81	41×163	123	41×307 41×373	165	27 431
40	412	82	$\begin{array}{c} 41 \times 163 \\ 41 \times 167 \end{array}$	123	15 541	166	27 763
41	41×43	83	7 013	125	15 791	167	28 097
41	41 \ 40	00	1019	123	10 / 81	107	20 091
				<u> </u>			<u> </u>

TABLEAU VII (suite).

x	F(x)	x	F(x)	x	F(x)		x	F(x)
168	28 433	201	9 7×419	234	113× 487		267	71 597
169	28 771	$\begin{vmatrix} 201 \\ 202 \end{vmatrix}$	41 047	235	55 501		268	53×1361
109	20 111	203	41 453	236	223×251		269	72 671
170	43× 677	204	$41 \times 1 \ 021$	237	47×1 201		200	
171	29 453	205	41×1 021 41×1 031	238	56 923		270	179×409
172	83×359	206	42 683	239	61×941		271	131×563
173	43×701	207	71×607	~~~	017/011		272	74 297
174	30 491	208	53×821	240	57 881		273	74 843
175	30 841	209	197×223	241	58 363		274	75 391
176	31 193	~~~	10,7,400	242	83× 709		275	75 941
177	31 547	210	44 351	243	59 333		276	76 493
178	61×523	211	44 773	244	163×367		277	77 047
179	32 261	212	45 197	245	41×1 471		278	71×1093
	0.0.002	213	43×1 061	246	41×1 483		279	47×1 663
180	32 621	214	46 051	247	61 297			
181	32 983	215	53× 877	248	61×1 013		280	78 721
182	33 347	216	43×1 091	249	167×373		281	79 283
183	33 713	217	113×419				282	79 847
184	173×197	218	71×673	250	62 791	.	283	97×829
185	. 47×733	219	48 221	251	167×379		284	47×1723
186	97×359			252	131×487		285	81 551
187	61×577	220	48 661	253	64 303		286	41×2003
188	35 573	221	49 103	254	64 811		287	41×2017
189	35 951	222	49 547	255	83×787		288	83 273
		223	49 993	256	43×1531		289	71×1181
190	47×773	224	50 441	257	66 347			
191	36 713	225	50 891	258	66 863		290	84 431
192	37 097	226	51 343	259	43×1567	, i	291	151×563
193	37 483	227	51 797				292	85 597
194	37 871	228	52 253	260	67 901		293	86 183
195	38 261	229	52 711	261	53×1291	4 .	294	86 771
196	38 653			262	68 947		295	199×439
197	39 047	230	53 171	263	69 473		296	281×313
198	39 443	231	53 633	264	70 001		297	88 547
199	39 841	232	47×1 151	265	251×281		298	97×919
200	40 241	233	54 563	266	179×397		299	43×2087

Au-delà de F(40), on inscrit les premiers nombres premiers de la table devant les valeurs qu'ils divisent, on obtient les sept décompositions indiquées, puis $F(81) = 41 \times 163$, qui comporte un diviseur premier non encore obtenu, ou de racine minimum 81.

A toute valeur F(c), pour c compris entre 7 et 80 inclus, exception faite des valeurs de décomposition, on peut appliquer le raisonnement de récurrence précédent. Tout F(x), de F(6) à F(c) exclus, étant

supposé premier, de racine minimum x, sa racine conjuguée est supérieure à 81, car:

$$F(x)-x-1 = x^2+40 \ge 49+40 = 89.$$

Il ne divise donc pas F(c), qui n'étant pas divisible par les valeurs de F(0) à F(6) est un nombre premier de racine minium c.

Pour toutes les valeurs de x, au-delà de 80 et telles que:

$$F(x) \leqslant (2 \times 80 + 1)^2 \quad \Rightarrow \quad x \leqslant 161,$$

les quotients obtenus (après division éventuelle par les monômes des nombres premiers précédents, qui peuvent être limités aux douze premiers), sont des nombres premiers ou sont égaux à 1.

Certains sont diviseurs de valeurs ultérieures du tableau concurremment avec des nombres premiers déjà trouvés. On les inscrit et on forme les quotients qui sont tous premiers ou égaux à 1, dans la limite de la table, dont les valeurs restantes sont inférieures à $(2\times161+1)^2$.

On a indiqué, en caractère gras, les nombres premiers obtenus comme facteur d'une décomposition effective. Leur fréquence augmente naturellement, dans le prolongement de la table. On peut même trouver une suite de valeurs F(x), en nombre H, arbitrairement grand, dont aucune ne soit un nombre premier.

Il suffit de prendre x compris entre P et P+H, le nombre P étant le produit des facteurs premiers qui divisent les H premières valeurs |F(c)|. Il est manifeste que chacune des valeurs F(x), ainsi considérées est divisible par au moins un de ces nombres premiers, sans lui être égal (H étant pris au moins égal à r).

Cependant on ne peut pas affirmer qu'il n'y a qu'un nombre fini de valeurs F(x) qui soient des nombres premiers.

Le tableau VIII donne trois autres exemples, de types différents, limités chacun aux soixante premières valeurs des trinômes.

Pour le trinôme, de discriminant D positif, impair;

$$F(x) = x^2 + x - 109;$$
 $D = 347 = (-19) \times (-23);$

les vingt-huit premières valeurs sont des nombres premiers.

Pour chacune d'elles la deuxième racine est supérieure à 27;

(pour F(9) = -19, et F(11) = +23, qui sont diviseurs du discriminant, les deux progressions sont confondues).

Dans les dix-neuf valeurs suivantes, seize sont des nombres premiers, les trois autres étant des produits de nombres premiers déjà obtenus:

$$F(28) = 19 \times 37;$$
 $F(34) = 23 \times 47;$ $F(45) = 37 \times 53.$

(Le raisonnement fait par récurrence dans l'exemple précédent reste valable.)

La valeur suivante F(47) est divisible par 19; mais le quotient est un nouveau nombre premier, ou de racine minimum 47.

Tous les quotients des valeurs restantes sont des nombres premiers ou sont égaux à 1.

Pour le trinôme de discriminant D positif, multiple de 4:

$$F(x) = x^2 - 83;$$
 $D = 332 = (-4) \times (-83)$

2 étant diviseur du discriminant, toutes les valeurs, pour x impair sont divisibles par 2, mais non par 4.

Les vingt-quatre premières valeurs sont des nombres premiers ou des doubles de nombres premiers. Toutefois deux facteurs premiers se trouvent deux fois et un d'eux est égal à 1:

17 =
$$|F(7)|$$
: 2 = $F(10)$; 19 = $|F(8)|$ = $F(11)$: 2;
1 = $|F(9)|$: 2.

Dans les vingt valeurs suivantes: treize sont des nombres premiers ou des doubles de nombres premiers; les sept autres sont des produits ou des doubles de produits des nombres premiers impairs, précédemment obtenus.

Tous les quotients des valeurs restantes de la table, au-delà de F(43), qui sont différents de 1 et de 2, sont des nombres premiers.

Pour le trinôme de discriminant négatif, multiple de 4:

$$F(x) = x^2 + 37;$$
 $D = -148 = (-4) \times (+37);$

2 est encore diviseur du discriminant; toutes les valeurs pour x impair sont divisibles par 2, mais non par 4.

Les dix-huit premières valeurs, ou leurs moitiés, sont des nombres premiers. Dans les trente-huit valeurs suivantes, vingt-neuf sont des nombres premiers ou des doubles de nombres premiers; les neuf autres, ou leurs moitiés sont des produits des nombres premiers impairs déjà obtenus.

TABLEAU VIII.

3;	F(c)	19×43	2×439		\times		imes 5	3		1 361	2×719	37×41	$2\times17\times47$	41×41	2×883	17×109	2×971	imes1	2×1063	2 221	X	2.417	25	2 62	\sim	2 8	2×1471	\times	$\times 158$	7×19	~
8	<i>υ</i>	30	31	32	33	34	35			38	39	40.	41	43	43	77	45	97	47	48	49	5.0		52	53	54	55		57	58	59
$F(x) = x^{2} - D = (-4) \times$	F(c)	83	-2×41	- 79	-2×37	1.9	-2×29	7	-2×17		-2×1	+ 17	2×19	9	2×43	$\overline{}$		1	2×103	77	2×139	317	2×179	07	2×223	×	2×271	593	$17 \times$	701	2×379
	c	 0	<u>.</u>	23	ლ	7	5	9	7		- - - 6	10	11	12	13	14	15	16	17	18	19	20	2.1	22	23	54	25	56		∞	

::(F(c)	821	823	176	1 013	23×47	1151	1 223	1 297	37	1 451	1 531	1 613	1 697	1 783	1 871	\times	2 053	19×113	2 243		2 441	54	2 647	1	∞		0	191 191	3 313	47×73
$x = 109 \times (-23)$	0	30	31	32	33	34	35	36		38	99	40	41	42	43	77	45	97	47	87	67	50	51	55	53	54	55	99	57	58	29
$F(x) = x^2 + D = (-19)$	F(c)	-109	-107	-103	- 97	68 —	79	67		- 37		+	23	2.57			3	163	6	က		$\overline{}$	5	6	677	491	541	593	647	19×37	761
		0	-	જ	က	7	2	9	7	∞	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	54	25	56	27	28	53

(à suivre)