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On peut ’remplacer la racine minimum négative ¢ par la plus
petite racine positive ¢'4+m = m-+S—ec.

ExempLE 1 (tableau I). — Dans le corps de discriminant D = —39,
la valeur de r, déterminée par comparaison avec |D| est 2:

3.2X14+1)2 = 27 < 39 < 3.(2x24+1)2 = 75.

I1 suffit de chercher les diviseurs de F(0) = 10 et de F(1) = 12, qui
vérifient les conditions de réduction (compris entre 2¢--1 et la racine
carrée de |F(c)|). On obtient deux idéaux doubles, de normes 1 et 3
(diviseurs de 39): | |
(17 6—0)7 (37 6_1)
et deux idéaux conjugués distincts, de norme 2:
(2, 6—=0) (2, 64+1) = (2, 6—1).

Il'y a quatre idéaux réduits différents, donc au plus quatre classes,

on vérifie ci-dessous que c’est effectivement le nombre de classes.

ExempLE 2 (tableau IT) — Dans le corps de discriminant D = --60
la valeur de r est 2:

5X(2X1)2 = 20 < 60 < 5x(2x2)? = 80,

Il suffit de chercher les diviseurs de |F(0)| = 15 et de |F(1)| = 14,
qui vérifient les conditions de réduction. On obtient ainsi trois idéaux
doubles, de normes 1, 3, 2 (diviseurs de 60):

(1, 6—0), (3, 6—0), (2, 6—1).

Il'y a au plus trois classes; on vérifie ci-dessous qu’il n’y en a que deux,

la classe principale contenant 'idéal de norme 1, d’ailleurs égal a (1)

et une classe double contenant les deux idéaux de normes 3 et 2
(dont on peut vérifier qu’ils sont congrus).

26. Propriétés générales des groupes de classes d’idéaux.

Certaines relations entre les classes d’idéaux, d’un corps
quadratique, sont des applications de propriétés générales des
groupes abéliens d’ordre fini qu’on va indiquer sommairement 1).

1) Ges propriétés sont exposées et démontrées dans de nombreux
ouvrages. Je me permets de citer: Arithmétique et Algébre modernes, ch. II,

§ 5 et 7; ch. III, no 85 (1954 et 1955), ou, pour plus de développements:
Les groupes abéliens finis (1925).
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Deux puissances, d’exposants entiers quelconques, d’une méme
classe (23) —ou plus généralement d’un élément A, appartenant
a un groupe A, d’ordre fini, (méme non commutatif)}— sont
égales, si et seulement si les exposants sont congrus, suivant un
certain module n:

A= A" < {r=2, (mod. n)}

On peut exprimer cette condition caracterlsthue d’égalité
en disant que:

la (valeur de la) puissance A* est caractérisée —ou représentée
proprement— par Uexposant x, entier défini mod. n —ou par la
progression arithmétique xz-+in, de raison n; ou par la classe
d’entiers mod. n (5)— . :

L’entier (positif) n est appelé 'ordre de 1’élément 4, —ou de
la classe— dans le groupe @ ou G|R. Si A est I'élément unité du
groupe, désigné par E, ou (1) —ou R dans G|R— son ordre
est égal & 1, il est égal a toutes ses puissances, dont les expres-
sions forment la progression arithmétique, de raison 1.

Cette propriété est bien connue et sa vérification est immédiate.
Les puissances A%, = entier quelconque, ne constituent qu'un nombre
fini d’éléments différents, au plus égal a Pordre —ou au nombre
d’éléments— du groupe @. Il y a donc des puissances, d’exposants
différents égales entre elles; en choisissant 'une d’elles A", on peut
construire le plus petit entier positif n, tel que:

AN =AM done  A™ = A~ = E, ou (1), élément unité-

La conséquence est obtenue en multipliant les deux membres de
I'égalité par I'inverse (A")~! = A" On en déduit, A étant un entier
quelconque:

A" =FE*=FE et & =ztnhn = A¥ — A% A™ — A%

c’est la condition suffisante d’égalité.

 D’autre part, pour tout entier positif 7, la puissance A"*" ne
peut étre égale & A™ et A” ne peut étre égal & £. On en déduit I'impli-
cation réciproque de la précédente:

A = A¥ = AY"™ =FE = {¢'—x =; ) entier.
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I1 suffit de former le reste de la division (arithmétique) de z'—= par n:

' —x = a-+r; 0 <r< n; xentier;

la puissance d’exposant 2'— est égale & celle d’exposant r, elle ne
peut étre égale & E, que si r est nul.

L’entier n, dont l'existence est ainsi' établie, est indépendant
de la puissance A", choisie pour le construire. Comme il y a n pro-
gressions arithmétiques, de raison n, définies notamment par les
entiers de 0 & n—1, il y a n éléments différents, égaux aux puissances
de A. On justifie ainsi la définition suivante.

DEFINITION. — On appelle groupe cyclique, de généraieur A,
et d’ordre n, le systéme de n valeurs des puissances A* (x entier
défini mod. n), d’'un élément A, d’ordre n, dans le groupe &
. Ces valeurs se composent par multiplication dans
A ; leur groupe qui sera désigné par A, est un sous-groupe de E..

Un groupe cyclique, multiplicattf —ou noté comme tel—
d’ordre n, est isomorphe au groupe additif de ses exposants,
définis mod. n.

Il est manifeste que les n valeurs des puissances de A forment
un groupe (multiplicatif) puisque leur multiplication, définie dans @,
et réalisée par addition des exposants, est associative et que deux
puissances d’exposants opposés sont inverses —ou de produit égal &
Iélément unité F— :

A*XAY = AV AKX A*=E; xy,2-+y, (—=), définis mod. n. "

La représentation d’un élément A® par son exposant z, mod. n, est
propre —ou est une correspondance biunivoque— elle fait cor-
respondre I'opération de multiplication (alors nécessairement com-
mutative) avec I'addition; ce sont ces deux qualités qu’exprime le
terme d’izsomorphisme.

On peut représenter le groupe additif des entiers, mod. n, par
les rotations, autour d’un axe —ou autour d’un point dans un plan—
d’angles multiples de (2r: n). Au produit —ou composition— com-
mutatif de deux rotations correspond la somme des arcs —ou de
leurs mesures, au module 27 prés—. Cette représentation exphque le
qualificatif cyclzque
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On peut aussi bien construire le groupe cyclique A, de géné-
rateur A et d’ordre n, en formant les putssances d'un de ses

éléments A° construit toutefois avec un exposant a, premier
avec n:

(A%)Y = A**Y;  y défini mod. n;

on peut notamment prendre pour valeurs de y, les n entiers
de 0 & n—1. -

On constate en effet que les nouveaux exposants y vérifient la
méme condition caractéristique d’égalité des puissances:

{(ay'—ay) = a(y'—y) =0, (mod.n)} <« {y =y, (mod. n)}.

L’équivalence résulte du fait que n, premier avec a, ne peut diviser
le produit a(y’—y) qu’en divisant le second facteur.

Une telle puissance A% est encore un générateur du groupe
cyclique A. Un groupe cyclique, d’ordre n, a ainsi @(n) généra-
teurs.

On rappelle que la fonction ¢o(n), de Pentier (positif) n, appelée
Vindicateur ’EuLER, est le nombre d’entiers, positifs, inférieurs a n
—ou d’entiers, définis mod. n— premiers avec n.

Sa valeur, pour » égal & une puissance p”, d’un nombre premiier,
est

CP(ph) = (p—~1)><ph—1;‘ cp(2h) — 9h—1

Pour un produit de puissances de nombres premiers différents —et,
plus généralement, pour un produit de nombres m; premiers entre
eux, deux & deux— sa valeur est égale au produit des valeurs pour
chacun des facteurs:

o(lm;) = Il(e(m;)); m; = ph.

I1 est équivalent de dire qu’une puissance A" d’un élément A,
d’ordre n, est aussi un élément d’ordre n, lorsque k est premier avec n.
Dans le cas général, il est aisé de constater que Pordre de cette
puissance est égal au quotient de n par le p.g.c.d. de % et n.

Lorsque, dans un groupe @, d’ordre fini —notamment dans
G|R— il existe un élément A dont Pordre est égal a celur du groupe
—ou au nombre de ses éléments— le groupe, qui est alors
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évidemment formé des seules puissances de A, est, lui-méme,
un groupe cyclique, de générateur A —ou est égal & A— .

Un raisonnement, usuel et simple, montre que, dans un
groupe, méme non commutatif, d’ordre fini, 'ordre de tout sous-
groupe, et, notamment, lordre de tout élément est diviseur de
(et éventuellement égal &) Pordre du groupe. |

Un sous-groupe définit une répartition des éléments du groupe
en classes, dont chacune est formée des produits des éléments du
sous-groupe par un élément du groupe n’appartenant pas & une autre
classe —et défini lui-méme au produit prés par un élément du sous-
groupe—. L’ordre du groupe est, par suite, égal au produit de ’ordre
du sous-groupe par le nombre de classes, ainsi constituées.

En rapprochant ces deux propriétés, on constate que: un
groupe, dont ordre g est un nombre premier, est cyclique, puisque
Pordre de tout élément, a Pexception de E, ou (1), étant diviseur
de g, ne peut que lui &tre égal, en sorte que cet élément est un
génerateur du groupe, qui en a ¢(g) = g—1.

DEFINITION. — Dans un groupe abélien —ou commutatif— @,
d’ordre fini —notamment dans G|R—, deux éléments, différents
de 'unité E: ,

A, d’ordre u; B, d’ordre ¢;

—ou les sous-groupes cycliques A et B, qu’ils engendrent— sont
qualifiés indépendants, lorsque ces sous-groupes n’ont, en commun,
que le seul élément unité E:

A* = BY < {x =0, (mod.u) et y =0, (mod. V)};

dans le vocabulaire de 1'algébre des ensembles: D'intersection

[A,B] des deux sous-groupes est égal au sous-groupe trivial,
formé du seul élément unité E.

Il est équivalent de dire que le monéme A*xBY n’est égal a
Iélément unité E que si z et y sont respectivement congrus a 0,
suivant les modules u et ¢. ‘

Deux éléments sont notamment indépendants, lorsque leurs
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ordres u et ¢ sont premiers entre eux. Car, dans ce cas:

A* =BY = A =B =F
= 2z¢ =0, (mod.u) = z=0;
= BY=E = y=0, (mod.y).

DEFINITION. — On appelle produit direct de deux sous-
groupes cycliques indépendants, A de générateur A, d’ordre u et B
de générateur B, d’ordre ¢, le sous-groupe constitué par le systéme
de mondmes;

A*xX BY;  z, mod. u, ¥y, mod. v;

—ou par les produits, en nombre u X ¢, de chaque élément de A
par chaque élément de B (dans un ordre quelconque, puisque @
est abélien)— .

Ce produit direct est désigné par AX B et le couple de géné-
rateurs A,B en est appelé une base.

Les monomes ainsi constitués sont bien inégaux, car, en raison
de la commutativité de la multiplication, dans le groupe L et de 'indé-
pendance des générateurs:

A*X BY = A* x BY'
o~ AV BV = E ou (1)
= {t'—2 =0, (mod.u) et y'—y =0, (mod.)}.

Ils constituent un groupe, car le produit (ou le quotient) de deux
monomes est encore un monéme, obtenu par les sommes (ou les
différences) des exposants respectifs:

(Ax X By) X (Ax/ X Byl) — Ax+x/ % By+y,;
(A*x BY) x (A—*X B~Y) — E.

Les mondmes sont représentés proprement par les couples d’expo-
sants ”:c y” On dit encore que le produit direct A xB, des groupes
cycliques multiplicatifs est isomorphe au produit direct des groupes
additifs, des entiers, mod. u et mod. ¢.

Le sous-groupe cyclique A, de générateur A, peut étre considéré
comme égal & son produit direct par le sous-groupe trivial (E),
formé du seul élément unité E.
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On peut étendre par récurrence les notions d’indépendance et
de produit direct & un nombre quelconque s, d’éléments d’un
groupe abélien et aux sous-groupes cycliques qu’ils engendrent.

Des éléments d’un groupe abélien, en nombre s:

A

;, d’ordrc u;, (idel as);

—ou les sous-groupes cycliques A;, qu’ils engendrent— sont
qualifiés indépendants, lorsque: les s—1 premiers le sont et que
leur produit direct A; X ... X A,_, et le groupe cyclique A,, engendré
par le dernier élément A, n’ont en commun que le seul élément
unité E; [Pintersection [A; X... XA _,, A.] est égal a (E)].

On appelle produit direct de s sous-groupes cycliques indé-
pendants, A; engendré par I'élément A4, le systéme des produits
de tout élément du produit direct A; X ... X A,_, par tout élément
de A..

L’indépendance et le produit direct ayant été définis pour s = 2,
sont ainsi définis, ou construits, de proche en proche pour s = 3,
puis 4, ... puis s. On en déduit des propriétés caractéristiques, indé-
pendantes de ’ordre adopté pour les éléments.

Les élémenis A; —ou les sous-groupes A,— sont indépen-
dants s1 un monome formé avec les A; n’est égal a I’élément
unité E, que pour des exposants respectivement congrus a 0,
relativement & 1’ordre de 1’élément qu’ils affectent: }

AP X AP =E < {z; =0, (mod.u;); tout i}

Le produit direct des sous-groupes cycliques A,, est le systéme
des monémes, en nombre u; X... X ug;

ATt XX AT, x; défini mod. u,.

Ces mondmes sont inégaux; ils constituent un sous-groupe de A,
leur multiplication, définie dans @, est réalisée par addition des
exposants respectifs. Ils sont représentéé proprement par les systémes
—ou le s-uple— de leurs exposants. On dit encore que leur grou pe est
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1somorphe au produit direct des s groupes additifs, des entiers définis
respectivement suivant les modules u,.

On généralise aisément les propriétés indiquées pour s = 2
et s = 1.

1. Des éléments A;, d’ordre u,, sont, notamment, indépendants
lorsque leurs ordres u, sont premiers entre euxr, deux a deuzx,

chacun d’eux étant, par suite, premier avec le produit des
autres. |

2. L’ordre d’un produit direct, de s sous-groupes cycliques
indépendants (dans un groupe abélien () est égal au produit Ilu,,
des ordres u;, des sous-groupes composants.

3. S1, dans un groupe abélien @, d’ordre fini g, 1l existe s
éléments indépendants A, dont le produit des ordres IMu, est
égal & T'ordre g, de @, ce groupe, qui est évidemment formé des
seuls monomes des A;, est égal au produit direct des groupes
cycliques A;, qu’ils engendrent:

Uy X Xug =g = A = A;X...XA,

En particulier un groupe cycligue A, de générateur A, dont
Pordre g est décomposable en un produit d’entiers g; (: de 1 a s),
premiers entre eux, deux a deux, —notamment puissances de
nombres premiers différents— est égal au produit direct des sous-
groupes cycliques, engendrés par les s générateurs:

A7 % d’ordre g,.
ExempLE. — Dans un groupe cyclique, d’ordre 15 = 3 x5:
A%, [z, mod. 15] = (A3)* X (4%)Y; [z, mod. 5; y, mod. 3].
- Lia relation entre les entiers z et 2,y est exprimée par les congruences:
7= 3z+5y, (mod. 15)

= {z2=23z, (mod. 5) et z=5y, (mod. 3)}
= {r=2z (mod.5) et y =2z (mod. 3)}.
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Réciproquement, un produit direct de groupes cycliques,
d’ordres premiers entre eux, deux & deux, —notamment de puis-
sances de nombres premiers différents— est égal 4 un groupe
cycligue, dont un générateur est égal au produit des générateurs
des groupes composants.

TutoriME de decompositivn des groupes abéliens d’ordre
fini. Tout groupe abélien @, d’ordre fini, est égal a un produit
direct de groupes cycliques, dont les générateurs sont des éléments
indépendants, convenablement choisis dans @, différents de E.

Pour cette construction qui peut, en général étre réalisée de
diverses fagons, on peut toujours disposer des sous-groupes
- composants A; et de leur numérotage, de fagcon que lordre g,
de chacun d’eux, soit diviseur de —ou égal &— lordre g'*!
du sutvant 1).

Ceci peut encore étre réalisé, en général, par divers choix
possibles des sous-groupes cycliques; toutefois leur nombre r,
est déterminé, ainsi que leurs ordres g;. Toute décomposition du
groupe en produit cyclique comporte alors au moins r groupes
composants et la décomposition, ainsi formée, est, en quelque
sorte, minimum.

D’une fagon opposée, on peut construire une décomposiiion.
-maximum, en un produit direct de groupes cycliques, dont les
ordres sont des puissances de nombres premiers, en remplacant
dans la décomposition minimum éventuellement chaque sous-
groupe cyclique par un produit de cette forme. Les ordres ainsi
obtenus sont encore déterminés. -

ExempLE. — Un groupe abélien, d’ordre 12, produit direct de
groupes cycliques d’ordre 2 et 6 a pour éléments 12 mondmes:

A*xBY;  x, mod. 2; 1y, mod. 6.

Aucun n’est d’ordre 12 (leurs ordres étant 6, ou 3, ou 2 —ou 1 pour

) La démonstration de ce théoréme et des précisions qui en sont
données est plus complexe que celles des propriétés précédentes. On peut
la rattacher & une analyse linéaire diophantienne, ou a des propriétés
générales de décomposition d’un module —ou groupe additif— en somme
—ou produit— directe. Je renvoie aux ouvrages cités ci-dessus.
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Iélément unité—, le groupe n’est donc pas cyclique et sa décomposi-
tion est minimum. Elle peut étre réalisée en remplagant A par un
des trois éléments d’ordre 2, et B par un des quatre éléments d’ordre
6, dont les puissances ne contiennent pas A ; ceci donne 12 décompo-
sitions possibles:
A et B; A et B, Aet AXB; Aet AXDBS
B3 et AXB; B? et A X B3, Biet AxB?;, B3et AXDB*
B3xAet B2xA; B3*xAetB*xA; B3xAetA; B?xXAet A
On peut encore construire une décomposition maximum, en
groupes cycliques d’ordres 2, 2, 3, par exemple: |

AX (B3 x (B%)Y"; ', mod. 2, ¥y mod. 3.
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