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INTRODUCTION A L'ANALYSE DIOPHANTIENNEx)

par François Chatelet

(Reçu le 20 juillet 1960)

Dans les exposés précédents, MM. Chabauty et Pisot ont
déjà étudié plusieurs problèmes diophantiens ou indéterminés.
M. Pisot a notamment rappelé qu'une des origines de la théorie
des nombres algébriques se trouve dans la résolution en entiers

(rationnels) x,yde l'équation diophantienne :

x2 — dy2 m

où d et m sont des entiers (rationnels) donnés. Les méthodes

qu'ils ont exposées ont été introduites au cours du xvme et du

xixe siècle.
Je me propose d'exposer des méthodes -beaucoup plus

anciennes /puisqu'elles sont" dues à Diophante et à Fermât.
Mais ce s méthodes ont été/développées récemment par Poïncaré
et plusieurs auteurs contemporains; elles ont permis d'étendre
sensiblement des résultats obtenus par d'autres procédés et
d'aborder des problèmes nouveaux. Il m'a semblé intéressant
de détailler l'évolution des idées qui a conduit aux travaux les

plus récents.
D'une manière générale, on appelle problème diophantien,

tout problème qui peut être ramené à la recherche des systèmes
d'entiers x, y, z, qui vérifient une ou plusieurs relations à

coefficients entiers (rationnels). On exclut toutefois les systèmes
de relations qui n'ont qu'un nombre fini de solutions en nombres
réels ou complexes, c'est-à-dire les problèmes déterminés. C'est
pourquoi l'ensemble des problèmes diophantiens, ou analyse
diophantienne, est aussi appelée analyse indéterminée.

i) Conférence prononcée à Grenoble dans le cadre des « Journées Mathématiques,
de Grenoble », 21-22 mai 1960.
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On peut se demander pourquoi Diophante et ses successeurs
ont attaché une telle importance aux solutions en nombres
entiers. Certains y ont vu une influence de l'école phytagoricienne
qui attribuait aux nombres entiers une valeur magique. Mais il
est possible que les raisons en soient beaucoup plus simples. Les

mathématiciens grecs et romains, et même les mathématiciens
du moyen âge ne possédaient pas de notations suffisamment
simples pour faire des calculs sur les nombres irrationnels, ou
même sur les nombres rationnels fractionnaires. Ce n'est guère

qu'au cours de la renaissance que s'est dégagée l'idée de remplacer
les calculs sur les nombres irrationnels par des calculs sur les

valeurs rationnelles approchées, et les calculs sur les nombres
fractionnaires par des calculs sur les valeurs décimales approchées.

Les contemporains de Diophante avaient donc intérêt
à connaître les solutions en entiers qu'ils savaient mieux utiliser.
D'ailleurs on a retrouvé des traces de problèmes diophantiens
dans les mathématiques égyptiennes et mésopotamiennes
antérieures à Pythagore, On a même retrouvé en Mésopotamie,
l'étude des solutions en fractions de dénominateur 60; l'intérêt
que ces solutions pouvaient présenter pour les mathématiciens
de cette époque semble bien provenir du fait que le système de

numération mésopotamien permet des calculs relativement
simples sur les fractions de dénominateur 60.

On peut aussi se demander pourquoi l'intérêt des problèmes

diophantiens s'est maintenu, malgré l'abandon des théories

pythagoriciennes et le perfectionnement de l'arithmétique
élémentaire. C'est certainement en raison de l'originalité et de

l'élégance des méthodes nécessaires à la résolution de ces

problèmes. Ces méthodes ont d'ailleurs grandement influencé les

autres parties des mathématiques. La théorie des nombres

algébriques, les premiers problèmes de la théorie des groupes ont
été suggérés par des problèmes diophantiens.

Diophante a vécu vers le ine siècle de notre ère à Alexandrie.
S'il n'est pas le premier à avoir étudié des problèmes indéterminés,

il en a résolu un grand nombre, sans d'ailleurs les distinguer
nettement des problèmes déterminés, dans son «Arithmétique».

Il a donné notamment une solution du problème des triangles
pythagoriciens. Il s'agit de trouver les triangles rectangles dont
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les longueurs des côtés sont des entiers, donc encore de trouver
les entiers (rationnels) a, è, c qui vérifient la relation:

a2 + b2 c2.

Diophante se limitait aux solutions en entiers positifs.
D'ailleurs les solutions en entiers positifs ou négatifs se déduisent
sans peine des solutions en entiers positifs; nous nous limiterons,
comme Diophante, à la recherche de ces dernières.

Remarquons d'abord que, si a, è, c ont un même facteur d,
les quotients de a, 6, c par d sont aussi solutions du problème.
Nous chercherons donc seulement les solutions « primitives »

telles que a, b, c, soient premiers dans leur ensemble. Mais, si a
et b ont un facteur commun premier p, il doit diviser c2, donc
aussi c; ainsi a et b sont premiers entre eux. De même a et c,
ainsi que b et c sont premiers entre eux.

En particulier, un seul des entiers a, &, c est pair. Mais le
carré d'un nombre impair est un multiple de 4 plus une unité*
en effet:

(1 + 2 n)2 — 1 + 4 n + 4 n2

Ainsi, si a et b étaient tous deux impairs, la somme de leurs
carrés serait un multiple de 4 plus 2 unités et ne pourrait être
un carré; car le carré d'un nombre impair est impair et le carré
d un nombre pair est un multiple de 4. Donc c est impair et un
et un seul des entiers a et b est pair. Désignons par b le côté pair
et écrivons la relation de Pythagore sous la forme:

b2 c2 — a2 (c + a) (c — a)

Les facteurs communs à c + aet à c — divisent leur somme
et leur différence, soit:

2 c 2 a

Puisque a et c sont premiers entre eux, le p.g.c.d. de +et de c ane peut être que 1 ou 2 Mais, puisque a et c sont
impairs, leur somme et leur différence sont paires; donc le
p.g.c.d. de c + aet de c — aest 2. Enfin le produit de cesdeux derniers nombres est un carré (&») et l'un d'eux au moins
(c + a)estpositif. Pour, que leur p.g.c.d. soit égal à 2, il est
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nécessaire que chacun d'eux soit le produit de 2 et du carré
d'un entier; soit:

c + a 2 a2 c — a 2 ß2

avec a et ß premiers entre eux. D'où:

a a2 — ß2

b — 2 a ß

c a2 + ß2

Réciproquement, un système d'entiers a, è, c de la forme
précédente avec oc > ß est une solution primitive de la relation
de Pythagore.

Les solutions imprimitives sont exprimées parles formules:

a (a2 — ß2) Y

b 2 a ß y
c (a2 -j- ß2) y

où y esf un entier arbitraire positif ou négatif.
Diophante a étudié plusieurs problèmes concernant les

triangles pythagoriciens, dont voici un exemple:
Trouver un triangle rectangle (à côtés entiers) dont l'aire,

diminuée de six unités, forme un carré. C'est-à-dire résoudre en
entiers rationnels positifs le système:

a2 + è2 c2

ab — 12 — 2 a2.

Il a également étudié d'autres problèmes indéterminés, dont
voici un exemple:

Trouver deux entiers tels que leur produit, augmenté soit
de leur somme, soit de chacun d'eux, forme un carré. C'est-à-dire
trouver les solutions en nombres entiers du système :

ab + a + b a2

ab + cl ß2

ab + b y2 •

Il faut toutefois remarquer que, pour beaucoup de ces problèmes,
Diophante ne savait pas obtenir toutes les solutions en entiers.
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L'œuvre de Diophante fut étudiée par les mathématiciens
arabes pendant le Moyen-Age, mais fut ignorée par les
mathématiciens d'Europe. C'est seulement au xine siècle qu'un Italien,
Léonard de Pise, dit Fibonacci, retrouve une partie des résultats

de Diophante, en étudiant les mathématiques arabes.
Plusieurs Italiens, Français et Anglais poursuivent les recherches
et les études de Léonard, notamment Bachet de Mézirac, qui
édite les manuscrits de Diophante. C'est l'étude de cette édition
qui engage Pierre de Fermât, au début du xvne siècle, dans des
recherches arithmétiques. Ce dernier résout plusieurs problèmes
nouveaux et surtout introduit des méthodes très originales.
Mais, occupé par ses fonctions juridiques, il ne publie aucun
travail d'ensemble et ses résultats ne sont connus que par sa
correspondance avec divers mathématiciens et par l'édition d'une
partie de ses notes, faites après sa mort par son fils Samuel.
Plusieurs propriétés sont énoncées sans explication et c'est seulement

Euler, Lagrange ou Legendre qui les démontreront au
cours du xvme en précisant et en développant les méthodes
de Fermât.

Comme exemple, établissons la propriété suivante : la somme
de deux bi-carrés ne peut être un carré; c'est-à-dire, il n'existe
pas d'entiers a, b, c tous différents de zéro, vérifiant la relation:

a4 + ô4 c2

S'il existe de tels entiers, a2, à2, c sont les côtés entiers d'un
triangle rectangle. Comme précédemment supprimons les
facteurs communs de ces trois entiers; après cette simplification,
a, b, c sont premiers deux à deux. Si 2 est impair, 2 et 2 sont

de la forme:
a2 œ2 — ß2 è2 2 aß,

avec a, ß premiers entre eux et oc > ß. Mais la première de ces
relations s'écrit:

a2 + ß2 a2

et a, a et ß sont premiers 2 à 2; a est impair, donc ß est pair et
a et ß sont de la forme:

a X2 + [x2 ß 2 Xix
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avec X, [i, premiers entre eux. En comparant les résultats précédents,

nous obtenons:

b2 2 aß 4 Xfx (X2 + p2)

Mais X, p. sont premiers entre eux, donc aussi sont premiers
avec X2 + p2. Les produits de ces trois nombres premiers 2 à 2

et positifs ne peut être un carré que si chacun d'eux est carré.
Donc

X p2 p a2 X2 + P2 — T2

Et par suite:
p4 -f a4 T2

Ainsi, d'une solution en entiers a, b, c de la relation proposée,
nous avons déduit une nouvelle solution en entiers p, <r, t. Nous

pouvons ensuite, par le même procédé, déduire de cette seconde

solution une troisième solution. Et ainsi de suite, indéfiniment.
C'est le procédé de « descente infinie » de Fermât.

Mais la relation:

b2 4 Xp (X2 + P2) — 4 p2a2 (p4 + a4)

montre que:
b > Max (p g)

Et la relation:

a2 a2 — ß2 (X2 + [*2)2 —• 4 X2 p.2

(X2— p2)2 (p4 —a4)2
(p2 + a2)2 (p2 —a2)2

montre que:
a > Max (p a)

Ainsi, si la descente infinie de Fermât est possible, le maximum

de la valeur absolue des entiers a, b diminue à chaque étape
de la descente. Il y a donc incompatibilité entre les propriétés
des entiers finis et la possibilité d'une descente infinie. La
descente infinie est impossible, ce qui entraîne qu'il n'existe pas
de solution en entiers a, 6, c tous différents de zéro.

Le résultat que nous venons d'établir montre a fortiori que:
la somme de deux bicarrés ne peut être un bicarré; c'est-à-dire
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qu'il n'existe pas d'entiers a, b, non tous nuls vérifiant la
relation :

a4 + £4 c4

Ce nouveau résultat est un cas particulier d'une propriété générale,

connue sous le nom de « théorème de Fermât » ou « hypothèse

de Fermât ». Elle affirme qu'il n'existe pas d'entiers a, 6, c

non nuls vérifiant la relation:

an + bn cn?

ou n est un entier positif arbitrairement donné. Cette propriété
est énoncée dans les notes de Fermât publiées par son fils.
Elle a donné lieu à de nombreux travaux, mais n'a pu encore être
démontrée que pour certaines valeurs de ra, dont les entiers
inférieurs à 100. Sauf pour les très petites valeurs de n, les

démonstrations utilisent des propriétés difficiles des entiers
algébriques. On s'est souvent étonné que Fermât ait pu deviner et
peut-être démontrer une propriété aussi difficile. Il faut toutefois
remarquer que nous ne possédons pas l'original de la note de

Fermât, mais seulement des exemplaires de l'édition faite par
son fils. L'énoncé est d'ailleurs donné explicitement seulement

pour les valeurs n 3 et 4 et suggéré pour les valeurs plus élevées
de n. Il est donc fort possible que Samuel Fermât ait mal recopié
le texte de son père et que celui-ci ne prétendait démontrer cette
propriété que pour certaines valeurs de l'exposant. Quoi qu'il
en soit, il faut être reconnaissant à Pierre ou Samuel Fermât
d'avoir provoqué des travaux importants qui ont contribué au
développement de l'arithmétique.

Il est bien connu que C.-F. Gâuss a poursuivi pendant toute
sa vie des travaux d'arithmétique, en alternance avec des
recherches dans d'autres domaines des mathématiques. Mais il a
abandonné presque complètement les méthodes de Diophânte
et de Fermât pour introduire les problèmes et les procédés qui
allaient conduire au développement de la théorie des entiers
algébriques pendant le xixe ou le xxe siècle. C'est seulement
vers 1900 qu'Henri Poincâré retourne aux méthodes de Fermât
et en provoque, pendant les années suivantes, un nouveau
développement. Il faut toutefois remarquer, comme nous allons le
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voir, que ces nouvelles applications utilisent les propriétés des
entiers algébriques, préalablement établies.

On peut résumer l'idée essentielle de Poincaré de la façon
suivante: il remarque que la «descente infinie» de Fermât
utilise des transformations simplement rationnelles à coefficients
rationnels sur une courbe ou une variété algébrique associée au
problème diophantien considéré. Une pareille transformation
permet de déduire d'une solution en nombres rationnels du
problème une nouvelle solution; dans Certaines conditions, elle
permet même de déduire d'une solution en entiers une autre
solution en entiers. Poincaré recherche aussi méthodiquement
que possible ces transformations et leurs conséquences arithmétiques.

Pour cela, lui-même et ses successeurs complètent la
théorie géométrique des correspondances entre courbes ou
variétés algébriques par l'étude de celles de ces transformations
dont les coefficients sont rationnels, ou plus généralement
appartiennent à un corps de base déterminé.

La première application faite par Poincaré lui-même de
cette méthode concerne les points rationnels des courbes de
genre nul, c est-à-dire des solutions en entiers de l'équation
homogène d'une telle courbe. Un raisohnement relativement
simple lui permet de montrer qu'une telle courbe peut être
remplacée par une transformation birationnelle à coefficients
rationnels, soit en une conique, soit en une droite (à coefficients
rationnels). La transformation utilisée permet de déduire les
points rationnels de la courbe considérée de ceux de la courbe
réduite. Or la recherche des points rationnels sur une conique
(ou sur une droite) résulte des travaux de Lagrange, Legendre
et Gauss. La méthode de Poincaré permet donc d'augmenter
considérablement le champ d'application de ces derniers résultats.

Poincaré applique également cette méthode aux courbes de
genre un, pour lesquelles il n'obtient que des résultats incomplets,

mais qui seront améliorés par ses successeurs: L. J.
MoRnELL, A. Weil, T. Nagell, Nous allons donner une idée
de ces résultats à propos d'un exemple particulier qui est d'ailleurs
intimement lié au problème de Fermât précédemment traité.

Considérons la cubique C d'équation non homogène:
Z2 X (x2 + 1)
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ou d'équation homogène :

Z2t X (x2 + t2)

Divisions x9 z, t par leur p.g.c.d. ; nous obtenons ainsi une
nouvelle solution avec x, z, t premiers dans leur ensemble.
Désignons par d le p.g.c.d. de x et t; ainsi:

x xx d t txd

avec x1 et tx premiers entre eux. De plus z et t sont premiers
entre eux, puisque x, z et t sont premiers dans leur ensemble.
L'équation homogène de C s'écrit encore:

t1 z2 xx (x2x + t\) d2

Puisque tx est premier avec xl9 donc aussi avec x\ + t\, il doit
diviser d2. Puisque xf z, t sont premiers dans leur ensemble,
z est premier avec le p.g.c.d. de x et t, soit d; donc d2 divise tv
C'est-à-dire

d2 tx

et par suite:

z2 x1 (xl + d4)

Avec un léger changement de notations, tout point rationnel de
la cubique C correspond ainsi à une solution de la relation:

z2 x (x2 + 2/4)

en entiers x, y,z, avec y premier à £ et à z. Pour abréger, appelons
ces entiers x, y,z « coordonnées arithmétiques » du point
considéré.

Poincaré utilise alors la, représentation classique de la
cubique G par des fonctions elliptiques et le théorème d'addition
de ces fonctions ; il remarque en outre que, pour un choix convenable

de la représentation, les formules d'addition, qui sont
rationnelles, ont également leurs coefficients rationnels. Ce qui
peut être exprimé géométriquement de la façon suivante: les
coordonnées du troisième point d'intersection M3 de la cubique C
et de la droite qui joint deux points et M2 de C peuvent être
calculées par des formules rationnelles à coefficients rationnels
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à partir des coordonnées de Mx et de M2. Ces formules définissent
donc une loi de composition L à l'intérieur de l'ensemble des

points rationnels sur C. Cette loi de composition L n'organise pas
l'ensemble des points rationnels sur C en groupe, car elle n'est

pas associative. On peut montrer que la loi de composition Llr
Obtenue en effectuant L sur deux points Mx, M2 variables puis
sur le résultat obtenu et un point fixe M0 est associative pour
toute cubique de genre un. Si de plus M0 est un point d'inflexion
de cette cubique, en particulier si M0 est le point à l'infini pour
une cubique de la forme:

y2 x3 + A# + B

M0 est un élément neutre pour la loi Lx et l'ensemble des points
rationnels forme bien un groupe pour cette loi.

Appliquons en particulier la loi de composition L à deux

points Mx et M2 confondus (en remplaçant la sécante MXM2 par
la tangente en M1 à C). Nous obtenons ainsi une transformation
simplement rationnelle à coefficients rationnels R entre M1 et M3.

Si M1 est rationnel, son image M3 est aussi rationnelle; mais
inversement un point rationnel M3 peut n'être l'image d'aucun
point rationnel M1 dans R. Pour abréger, nous dirons qu'un
point rationnel M3 est « pair » s'il est l'image dans R d'au moins

un point rationnel Mv Un calcul simple montre qu'une condition
nécessaire et suffisante pour qu'un point rationnel soit pair est

qu'il existe des entiers rationnels X, (jl, v tels que les coordonnées

arithmétiques x, y, z de M vérifient les relations :

x X2 x + iy2, + &v)2

ou encore:
x \2 \l2 — v2 y2 2 fjiv

D'autre part, on démontre que si deux points rationnels Mx et

M2 de C sont pairs, leur composé M3 dans L est pair. Plus
généralement, la condition pour que le composé dans L de deux points
rationnels sur G soit pair, définit une relation d'équivalence (ou

congruence) dans l'ensemble des points rationnels sur G. Une
classe de points pour cette congruence est obtenue en appliquant
à l'ensemble des points pairs de G la transformation birationnelle
à coefficients rationnels définie comme suit : on compose un point
variable M de G avec un point fixe de G.
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En utilisant la loi de composition Ll5 on peut encore montrer
que l'ensemble des points pairs est le sous-groupe 2G du groupe G
des points rationnels pour Lx formé par les composés d'un point
avec lui-même. Une classe quelconque est un élément du groupe
quotient de G par 2G.

Un calcul simple montre encore qu'une classe quelconque est
formée par les points de C dont les coordonnées arithmériques x,
y, 2 vérifient les relations:

x a\2 x + iy2 (b + ic) + i'v)2

OU

x — a\2 b (\jl2 — v2)—2c[xv,
y2 2è(iv + c ({L2 — v2)

où a, b,c sont des entiers fixes, où X, (/,, v sont des entiers
arbitraires et où iest l'imaginaire principale. Le triplet d'entiers
a, b, c qui détermine une classe ne peut pas être choisi de façon
arbitraire; il est nécessaire que le produit:

a (b2 + c2)

soit un carré parfait. D'autre part, si on multiplie a par un carré
parfait et b -f- ic par le carré d'un entier du corps de Gauss
engendré par i, on ne change pas la classe déterminée par a, è, c.
Cette dernière propriété permet de supprimer tous les facteurs
carrés de a, et aussi ceux de b + ic, puisque les entiers de Gauss
sont décomposables en produits de facteurs premiers.

Utilisons l'arithmétique des entiers de Gauss. Pour que
a (b2 + c2) soit un carré parfait, a, b + ic et b — ic sans facteurs
carrés, il faut que tout facteur de cl divise b2 -f- c2, donc divise
soit b + ic soit b — ic. Mais les facteurs de a divisent x, ceux de
b + ic divisent x + iy2 et x, y sont premiers entre eux. Donc les
seuls facteurs possibles pour a sont les unités du corps de Gauss
soit + 1, — 1, + i et — i. Mais a est entier rationnel et positif,
puisque a (b2 -f c2) est le carré d'un entier rationnel. Donc:

a l. '

Il est alors nécessaire que b2 + c2 soit un carré parfait et b + ic,
b — ic sans facteurs carrés. Tout facteur de b + ic doit donc



14 F. CHATELET

diviser b— ic et réciproquement; c'est-à-dire que ces deux
entiers sont des unités de Gauss.

L'unité b + ic + 1 détermine la classe des points pairs
déjà étudiée. L'unité b + ic — 1 détermine la même classe

puisque — 1 est le carré de l'entier de Gauss + i- L'unité
b -f- ic i détermine la classe :

x X2 x + iy2 i ([i + iv)2

ou:
x X2 — 2 [x v y2 — [L2 — v2

L'unité b + ic — i détermine la même classe puisque — i est
le produit de i par le carré d'un entier de Gauss.

Finalement, il n'existe que deux classes. De plus, la seconde

classe n'est pas vide, puisqu'elle contient notamment le point
de coordonnées arithmétiques x — z 0, y arbitraire.

Or, si un point rationnel M est pair, on peut en déduire un
autre point rationnel, à savoir l'un des points N dont M est

l'image dans R. Si un point rationnel M est dans la seconde

classe, on peut en déduire un point pair Mx en le composant
avec le point fixe A de coordonnées arithmétiques x z 0.

Du point Ml7 on peut déduire un nouveau point rationnel N
dont M1 est l'image dans R. Ces constructions donnent de

nouveau un procédé de descente infinie. Cette descente infinie
vérifie des inégalités analogues à celles de l'exemple de Fermât.
Elles permettent de démontrer que les seuls points rationnels

sur C sont le point de coordonnées arithmétiques x z 0 et
le point à l'infini de coordonnées arithmétiques y 0,x z 1.

En fait, cet exemple se réduit presque entièrement à celui de

Fermât. Nous avons en effet montré que si x, y, z sont les

coordonnées arithmétiques d'un point rationnel sur C:

z2 x (x2 + i/4)

il est nécessaire que x soit le carré d'un entier rationnel X. La
relation précédente montre donc que

X4 + 2/4 p2

où p est un entier rationnel. C'est la relation de Fermât
considérée. De plus, on constate facilement que la composition de A
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avec un point M de G conduit seulement à intervertir les valeurs
de X et y. Ce qui explique pourquoi le procédé de descente de
Fermât ne semble utiliser qu'une seule opération: il suppose
une permutation possible des entiers ou X pour rendre a
ou y pair.

Mais, si la méthode de Poincaré se réduit en fait à celle de
Fermât sur cet exemple particulier, elle s'applique encore à
d'autres cubiques en faisant toutefois intervenir l'arithmétique
des idéaux dans des corps algébriques plus compliqués que celui
de Gauss.

Pour conclure, donnons quelques indications sur les problèmes
encore ouverts et pour lesquels on peut raisonnablement espérer
des progrè?. La recherche des points rationnels sur les courbes
de genre supérieur à un a été abordée par A. Weil. En fait
A. Weil étudie et obtient les points rationnels sur la jacobienne
d une courbe de genre g; ce qui revient à étudier les systèmes de
gpoints (rationnels ou algébriques) sur la courbe considérée,

tels que leur ensemble soit rationnel, c'est-à-dire que les fonctions

symétriques à coefficients rationnels des coordonnées de ces
g points prennent des valeurs rationnelles. Ces systèmes
comprennent notamment les systèmes formés par g points tous
rationnels. Mais on ne sait pas encore distinguer ces systèmes
particuliers parmi les systèmes plus généraux obtenus par A.
Weil. Il semble d'ailleurs qu'on rencontre dans ce problème
une difficulté essentielle.

L étude des points rationnels sur les surfaces et variété
algébriques est à peine ébauchée. Les variétés homaloïdales, c'est-à-dire
celles pour lesquelles on peut trouver des représentation bira-
tionnelles à coefficients algébriques, n'ont donné lieu qu'à quelques

résultats isolés. Même l'étude des surfaces cubiques, abordée
par B. Segre, est encore très incomplète. Il est probable qu'une
utilisation convenable de la topologie algébrique, généralisant
l'utilisation de la théorie des groupes, permette d'appliquer aux
variétés homaloïdales les méthodes de Poincaré et d'obtenir
dans un avenir proche des résultats importants.

Nous avons rencontré au cours de cette conférence la recherche
des points entiers sur quelques variétés algébriques. Mais en fait
cette recherche se ramenait chaque fois à la recherche des points
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rationnels sur une autre variété. Par contre, les conférences de
MM. Chabauty et Pisot ont donné des exemples de recherche
de points entiers qui ne peuvent se ramener à une recherche
de points rationnels pour un autre système diophantien. Il
semble que les méthodes de Diophante, Fermât et Poincaré
ne suffisent plus et qu'il soit indispensable d'utiliser les méthodes
d'HERMiTE ou de Minkowski pour traiter complètement ces
problèmes.

Néanmoins les méthodes de Poincaré peuvent encore être
utiles dans une première partie de l'étude. Ainsi, l'étude par
Poincaré des points rationnels sur les courbes de genre zéro
a servi de point de départ à l'étude des points entiers sur ces
courbes, faite quelques années plus tard par Maillet. L'étude
par A. Weil des points rationnels sur les jacobiennes des courbes
de genre supérieur à un a permis à C.-L. Siegel de déterminer
les courbes sur lesquelles existent un nombre infini de points
entiers. L.-J. Mordell a obtenu quelques surfaces cubiques
contenant un nombre infini de points entiers. Il est possible que
ses résultats puissent être généralisés par un emploi convenable
de la topologie algébrique.

Enfin, il faut remarquer que certaines de ces recherches
peuvent être abordées avec des moyens relativement élémentaires.

Depuis Fermât, de nombreux amateurs ont d'ailleurs
poursuivi l'étude de l'analyse diophantienne. Et nous devons à
certains d'entre eux des idées ou des résultats plus modestes
mais non négligeables. Les fautes de raisonnement commises
par d'autres, surtout à propos de l'hypothèse de Fermât, ne
doivent pas décourager les bonnes volontés. Il reste un vaste
domaine où chacun peut trouver à satisfaire, quel que soit le
degré de son érudition, son goût pour la recherché scientifique
et pour l'esthétique mathématique.
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