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INTRODUCTION A I’ANALYSE DIOPHANTIENNE 1)
par Francois CHATELET

(Recu le 20 jutllet 1960)

Dans les exposés précédents, MM. CraBAUTY et Pisor ont
déja étudié plusieurs problémes diophantiens ou indéterminés.
M. Pisor a notamment rappelé qu'une des origines de la théorie
des nombres algébriques se trouve dans la résolution en entiers
(rationnels) z, y de 'équation diophantienne:

22 —dy? = m

ou d et m sont des entiers (rationnels) donnés. Les méthodes
qu’ils ont exposées ont été introduites au cours du xviir® et du
x1x® siecle. |

Je me propose d’exposer des méthodes -beaucoup plus
anciennes [puisqu elles sont” dues & DioPHANTE et & FERMAT.
Maisces méthodes ont ete’developpees récemment par POINCARE

et plusieurs auteurs contemporains; elles ont permis d’étendre

sensiblement des résultats obtenus par d’autres procédés et
d’aborder des problémes nouveaux. Il m’a semblé intéressant
de détailler 'évolution des idées qui a conduit aux travaux les
plus récents.

D’une maniére générale, on appelle probleme diophantien,
tout probléme qui peut étre ramené & la recherche des systémes
d’entiers z, y, z, .., qui vérifient une ou plusieurs relations &
coefficients entiers (rationnels). On exclut toutefois les systémes
de relations qui n’ont qu’un nombre fini de solutions en nombres
réels ou complexes, c’est-a-dire les problémes déterminés. Cest
pourquoi l'ensemble des problémes diophantiens, ou analyse
diophantienne, est aussi appelée analyse inidéterminée.

1) Conférence prononcée & Grenohle dans le cadre des « Journées Mathématiques
de Grenoble », 21-22 mai 1960.
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On peut se demander pourquoi DIOPHANTE et ses successeurs
ont attaché une telle importance aux solutions en nombres
entiers. Certains y ont vu une influence de ’école phytagoricienne
qui attribuait aux nombres entiers une valeur magique. Mais il
est possible que les raisons en soient beaucoup plus simples. Les
mathématiciens grecs et romains, et méme les mathématiciens
du moyen &4ge ne possédaient pas de notations suffisamment
simples pour faire des calculs sur les nombres irrationnels, ou
méme sur les nombres rationnels fractionnaires. Ce n’est guere
qu’au cours de la renaissance que s’est dégagée I'idée de remplacer
les calculs sur les nombres irrationnels par des calculs sur les
valeurs rationnelles approchées, et les calculs sur les nombres
fractionnaires par des calculs sur les valeurs décimales appro-
chées. Les contemporains de DioPHANTE avaient donc intérét
a connaitre les solutions en entiers qu’ils savaient mieux utiliser.
D’ailleurs on a retrouvé des traces de problémes diophantiens
dans les mathématiques égyptiennes et mésopotamiennes anté-
rieures & PYTHAGORE, On a méme retrouvé en Mésopotamie,
I'étude des solutions en fractions de dénominateur 60; I'intérét
que ces solutions pouvaient présenter pour les mathématiciens
de cette époque semble bien provenir du fait que le systéme de
numération mésopotamien permet des calculs relativement
simples sur les fractions de dénominateur 60.

On peut aussi se demander pourquoi I'intérét des problémes
diophantiens s’est maintenu, malgré 'abandon des théories
pythagoriciennes et le perfectionnement de l'arithmétique élé-
mentaire. C’est certainement en raison de loriginalité et de
Iélégance des méthodes nécessaires & la résolution de ces pro-
blémes. Ces méthodes ont d’ailleurs grandement influencé les
autres parties des mathématiques. La théorie des nombres algé-
briques, les premiers problémes de la théorie des groupes ont
été suggérés par des problémes diophantiens.

DIOPHANTE a vécu vers le 111€ siécle de notre ére a Alexandrie.
S’il n’est pas le premier & avoir étudié des problémes indéter-
minés, il en a résolu un grand nombre, sans d’ailleurs les distinguer
nettement des problémes déterminés, dans son « Arithmétique ».

Il a donné notamment une solution du probléme des triangles .

pythagoriciens. Il ’agit de trouver les triangles rectangles dont
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les longueurs des cotés sont des entiers, donc encore de trouver
les entiers (rationnels) a, b, ¢ qui vérifient la relation:

a4 b = c2,

DioruANTE se limitait aux solutions en entiers positifs.
D’ailleurs les solutions en entiers positifs ou négatifs se déduisent
sans peine des solutions en entiers positifs; nous nous limiterons,
comme DIoPHANTE, & la recherche de ces derniéres.

Remarquons d’abord que, si a, b, ¢ ont un méme facteur d,
les quotients de @, b, ¢ par d sont aussi solutions du probléme.
Nous chercherons donc seulement les solutions « primitives »
telles que a, b, ¢, soient premiers dans leur ensemble. Mais, si a
et b ont un facteur commun premier p, 1l doit diviser ¢2, done
aussi ¢; ainsi @ et b sont premiers entre eux. De méme g et c,
ainsi que b et ¢ sont premiers entre eux. ‘

En particulier, un seul des entiers a, b, c est pair. Mais le
carré d'un nombre impair est un multiple de 4 plus une units;
en effet:

(14+2n)2 =14+4n-1 4n2.

Alnsi, si @ et b étaient tous deux impairs, la somme de leurs
carrés serait un multiple de 4 plus 2 unités et ne pourrait étre
un carré; car le carré d’un nombre impair est impair et le carré
d’un nombre pair est un multiple de 4. Donc ¢ est impair et un
et un seul des entiers a et b est pair. Désignons par b le coté pair
et écrivons la relation de Pythagore sous la forme: \

b? = 2 —a? = (¢ + q) (c—a).

Les facteurs communs & ¢ + g et 4 ¢ — g divisent leur somme
et leur différence, soit:

2¢, 2a.

Puisque a et ¢ sont premiers entre eux, le p.g.c.d. de ¢ + ¢
et de ¢ — @ ne peut étre que 1 ou 2. Mais, puisque @ et ¢ sont
impairs, leur somme et leur différence sont paires; donc le
p-g.c.d. de ¢4 a et de ¢—a est 2. Enfin lo produit de ces
deux derniers nombres est un carré (6% et I'un d’eux au moins
(¢ 4+ a) est positif. Pour que leur p.g.c.d. soit égal & 2, il est
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nécessaire que chacun d’eux soit le produit de 2 et du carré
d’un entier; soit: |
c+a=20%, c—a= 2032

avec o et B -premiers entre eux. D’ou:

a = a? — (2
b= 2af
c = a? 4 B2.

Réciproquement, un systeme d’entiers a, b, ¢ de la forme
précédente avec o > (3 est une solution primitive de la relation
de Pythagore.

Les solutions imprimitives sont exprimées par les formules:

@ = (a2 — 8 ¥
b = 2afy

¢ = (a4 BY) v

ou vy est un entier arbitraire positif ou négatif.

DiopHANTE a étudié plusieurs problemes concernant les
triangles pythagoriciens, dont voici un exemple:

Trouver un triangle rectangle (& cotés entiers) dont [’aire,
diminuée de six unités, forme un carré. C’est-a-dire résoudre en
entiers rationnels positifs le systeme:

a* 4 b = c?

ab— 12 = 2a2.

Il a également étudié d’autres problemes indéterminés, dont
voici un exemple:

Trouver deux entiers tels que leur produit, augmenté soit
de leur somme, soit de chacun d’eux, forme un carré. C’est-a-dire
trouver les solutions en nombres entiers du systéme:

ab + a + b = o?,
ab + a = B2,
ab + b = v*.

I1 faut toutefois remarquer que, pour beaucoup de ces problemes,
DiopHANTE ne savait pas obtenir toutes les solutions en entiers.
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L’ceuvre de DiopHANTE fut étudiée par les mathématiciens
arabes pendant le Moyen-Age, mais fut ignorée par les mathé-
maticiens d’Europe. C’est seulement au xire siécle qu’un Italien,
LeonArD DE Pisg, dit FiBonaccr, retrouve une partie des résul-
tats de DiopHANTE, en étudiant les mathématiques arabes.
Plusieurs Italiens, Frangais et Anglais poursuivent les recherches
et les études de LEoNaRrD, notamment BacHET DE MEzIRAC, qui
édite les manuscrits de DiopuanTE. Cest I’étude de cette édition
qui engage Pierre pE FErmAT, au début du xvire siécle, dans des
recherches arithmétiques. Ce dernier résout plusieurs problémes
nouveaux et surtout introduit des méthodes trés originales.
Mais, occupé par ses fonctions juridiques, il ne publie aucun
travail d’ensemble et ses résultats ne sont connus que par sa
correspondance avec divers mathématiciens et par I’édition d’une
partie de ses notes, faites aprés sa mort par son fils SAMUEL.
Plusieurs propriétés sont énoncées sans explication et c¢’est seule-
ment EULER, LAGRANGE ou LEGENDRE qui les démontreront au
cours du xvime en précisant et en développant les méthodes
de FERMAT. |

Comme exemple, établissons la propriété suivante: la somme
de deux bi-carrés ne peut étre un carré; c’est-a-dire, il n’existe
pas d’entiers a, b, ¢ tous différents de zéro, vérifiant la relation:

at 4 b* = ¢2.

S’1l existe de tels entiers, a2, b2, ¢ sont les cotés entiers d’un
triangle rectangle. Comme précédemment supprimons les fac-
teurs communs de ces trois entiers; aprés cette simplification,
a, b, ¢ sont premiers deux a deux. Si a2 est impair, a2 et b2 sont
de la forme:

a? = a?— B2,  p2=2qf,

avec «, {3 premiers entre eux et « > 3. Mais la premiére de ces
relations s’écrit:

a? 4 P2 = o2

et @, a et B sont premiers 2 & 2; a est impair, donc B est pair et
a et 8 sont de la forme:

o= A% 4+ p? B=2xp
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avec A, p premiers entre eux. En comparant les résultats précé-
dents, nous obtenons: |

b2 = 2afl = 4ap (A% 4 p?).

Mais A, p sont premiers entre eux, donc aussi sont premiers
avec A2 4 p2. Les produits de ces trois nombres premiers 2 & 2
et positifs ne peut étre un carré que si chacun d’eux est carré.
Done |

A = p? w = o2 A2 4 u? = 12

Et par suite:

pt + ot = 72,

Ainsi, d’une solution en entiers a, b, ¢ de la relation proposée,
nous avons déduit une nouvelle solution en entiers p, ¢, T. Nous
pouvons ensuite, par le méme procédé, déduire de cette seconde
solution une troisiéme solution. Et ainsi de suite, indéfiniment.
C’est le procédé de « descente infinie » de FERMAT.

Mais la relation:

b — 4% (0 + uf) = 4evo? (o4 + oY

montre que:
b > Max (p, o).
Et la relation:

a? = o — B2 = (A2 4+ p?)2 — 4%l \
= (2 —p? = (pt —ofr |
= (¢* + o)? (p* — 0?2 *
montre que:
a > Max (p, o).

Ainsi, si la descente infinie de FErRMAT est possible, le maxi-
mum de la valeur absolue des entiers a, b diminue & chaque étape
de la descente. Il y a donec incompatibilité entre les propriétés
des entiers finis et la possibilité d’une descente infinie. La
descente infinie est impossible, ce qui entraine qu’il n’existe pas
de solution en entiers a, b, ¢ tous différents de zéro.

Le résultat que nous venons d’établir montre a fortiori que:
la somme de deux bicarrés ne peut étre un bicarré; c’est-a-dire
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qu’il n’existe pas d’entiers a, b, ¢ non tous nuls vérifiant la

relation:
at + bt = ¢t

Ce nouveau résultat est un cas particulier d’une propriété géné-
rale, connue sous le nom de « théoréme de FERMAT » ou « hypo-
thése de FErmaT ». Elle affirme qu’il n’existe pas d’entiers a, b, ¢
non nuls vérifiant la relation:

a - " = ",

oll n est un entier positif arbitrairement donné. Cette propriété
est énoncée dans les notes de Fermar publiées par son fils.
Elle a donné lieu & de nombreux travaux, mais n’a pu encore étre
démontrée que pour certaines valeurs de n, dont les entiers
inférieurs & 100. Sauf pour les trés petites valeurs de n, les
démonstrations utilisent des propriétés difficiles des entiers algé-
briques. On s’est souvent étonné que FERmMAT ait pu deviner et
peut-étre démontrer une propriété aussi difficile. Il faut toutefois
remarquer que nous ne possédons pas l'original de la note de
FeErMAT, mais seulement des exemplaires de I’édition faite par
son fils. L’énoncé est d’ailleurs donné explicitement seulement
pour les valeurs n = 3 et 4 et suggéré pour les valeurs plus élevées
de n. Il est donc fort possible que Samuel FErmAT ait mal recopié
le texte de son pére et que celui-ci ne prétendait démontrer cette
propriété que pour certaines valeurs de 'exposant. Quoi qu’il
en soit, il faut &tre reconnaissant & Pierre ou Samuel FErmMAT
d’avoir provoqué des travaux importants qui ont contribué au
développement de I'arithmétique.

Il est bien connu que C.-F. GAvuss a poursuivi pendant toute
sa vie des travaux d’arithmétique, en alternance avec des
recherches dans d’autres domaines des mathématiques. Mais il a
abandonné presque complétement les méthodes de DioPHANTE
et de FERMAT pour introduire les problémes et les procédés qui
allaient conduire au développement de la théorie des entiers
algébriques pendant le xixe ou le xxe¢ siécle. (Vest seulement
vers 1900 qu’Henri PoINcARE retourne aux méthodes de FERMAT
et en provoque, pendant les années suivantes, un nouveau déve-
loppement. Il faut toutefois remarquer, comme nous allons le
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voir, que ces nouvelles applications utilisent les propriétés des
entiers algébriques, préalablement établies.

On peut résumer Iidée essentielle de Porncarg de la facon
suivante: il remarque que la «descente infinie» de FERMAT
utilise des transformations simplement rationnelles & coefficients
rationnels sur une courbe ou une variété algébrique associée au
probléme diophantien considéré. Une pareille transformation
permet de déduire d’une solution en nombres rationnels du
probléme une nouvelle solution; dans certaines conditions, elle
permet méme de déduire d’une solution en entiers une autre
solution en entiers. PoiNcarE recherche aussi méthodiquement
que possible ces transformations et leurs conséquences arithmé-
tiques. Pour cela, lui-méme et ses successeurs complétent la
théorie géométrique des correspondances entre courbes ou
variétés algébriques par étude de celles de ces transformations
dont les coefficients sont rationnels, ou plus généralement appar-
tiennent & un corps de base déterminé. ‘

La premiere application faite par PoiNcark lui-méme de
cette méthode concerne les points rationnels des courbes de
genre nul, c’est-a-dire des solutions en entiers de I’équation
homogene d’une telle courbe. Un raisonnement relativement
simple lui permet de montrer qu’une telle courbe peut étre
remplacée par une transformation birationnelle & coefficients
rationnels, soit en une conique, soit en une droite (& coefficients
rationnels). La transformation utilisée permet de déduire les
points rationnels de la courbe considérée de ceux de la courbe
réduite. Or la recherche des points rationnels sur une conique
(ou sur une droite) résulte des travaux de LAGRANGE, LEGENDRE
et Gauss. La méthode de PoincaRrE permet donc d’augmenter
considérablement le champ d’application de ces derniers résultats.

PoincaRrE applique également cette méthode aux courbes de
genre un, pour lesquelles il n’obtient que des résultats incom-
plets, mais qui seront améliorés par ses successeurs: L. J.
MorpELL, A. WEiL, T. NAGELL, ... Nous allons donner une idée
de ces résultats & propos d’un exemple particulier qui est d’ailleurs
intimement lié au probléme de FERMAT précédemment traité.

Considérons la cubique C d’équation non homogéne:

22 = x (2% 4+ 1)
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ou d’équation homogene:
22t = x (x® 4+ 1?) .

Divisions z, z, t par leur p.g.c.d.; nous obtenons ainsi une
nouvelle solution avec z, z, ¢t premiers dans leur ensemble.
Désignons par d le p.g.c.d. de x et t; ainsi:

Ax:x]_d, tztld,

avec z; et {; premiers entre eux. De plus z et ¢ sont premiers
entre eux, puisque z, z et t sont premiers dans leur ensemble.
 L’équation homogéne de C s’écrit encore:

t22 = =z, (x; + 11)d? .

Puisque ¢, est premier avec x;, donc aussi avec 7 + ¢, il doit
diviser d2. Puisque x, z, ¢ sont premiers dans leur ensemble.
z est premier avec le p.g.c.d. de z et ¢, soit d; donc d2 divise .
C’est-a-dire

4% = I
et par suite:

22 = gz (2 +d?) .

Avec un léger changement de notations, tout point rationnel de
la cubique C correspond ainsi & une solution de la relation :

& = o (o + yY

en entiers z, y, z, avec y premier a « et & z. Pour abréger, appelons
ces entiers x, y, z « coordonnées arithmétiques » du point con-
sidéré. ,

PoincarE utilise alors la . représentation classique de la
cubique G par des fonctions elliptiques et le théoréme d’addition
de ces fonctions; il remarque en outre que, pour un choix conve-
nable de la représentation, les formules d’addition, qui sont
rationnelles, ont également leurs coefficients rationnels. Ce qui
peut étre exprimé géométriquement de la facon suivante: les
coordonnées du troisiéme point d’intersection M, de la cubique C
et de la droite qui joint deux points M, et M, de C peuvent étre
calculées par des formules rationnelles & coefficients rationnels

—
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a partir des coordonnées de M, et de M,. Ces formules définissent.
donc une loi de composition L & l'intérieur de I’ensemble des
points rationnels sur C. Cette loi de composition L n’organise pas
I'ensemble des points rationnels sur C en groupe, car elle n’est
pas associative. On peut montrer que la loi de composition L,
Obtenue en effectuant L. sur deux points M;, M, variables puis
sur le résultat obtenu et un point fixe M, est associative pour
toute cubique de genre un. Si de plus M, est un point d’inflexion
de cette cubique, en particulier si M, est le point a I'infini pour
une cubique de la forme: |

y2:x3+Ax+Ba

M, est un élément neutre pour la loi L,; et ’ensemble des points
rationnels forme bien un groupe pour cette loi.

Appliquons en particulier la loi de composition L a deux
points M; et M, confondus (en remplacant la sécante M;M, par
la tangente en M; & C). Nous obtenons ainsi une transformation
simplement rationnelle & coefficients rationnels R entre M; et M,.
Si M, est rationnel, son image M; est aussi rationnelle; mais
inversement un point rationnel M; peut n’étre 'image d’aucun
point rationnel M; dans R. Pour abréger, nous dirons qu’un
point rationnel M, est « pair » §’il est I'image dans R d’au moins
un point rationnel M;. Un calcul simple montre qu'une condition
nécessaire et suffisante pour qu’un point rationnel soit pair est
qu’il existe des entiers rationnels A, u, v tels que les coordonnées
arithmétiques z, y, z de M vérifient les relations:

x = A, x4+ wy? = (pn + iv)?
ou encore:
x = A = p?—v2, y? = 2uv.

D’autre part, on démontre que si deux points rationnels M, et
M, de C sont pairs, leur composé M; dans L est pair. Plus géné-
ralement, la condition pour que le composé dans L. de deux points
rationnels sur G soit pair, définit une relation d’équivalence (ou -
congruence) dans I'ensemble des points rationnels sur G. Une
classe de points pour cette congruence est obtenue en appliquant
a ensemble des points pairs de C la transformation birationnelle
a coefficients rationnels définie comme suit: on compose un point
variable M de C avec un point fixe M; de C.
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En utilisant la loi de composition L,, on peut encore montrer
que I’ensemble des points pairs est le sous-groupe 2G du groupe G
des points rationnels pour L, formé par les composés d’un point
avec lui-méme. Une classe quelconque est un élément du groupe
quotient de G par 2G. |

Un calcul simple montre encore qu’une classe quelconque est
- formée par les points de C dont les coordonnées arithmériques z,
Yy, z vérifient les relations:

z = wi?, x+ w2 = (b+ i) (4 tv)?,
ou
x = ar = b(p?—v?) —2cuv,
y? = 2bpv + ¢ (p2 —v3

ou a, b, c sont des entiers fixes, ot A, p, v sont des entiers arbi-
traires et ou i est I'imaginaire principale. Le triplet d’entiers
a, b, ¢ qui détermine une classe ne peut pas étre choisi de fagon
arbitraire; il est nécessaire que le produit:

a (b% 4 c?)

soit un carré parfait. D’autre part, si on multiplie ¢ par un carré
parfait et b 4 ic par le carré d’un entier du corps de Gauss
engendré par ¢, on ne change pas la classe déterminée par a, b, c.
Cette derniere propriété permet de supprimer tous les facteurs
carrés de a, et aussi ceux de b - tc, puisque les entiers de GAauss
sont décomposables en produits de facteurs premiers.

Utilisons Parithmétique des entiers de Gauss. Pour que
a (b* + c?) soit un carré parfait, a, b + ic et b — ic sans facteurs
carres, 1l faut que tout facteur de a divise b2 ++ ¢2, donc divise
soit b + ic soit b — ic. Mais les facteurs de a divisent z, ceux de
b + ic divisent x 4 iy? et z, y sont premiers entre eux. Done les
seuls facteurs possibles pour a sont les unités du corps de Gauss
soit 4 1, — 1, + 7 et — i. Mais a est entier rationnel et positif,
puisque a (b% -+ %) est le carré d'un entier rationnel. Dongc:

a=1.

- Il est alors nécessaire que b + ¢ soit un carré parfait et b 4 ic,
b — ic sans facteurs carrés. Tout facteur de b + ic doit donc
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diviser b — ic et réciproquement; c’est-a-dire que ces deux
entiers sont des unités de Gauss.

L’unité b + ic = + 1 détermine la classe des points pairs
déja étudiée. L’unité b + ic = — 1 détermine la méme classe
puisque — 1 est le carré de l'entier de Gauss 4 1. L’unité
b + ic = 1 détermine la classe:

x = A%, x+ w2 = (w4 v)?
ou:
x = A = —2uv, y2 = pu?—v2.
L’unité b + ic = — ¢ détermine la méme classe puisque — ¢ est

le produit de ¢ par le carré d’un entier de Gauss.

Finalement, il n’existe que deux classes. De plus, la seconde
classe-n’est pas vide, puisqu’elle contient notamment le point
de coordonnées arithmétiques x = z = 0, y arbitraire.

Or, si un point rationnel M est pair, on peut en déduire un
autre point rationnel, & savoir I'un-des points N dont M est
I'image dans R. Si un point rationnel M est dans la seconde
classe, on peut en déduire un point pair M; en le composant
avec le point fixe A de coordonnées arithmétiques z = z = 0.
Du point M;, on peut déduire un nouveau point rationnel N
dont M; est I'image dans R. Ces constructions donnent de
nouveau un procédé de descente infinie. Cette descente infinie
vérifie des inégalités analogues & celles de 'exemple de FERMAT.
Elles permettent de démontrer que les seuls points rationnels
sur C sont le point de coordonnées arithmétiques x =z = 0 et
le point & Pinfini de coordonnées arithmétiquesy = 0,z = z = 1.

En fait, cet exemple se réduit presque entierement a celui de
FermaT. Nous avons en effet montré que si z, y, z sont les
coordonnées arithmétiques d’un point rationnel sur C:

2 = x (22 +yY),

il est nécessaire que z soit le carré d’un entier rationnel A. La
relation précédente montre donc que

14+y4?p2

o1 p est un entier rationnel. C’est la relation de FErRMAT consi-
dérée. De plus, on constate facilement que la composition de A
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avec un point M de C conduit seulement & intervertir les valeurs
de A et y. Ce qui explique pourquoi le procédé de descente de
FermaT ne semble utiliser qu’une seule opération: il suppose
une permutation possible des entiers a, b ou y, A pour rendre a
ou ¥y pair. |

Mais, si la méthode de PoiNcARE se réduit en fait a celle de
FerMAT sur cet exemple particulier, elle s’applique encore a
d’autres cubiques en faisant toutefois intervenir Iarithmétique
des idéaux dans des corps algébriques plus compliqués que celui
de Gauss. *

Pour conclure, donnons quelques indications sur les problémes
encore ouverts et pour lesquels on peut raisonnablement espérer
des progrés. La recherche des points rationnels sur les courbes
de genre supérieur & un a été abordée par A. WEeIL. En fait
A. WEIL étudie et obtient les points rationnels sur la jacobienne
d’une courbe de genre g; ce qui revient a étudier les systemes de
g points (rationnels ou algébriques) sur la courbe considérée,
tels que leur ensemble soit rationnel, ¢’est-a-dire que les fonc-
tions Symétriques a coefficients rationnels des coordonnées de ces
g points prennent des valeurs rationnelles. Ces systémes com-
prennent notamment les systémes formés par g points tous
rationnels. Mais on ne sait pas encore distinguer ces systémes
particuliers parmi les systémes plus généraux obtenus par A.

WEIL. Il semble d’ailleurs qu’on rencontre dans ce probléeme

une difficulté essentielle.

L’étude des points rationnels sur les surfaces et variété algé-
briques est & peine ébauchée. Les variétés homaloidales, ¢’est-a-dire
celles pour lesquelles on peut trouver des représentation bira-
tionnelles & coefficients algébriques, n’ont donné lieu qu’a quel-
ques résultats isolés. Méme 1’étude des surfaces cubiques, abordée
par B. SEGRE, est encore trés incompléte. 11 est probable qu’une
utilisation convenable de la topologie algébrique, généralisant
I'utilisation de la théorie des groupes, permette d’appliquer aux
variétés homaloidales les méthodes de Porncars et d’obtenir
dans un avenir proche des résultats Importants.

Nous avons rencontré au cours de cette conférence la recherche
des points entiers sur quelques variétés algébriques. Mais en fait
cette recherche se ramenait chaque fois & la recherche des points

N AU S
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rationnels sur une autre variété. Par contre, les conférences de
MM. CuaBAUTY et Pisor ont donné des exemples de recherche
de points entiers qui ne peuvent se ramener a une recherche
de points rationnels pour un autre systéme diophantien. I
semble que les méthodes de DiopHANTE, FERMAT et POINCARE
ne suffisent plus et qu’il soit indispensable d’utiliser les méthodes
d’HERMITE ou de MINKOWSKI pour traiter complétement ces
problémes.

Néanmoins les méthodes de PoiNcARE peuvent encore étre
utiles dans une premiére partie de I’étude. Ainsi, ’étude par
PoincaRrE des points rationnels sur les courbes de genre zéro
a servi de point de départ & I’étude des points entiers sur ces
courbes, faite quelques années plus tard par MarLLer. L’étude
par A. WEIL des points rationnels sur les jacobiennes des courbes
de genre supérieur 4 un a permis & C.-L. SieceL de déterminer
les courbes sur lesquelles existent un nombre infini de points
entiers. L.-J. MorpELL a obtenu quelques surfaces cubiques
contenant un nombre infini de points entiers. Il est possible que
ses résultats puissent étre généralisés par un emploi convenable
de la topologie algébrique.

Enfin, il faut remarquer que certaines de ces recherches
peuvent étre abordées avec des moyens relativement élémen-
taires. Depuis FERMAT, de nombreux amateurs ont d’ailleurs
poursuivi ’étude de I’analyse diophantienne. Et nous devons &
certains d’entre eux des idées ou des résultats plus modestes
mais non négligeables. Les. fautes de raisonnement commises
par d’autres, surtout a propos de I'’hypothése de FErmAT, ne
doivent pas décourager les bonnes volontés. Il reste un vaste
domaine ou chacun peut trouver & satisfaire, quel que soit le
degré de son érudition, son golt pour la recherché scientifique
et pour I’esthétique mathématique.
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