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LES CORPS QUADRATIQUES

par A. Châtelet
(suite)

CHAPITRE III
ALGORITHME DU TABLEAU DE VALEURS

21. Construction des idéaux canoniques.

Dans un corps quadratique, défini (1) par son polynôme
fondamental F(x), pour obtenir tous les idéaux canoniques (7),
au moins de normes limitées, ainsi que certaines de leurs relations
mutuelles de composition et de décomposition (15 et 16), on
peut utiliser l'algorithme suivant.

On construit la table des valeurs, du polynôme F(x), pour les

valeurs entières c, de la variable x, jusqu'à un certain rang, en

principe de part et d'autre de 0. Pour chaque valeur F(c), on
forme les diviseurs m, entiers positifs; chacun est la norme Fun
idéal canonique, de racine c, ou défini par la forme canonique
(m, 0—c).

Pour construire la table, on peut utiliser les différences secondes

qui sont constantes et égales à 2, ou les différences premières, qui
forment une progression arithmétique —2Sc-\-S2.

Le trinôme F{x) a des valeurs égales pour c et S—c, —ou pour
des valeurs de x, symétriques par rapport à S: 2, dont l'une est donc
négative— Par suite la table peut être construite pour les seules
valeurs entières de c, croissantes, à partir de 0; il suffit de la compléter
par symétrie, s'il y a lieu, explicitement ou implicitement.

La table peut être disposée en colonnes (voir tableaux I et II),
dans lesquelles sont inscrits c, F(c) et les diviseurs de F(c).

Il est commode de réserver chaque colonne de diviseurs à
un seul idéal I, dont la norme m est inscrite devant chacune des
racines c+\m, qui sont en progression arithmétique, ou équi-
distantes sur le tableau.

L'Enseignement mathém., t. VI, fasc. 4. 1



242 A. CHATELET

Si l'idéal n'est pas double, une colonne contiguë est attribuée
à l'idéal conjugué T, de même norme m, inscrite devant les
valeurs c'+Xm, symétrique des précédentes, par rapport à S: 2.

Dans les deux colonnes d'un couple d'idéaux conjugués
différents, on peut, plus spécialement, distinguer les racines minimum

c' négative et c symétrique, qui ont été caractérisées (7. 4)

par les limitations:

(S—m): 2<c' <0<zc<{SJrm) : 2; c-f-c' S.

Si l'idéal est double, son unique racine minimum c, qui n'est pas
négative, est caractérisée par les limitations:

0<c<(iS'+^): 2.

Il en résulte qu'on obtient tous les idéaux, de norme au plus
égale à m, et, notamment, avec leurs racines minimum, en limitant

les valeurs de c, de (S—m): 2 exclus à (S+m): 2 inclus,
cette limite n'étant atteinte que pour certains idéaux doubles.

Si le tableau n'est pas étendu aux valeurs négatives de c, on peut
noter un idéal, dont la racine minimum c' est négative, par sa plus

petite racine positive, qui est c'+ra; les limitations des racines ainsi
distinguées sont alors, pour un couple d'idéaux conjugués:

0<c<(6T+m): 2<c'-\-m<m;

Si les idéaux sont égaux (idéal double), c est la seule racine minimum
et il peut être égal à sa limite supérieure; sinon il ne l'atteint pas.

On obtient alors tous les idéaux de norme au plus égale à m,
notamment avec leurs plus petites racines positives, en limitant les

valeurs de c, de 0 inclus à m exclu.

On rappelle les propriétés de la congruence fondamentale
(5 et 6) en les interprétant comme des propriétés du tableau et
des idéaux canoniques ainsi obtenus.

Un diviseur m, du discriminant D, sans facteur carré, et
notamment le diviseur trivial 1, figure dans une, et une seule,
colonne et définit un idéal double. D'après le calcul des zéros
doubles (6) et les conditions de limitation précédentes, la racine
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minimum unique et la racine négative immédiatement précédente,

sont, suivant les cas:

m= 1: (c—1) =—1 ; c 0;

m diviseur de D: 4; S 0; (c—m) —m ; c 0 ;

m non diviseur de D : 4 : (c—m) (S—m) : 2 ; c (S+m) : 2.

Si un nombre premier p, non diviseur du discriminant est dans
le tableau, il y figure dans un, et un seul, couple de colonnes continués,

devant deux progressions arithmétiques, symétriques par
rapport à S: 2, de valeurs de c; il èst la norme commune A un,
et d'un seul, couple d'idéaux conjugués. Il en est alors de même
de toute puissance ph, d'exposant h entier positif.

Si un nombre composé m figure dans la table, il en est de même
de tous ses facteurs premiers. S'il a 2S/ facteurs premiers, non
diviseurs de D, il figure dans 2S/_1 couples de colonnes contiguës
et il est la norme d'autant de couples d'idéaux conjugués. Le cas
de s' 0, ou de m diviseur du discriminant a été étudié ci-dessus.

21.2. Exemples (1). — Le tableau I donne les valeurs de

F(x) — o;2-j-^+10, pour les valeurs entières c, de:

(—1 — 15): 2 —8 à (—1 + 15): 2 7;

et leurs diviseurs, au plus égaux à 15, qui sont les normes des idéaux
canoniques, limitées par 15.

Les colonnes contiguës, correspondant à un couple d'idéaux
conjugués, sont indiquées sans trait de séparation entre les alignements

des diviseurs. Les diviseurs qui sont dans les rangées des
racines minimum sont en caractères gras. Dans chaque colonne on a

indiqué par des traits les limitations extrêmes:

—(m+l):2 {m—1):2;
elles sont comme les racines conjuguées, symétriques par rapport à
l'axe également indiqué x — —1: 2.

Les diviseurs du discriminant D —39, au plus égaux à 15,
sont 1, 3, 13; ils figurent chacun dans une colonne et sont inscrits en
caractères gras respectivement dans les rangées de 0, +1, +6. Ils
sont les normes des idéaux doubles:

(1, 6—0), (3, 6—1), (13, 0—6).
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Tapleau I.

F{x) x2 + x + 10; D —39 —3 X13

c F(c) Diviseurs ou Normes

—8 66 1 2 3 6 11

—7 52 1 2 4 13

—6 40 1 2 4 5 8 10

—5 30 1 2 3 5 6 10 15

—4 22 1 2 11

—3 16 1 2 4 8

—2 12 1 2 3 4 6 12

—1 10 1 2 5 10

0 10 1 2 5 10

+ 1 12 1 2 3 4 6 12

+ 2 16 1 2 4 8

+ 3 22 1 2 11

+ 4 30 1 2 3 5 6 10 15

+ 5 40 1 2 4 5 8 10

+ 6 52 1 2 4 13

+ 7 66 1 2 3 6 11

Un autre diviseur 39, figurerait dans la table suffisamment étendue,
en caractère gras, dans l'alignement de 19 et dans les alignements des

19+39X, qui sont aussi des racines des trois idéaux précédents.

Il y a des couples d'idéaux conjugués (colonnes contiguës), de

normes 2, 4, 8, puissances de 2, de racines minimum respectives:

—1 et 0, —2 et +1, —3 et +2;
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de normes 5 et 11, nombres premiers et de racines minimum respectives :

—1 et Oj —4 et +3;
de normes 6, 12, 15, nombres composés avec un seul facteur non
diviseur du discriminant, et de racines minimum respectives:

—2 et +1; —2 et +1; —5 et +4.

Le nombre 10, qui a s' — 2 facteurs premiers 2,5 figurant dans

la table et non diviseurs de D, figure dans deux couples de colonnes

contiguës, sur les alignements des racines minimums respectives:

—1 et 0; —5 et +4.

Tableau II.

F(x) z2 — 15; D + 60 4x3x5.

c F(c) Diviseurs ou normes

0 —15 1 3 5 15
ï —14 1 2 7 14
2 —11 1 — 11
3 —6 1 2 3 6
4 + 1 1

5 10 1 2 5 10
6 21 1 3 — 7 21
7 34 1 2 17
8 49 1 7

9 66 1 2 3 6 11 22
10 85 1 5 17
11 106 1 2
12 129 1 3

13 154 1 2 7 11 14 22
14 181 1

15 210 1 2 3 5 6 7 10 14 15 21
16 241 1

17 274 1 2

18 309 1 3

19 346 1 2

20 385 1 5 7 11
21 426 1 2 3 6

22 469 1 7
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Les valeurs F(c), inscrites dans la table montrent encore l'existence

d'idéaux canoniques, non inscrits, de racine minimum c et de norme m:

c: —3, +2; -4, +3; —5, +4; —6, +5; —7, +6; —8, +7.
m: 16 22 30 20; 40 26; 52 22; 33; 66.

Le tableau II donne les valeurs de F{x) — x2—15, pour les valeurs
entières de c, de:

0 à 22

et leurs diviseurs, au plus égaux à 22, qui sont les normes des idéaux
canoniques, limités à 22. Le tableau est limité cette fois aux valeurs
positives de c pour pouvoir comprendre un nombre plus grand
de diviseurs.

Gomme pour le premier exemple, les colonnes contiguës,
correspondant à un couplé d'idéaux conjugués, sont indiquées sans trait
de séparation entre les alignements de diviseurs. Les diviseurs qui
sont dans les rangées des racines positives minimum sont en caractère

gras. Dans chaque colonne, on a indiqué par un trait la limitation
extrême m, pour ces racines, sauf quand elle coïncide avec une de ces

racines (racine minimum nulle).

Les diviseurs du discriminant, sans facteurs carrés, au plus égaux
à 22, sont 1, 2, 3, 5, 6, 10, 15; ils figurent chacun dans une colonne et
sont inscrits en caractère gras respectivement dans les rangées 0, 1,0,
0, 3, 5, 0; ils sont les normes des idéaux doubles:

(î, e—o), (2, e—î), (3, e-o), (5, e—o>, (6, e—3),
(10, 6—5), (15, 6—0).

Le diviseur 30 figurerait dans la table suffisamment étendue, en
caractère gras dans la rangée de 15.

Il y a des couples d'idéaux conjugués (colonnes contiguës),
de normes 7, 11, 17, nombres premiers, et de racines positives
minimums respectives :

1 et 6, 2 et 9, 7 et 10,

de normes 14, 21, 22 avec un seul facteur non diviseur du discriminant,

et de racines positives minimum respectives:

1 et 13, 6 et 15, 9 et 13.

Les valeurs de F{c), inscrites dans la table, montrent encore
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l'existence d'idéaux canoniques, non inscrits, de racine positive

minimum c (ou, c'+m) et de norme m:

7 : 7, 27; 9, 24; 9, 57; 10, 75; 11, 42; 11, 95;

m: 34 33 66 85 53 106 ;

7: 15, 195; 16, 215; 17, 120; 17, 257; 18, 85;
m: 210 241 137 274 103

7:18,291; 19,154; 19,327; 20,35; 20,57; 20,365;
m: 309 173 346 55 77 385

c : 21, 50; 21,121; 21,192; 21,405; 22,45; 22,447.
m: 71 142 213 426 67 469

22. Nombres premiers déeomposables dans le corps.

On peut caractériser, à priori, les nombres premiers qui sont
des diviseurs des valeurs de la table. En utilisant des propriétés
de la Théorie élémentaire des nombres et, plus spécialement la
loi de réciprocité quadratique 1), on peut démontrer que:

en plus des diviseurs du discriminant, les nombres premiers,
pour qui la congruence fondamentale est possible, —ou qui sont
normes de deux idéaux premiers, du premier degré, conjugués—
—ou déeomposables en le produit de ces deux idéaux— sont
ceux qui appartiennent à certaines progressions arithmétiques, dont
la raison commune est la valeur absolue |D|, du discriminant
du corps, et qui sont en nombre <p(|D|) |2.

La congruence fondamentale (1), caractérisée par le nombre
entier d, est possible ou impossible suivant que, d et, par suite,
le discriminant D (égal à d, ou à 4d) est congru, ou n'est pas congru,
mod. p, au carré d'un nombre entier.

On peut représenter cette propriété de D, relative au nombre
premier /?, par le symbole de Legendre. Il peut être construit en

9 Ces propriétés sont notamment exposées dans les ouvrages français:
J.-A. Serret, Algèbre supérieure, 3e édition, 1866 et suivantes; section III,
ch. 2; E. Borel et J. Drach, d'après des leçons de J. Tannery,
Introduction à la théorie des Nombres et à VAlgèbre supérieure, 1894, lre partie,
ch. IV; J. Tannery, Leçons d'Arithmétique, 1896, ch. XIV, § 5; E. Cahen'
Eléments de la Théorie des Nombres, 190Ö — Théorie des Nombres — tome
second, 1924, ch. XVI. On trouvera dans ces ouvrages la définition de la
fonction — ou indicateur— d'EuLER <p(rc).
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utilisant l'indice de D,défini par une racine primitive g, mod. :

gind. DD,(mod.p) => (_i)ind. n

Ce symbole est égal à +1, ou à —1, suivant que l'exposant ind. Z),
(défini mod. p 1) est pair ou impair —ou que D est congru ou
n est pas congru à un carré— donc suivant que la congruence
fondamentale est possible ou impossible.

L'expression du symbole met en évidence son caractère
multiplicatif: il est égal au produit des symboles des facteurs (entiers
positifs ou négatifs) d'une décomposition de D en produit:

DIlSi => (—l)ind. D
_ ^4)E(ind.8i) ^

Il est commode de décomposer D en un produit de facteurs 8t,
comprenant éventuellement un facteur, noté égal à —4,
ou +8, ou —8, et des facteurs premiers impairs, différents,
chacun étant affecté d'un signe convenable, de façon qu'il soit
congru à +1, mod. 4. [Exemples: —3, +5, —7, —11, +13, ...]

L'examen des divers cas montre que ceci est possible:
1. d impair,positif ou négatif, congru à +1, mod. 4. Alors D

est égal à d; sa valeur absolue est égale à un produit de facteurs
premiers impairs différents. Le nombre de ceux qui sont congrus à —1,
mod. 4, est pair ou impair, suivant que d est positif ou négatif; on
peut donc les affecter du signe —. Exemples:

d= 3; +5; +21 ; —15 ; +65 ;
D —3; +5; (—3)x(—7); (—3)x(+5); (+5)x( + 13);

2. d impair,positif ou négatif, congru à —1, mod. 4. Alors D
est égal à 4d; on conserve le signe de en affectant 4 du signe —.
Exemples:

+3 î -—5 ; —21 ;

(—4)x (—3) ; (—4)x(+5); (—4) x (—3) X (—7) ;

3. d pair, positif ou négatif. Alors 4d a un facteur 8 qu'on
affecte du signe + ou —, suivant les signes affectés éventuellement
aux autres facteurs. Exemples:

d=+2; —2; +6 ; —6 ; +10 ;

D +8; —8; (—8)x(—3);(+8)x(—3); (+8)x(+5);

d —1
D —4
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Pour calculer les divers symboles, ainsi considérés, on peut
utiliser la loi de réciprocité, bornée au cas d'un facteur 8, impair
et congru à +1, mod. 4, ou égal à —4, +8, ou —8. Elle est alors
exprimée par les égalités:

S impair premier, congru à +1, mod. 4: -)W VIs!

-4
P

(+8

+1 ou •—1, suivant que +1 ou —1, (mod. 4);

+1 ou —1, suivant que
\ P

—V— I +1 ou —1, suivant que

p -fl ou —1,
ou (mod. 8);

p +3 ou —3,

p +1 ou +3,
ou (mod. 8).

p —1 ou —3,

Il en résulte que, pour chaque facteur 8, considéré (y compris

—4, +8, et —8), le symbole a la même valeur pour des
nombres premiers p, congrus entre eux, mod. |8| et, pour le
calculer, on peut remplacer p par tout nombre congru, mod. |§|;
notamment par le reste de sa division par |§| (compris entre 1

et |8| et premier avec |8|).

Les facteurs |8j| étant premiers entre eux, deux à deux, pour
que des nombres soient simultanément congrus, suivant chacun
d'eux, il faut et il suffit qu'ils soient congrus suivant leur
produit |D|.

Les valeurs simultanées des symboles des facteurs 8t et par
suite celle de leur produit sont donc les mêmes pour tous les
nombres premiers appartenant à une même progression arithmétique,

de raison |D|; —donc congrus, mod. |D|—
Dans les (p^SJ) valeurs, incongrues, mod. ISJ:
|8J impair, <P(|8i|) 1^—1; «p(4) 2; ç(8) 4;

la moitié ont un symbole de Legendre positif. Un raisonnement
simple de récurrence montre qu'il en est de même pour les

<p(|D|) n<p(|Si|) valeurs incongrues, mod. \D\ n[Si|.
Il y a <p(|Z)|):2 progressions pour lesquelles le symbole de
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Legendre est positif; les nombres premiers qui leur appartiennent

sont ceux qui sont normes d'idéaux premiers conjugués
distincts —ou diviseurs des valeurs du tableau, non diviseurs
de \D\

Le tableau III donne un exemple de calcul de ces progressions

pour le corps de discriminant —39 (tableau I). On a calculé directement,

sans utiliser les indices, les classes, mod. 3 et mod. 13, qui
sont congrues à des carrés.

On obtient ainsi 12 progressions arithmétiques, on donne les
premiers nombres premiers (inférieurs à 500) qui leur appartiennent;

Tableau III.
Corps de discriminant D —39 (—3)x(+ 13); 9(39) 24.

Classes mod. 3: l2 22 1,

MnH iq / l2 122 1 ; 22 112 4; 32 102 9
1 42 92 3; 52 82 12; 62 72 m 10.

mod. 39

p a

mod. 3 mod. 13 (tMO- (p)-(Ä) (X)
1 1 1 +1 +1 +1
2 2 2 —1 —1 +1
4 1 4 +1 +1 +1
5 2 5 —1 —1 +1
7 1 7 +1 —1 —1
8 2 8 —1 —1 +1

10 1 10 +1 +1 +1
11 2 11 —1 —1 +1
14 2 1 —1 +1 —1
16 1 3 +1 +1 +1
17 2 4 —1 +1 —1
19 1 6 +1 —1 —1
20 2 7 —1 —1 +1
22 1 9 +1 +1 +1
23 2 10 —1 +1 —1
25 1 12 +1 +1

'

+1
28 1 2 +1 —1 —1
29 2 3 —1 +1 —1
31 1 5 +1 —1 —1
32 2 6 —1 —1 +1
34 1 8 +1 —1 —1
35 2 9 —1 +1 —1
37 1 11 +1 ' —1 —1
38 2 12 1 +1 —1



LES CORPS QUADRATIQUES 251

chacun d'eux est la norme de deux idéaux canoniques conjugués;
dont l'un a une racine minimum positive c, indiquée entre parenthèses;
la racine minimum de l'autre est —1—c (ainsi qu'il est indiqué dans

le tableau I, pour les premiers de ces idéaux, de normes 2 et 5):
' 1+39X: 79(17) 157 (39) 313(141)
2+39X: 2 (0) 41 (8) 197 (71) 353(145); 431(192);
4+39X: 43(20) 199 (44) 277 (66) 433 (41);
5+39X: 5 (0) 83 (12) 239(102) 317 (43);
8+39X: 47(16) 281 (23) 359 (53)

10+39X : 127 (35) 283 (33) 439(209)
U+39X: 11 (3) 89 (26) 167 (31) 401 (89); 479(169);
16+39X: 211 (79) 367 (60)
20+39X: 59(21) 137 (28) 293 (113) 449(189);
22+39X: 61(24) 139 (64) 373 (38)
25+39X: 103 (47) 181 (46) 337(100)
32+39X: 71 (11) 149 (54) 227 (42) 383 (27); 461 (52).

Le tableau IV donne de même un exemple de calcul des progressions

pour le corps de discriminant +60 (tableau II).

F(x) x2—15; D

Tableau I.V.

+ 60 (—4) X (—3) X + 5) ; cp(60) 16.

mod. 60 1 7 11 13 17 19 23 29 31 37 41 43 47 49 53 59

mod. 4 1 • 3 3 1 1 3 3 1 3 1 1 3 3 1 1 3

(t) + — — + + — — + — + + — — + + —

mod. 3 1 1 2 1 2 1 2 2 1 1 2 1 2 1 2 2

(t) + + + — + - — + + — + — + — —

mod. 5 1< 2 1 3 2 4 3 4 1 2 1 3 2 4 3 4

(i) + — + — — + — + + — + — — + — +

(t) + + + — + + — + + +
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On obtient 8 progressions arithmétiques, dont on donne encore
les premiers nombres premiers (inférieurs à 500), ainsi que la norme
minimum positive de l'un des idéaux dont ils sont la norme :

1 + 15X: 61(25); 181 (14); 241 (16); 421 (65);
7+15A: 7 (1); 67 (22); 127 (53); 307(130); 367(105);

487(224);
11 + 15A: 11 (2); 71 (21); 131 (43); 191 (46); 251 (39);

311(126); 431 (51); 491 (83);
17+15A: 17 (7); 137 (17); 197 (58); 257 (23); 317 (40);
43+15X: 43(12); 103 (18); 163 (34); 223 (98); 283 (79);

463(101);
49+15X: 109(48); 229(106); 349(109); 409(158);
53+15X: 53(11); 113 (44); 173 (19); 233 (99); 293(111);

353(108);
59+15X: 59(29); 179 (33); 239 (60); 359 (71); 419 (68);

479 (203).

Il y a uneinfinité de nombres premiers vérifiant les conditions
précédentes, donc à'idéaux premiers du premier degré, dans tout
corps quadratique.

On peut le démontrer en s'inspirant du raisonnement arithmétique

qui est utilisé couramment pour démontrer l'existence
d'une infinité de nombres premiers. On forme le produit C,
des m premiers nombres premiers p^ à l'exception des diviseurs
du discriminant D. Le nombre entier C2—D admet un diviseur
premier p, supérieur à tous les piy et qui vérifie la condition
imposée 1).

23. Congruence et classes d'idéaux.

De même qu'on a construit le groupe quotient c^|â, des
classes du groupe Ç(d), relativement au sous-groupe â, des

Cette propriété résulte aussi du théorème de la progression arithmétique,

qui affirme 1 existence d'une infinité de nombres premiers dans
chacune des progressions arithmétiques, construites comme il a été dit,
de raison \D\ et dont les premiers termes sont premiers avec |D|. Ceci
montre aussi bien l'existence d'une infinité d'idéaux premiers du second
degré —ou de nombres premiers ne vérifiant pas la condition imposée—.
On pourrait aussi en donner une démonstration directe, mais sans distinguer

l'appartenance des normes aux différentes progressions.
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idéaux principaux rationnels (14 bis), on peut construire le

groupe quotient relativement au sous-groupe Ûl, des idéaux

principaux (p). Il peut être utile de donner une construction
directe de cette répartition, en définissant d'abord une congruence

—ou un mode d'égalité—
Définition. — Deux idéaux, non nuls, d'un corps R(6), sont

congrus [sous entendu, mod. dl] lorsque leur quotient est égal à un
idéal principal.

Cette relation est désignée par le signe séparant les idéaux

congrus; elle a les qualités d'une égalité. Elle est réflexive (I ^ I)
le quotient d'un idéal par lui-même est l'idéal unité qui est principal.
Elle est symétrique, l'ordre du quotient est indifférent: si IxJ-1 est

principal, il en est de même de Jxl-\ qui est l'idéal inverse. Elle
est transitive:

{I - J et J ~ K} => I - K;

car si les quotients IxJ-1 et JxK-1 sont des idéaux principaux, il
en est de même de IxK-1, qui est égal à leur produit.

Il est équivalent de dire que deux idéaux sont congrus, si l'un
d'eux, et, par suite, chacun d'eux, est égal au produit de l'autre par
un idéal principal (p) non nul, ou par la base p de cet idéal:

I ^ J <=> Existe p 7^ 0 et I — (p)xJ ou pxJ.

La multiplication et la division conservent —ou sont compatibles

avec— la congruence: des produits et des quotients d'idéaux
respectivement congrus, sont des idéaux congrus.

En effet si Ixlj-1 et J X Jj-1 sont des idéaux principaux, il en est
de même des idéaux:

(IXDx^XJ!)-1 - (ixlr^xtfxJr1);
(ixj-^x^xjr1)-1 (ixir^xdxjr1)-1;

qui en sont un produit et un quotient..

La conjugaison conserve —ou est compatible avec— la
congruence: les idéaux conjugués de deux idéaux congrus sont
congrus: si IxJ-1 est principal, il en est de même de I'x(J')-1,
qui est son conjugué.
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Définition. — Dans un corps quadratique, on appelle classe
d'idéaux (sous-entendu mod. dl) toute famille d'idéaux formée

par ceux qui sont congrus à un idéal non nul.
En raison de la transitivité de la congruence, les idéaux

d'une classe sont congrus entre eux, deux à deux ; la classe peut
être définie —ou engendrée— par un de ses idéaux, choisi
arbitrairement.

Les classes d'idéaux, dans un corps constituent une répartition

de l'ensemble —ou du groupe Ç— des idéaux non nuls:
tout idéal appartient à une classe (celle qu'il engendre); deux
classes qui ont un idéal commun sont égales.

On peut multiplier les classes d'idéaux d'un corps: l'ensemble
des produits de tout idéal A, d'une classe cl, par tout idéal B,
d'une classe 6b (éventuellement égale à Cl) est une classe, qui est
appelée le produit (de la multiplication) des classes et qui est
désignée par tlx6b.

Les produits A X B sont congrus entre eux, en raison de la conservation

de la congruence dans la multiplication. En outre tout idéal I
congru à un produit AxB est lui-même égal à un produit, puisque:

I (AxB) x p Ax(Bxp);
et Bxp appartient à 6b.

La multiplication des classes ainsi définie, s'étend à plusieurs
facteurs; elle est manifestement associative et commutative, comme
celle des idéaux (12), qui sert à la définir. Elle permet de définir les

puissances (d'exposants entiers positifs) d'une classe.

La classe principale est la famille —ou le groupe— dl, de
tous les idéaux principaux (p), non nuls, qui sont manifestement
tous ceux qui sont congrus à l'un quelconque d'entre eux.

Cette classe est un élément neutre —ou unité— pour la
multiplication (des classes): toute classe est égale ä son produit
par 61:

6ix6i (Si; notamment di2 6iX6l 61.

Deux classes cl et cl' (notées par une même lettre avec et
sans accent) sont conjuguées, lorsque Vune, et, par suite, chacune
d'elles, est constituée par les idéaux conjugués de tous les idéaux de

Vautre.
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~ Les conjugués des idéaux d'une classe sont en effet congrus entre

eux, en raison de la conservation de la congruence dans la conjugaison,
et la relation est réciproque. Pour que deux classes soient conjuguées,
il suffit que l'une contienne le conjugué d'un idéal de l'autre.

Deux classes sont inverses (au sens général de ce qualificatif)
—ou chacune d'elles est l'inverse de l'autre— lorsque leur produit

est égal à la classe principale —ou classe unité—
Deux classes conjuguées sont inverses et réciproquement:

axa'= oi et eixei"1 lR => ci"1 civ
D'une part, le produit (XxcX' de deux classes conjuguées contient

le produit AxA' de deux idéaux conjugués, qui est égal à l'idéal
principal (rationnel), (7V(A)), dont la base est la norme (commune)
des idéaux conjugués (13); c'est donc la classe cR, des idéaux principaux.

Inversement si deux idéaux sont inverses, l'associativité de la
multiplication montre qu'ils sont conjugués:

a x a-1 lk=> (a' x a) xcr1 a' xck => a-1 a;
Deux classes conjuguées sont donc, chacune constituée par les

inverses des idéaux de l'autre. C'est aussi bien une conséquence de
la construction de l'inverse (14); l'idéal A'x(iV(A)) 1 est à la fois
inverse de A et congru à son conjugué A'.

Un raisonnement général (déjà utilisé ci-dessus pour la division
des idéaux; 14) permet de déduire de l'existence d'une, classe inverse,
la possibilité et la détermination de la division des classes.

Etant données une classe dividende cV et une classe diviseur

eX, il existe une et une seule classe üb, appelée quotient de a)
par cX, dont le produit (de la multiplication) par cl est égal à a?.

Ce quotient est égal au produit de la classe dividende par
l'inverse —ou la conjuguée— de la classe diviseur.

C est une conséquence de l'associativité de la multiplication:
eX x 6b cO o (0Cxa)x6b tVxcQ o ei'xco.

Cette règle comprend, comme cas .particulier, la construction,
déjà faite, du quotient de la classe principale —ou unité— tR, par
une classe (X, qui est égal à la classe conjuguée —ou inverse— (X/.
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Une classe est double, lorsqu'elle est égale à sa conjuguée, qui
est aussi son inverse, son carré est égal à dl.

Pour qu'une classe soit double, il suffit qu'elle contienne deux
idéaux conjugués; notamment un idéal double.

Les qualités de la multiplication et de la division des classes

peuvent encore être exprimées (partiellement) par la constitution d'un

groupe (ainsi qu'il a déjà été dit, dans un corps R(0), pour ses éléments

non nuls (1) ; pour ses idéaux non nuls (groupe cj) et pour ses idéaux

principaux rationnels (groupe S) [14 et 14 bis].

Dans un corps quadratique, les classes d'idéaux (mod. dl)
forment un groupe multiplicatif abélien, dont l'élément unité est
la classe principale dl, qui peut être aussi désignée par (1).

Ce groupe contient les puissances cl*, d'exposant x, entier
quelconque (14), d'une classe cl, et les monômes —ou produits—
de puissances de classes cXxx 6bv x... Toutes les puissances de d!
sont égales à elle-même.

On aurait pu construire ce groupe des classes en utilisant des

propriétés générales des groupes abéliens.

Dans le groupe multiplicatif 6^(0), des idéaux non nuls (14 bis),
les idéaux principaux (p) constituent évidemment un sous-groupe dl,
(contenant lui-même le sous-groupe des idéaux principaux rationnels).

Deux idéaux de Çj sont congrus lorsque leur quotient est dans dl,
ce qui est une propriété réciproque en raison de la commutativité de

la multiplication.
Les classes d idéaux sont les classes de répartition des éléments

du groupe Cj, relativement au sous-groupe dl; on vérifie d'une façon

générale qu'elles se multiplient et se divisent et constituent par suite

un groupe multiplicatif abélien, qui est appelé (généralement) groupe
quotient Cj |dl, de Cj par dl.

Un corps principal (19) ne contient que la seule classe

principale, qui constitue, à elle seule, un groupe d'un seul élément
unité.

On étudie ci-dessous la structure du groupe des classes, dans

un corps quadratique quelconque et on montre notamment
qu'il ne contient qu'un nombre fini de classes —ou qu'il est

d'ordre fini—
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24. Congruence d'idéaux canoniques.

La congruence des idéaux et la formation des classes peuvent
être ramenées à une congruence et à un calcul d'idéaux canoniques,
en utilisant la remarque suivante:

Un idéal fractionnaire I gxM est congru à son facteur
canonique M.

La forme canonique d'un idéal I (8) est en effet le produit de son
facteur canonique M par le facteur rationnel q, —ou l'idéal principal
(rationnel) (q)— (12).

Donc deux idéaux, non nuls, sont congrus, si et seulement si il en
est ainsi de leurs facteurs canoniques (puisque la congruence est
transitive).

Ces considérations sont encore des conséquences des propriétés
générales des groupes. Le groupe (R, des idéaux principaux admet
comme sous-groupe, le groupe A, des idéaux principaux rationnels.
Dans chaque classe de g et de dl, mod. â, il y a un et un seul idéal
canonique. La répartition des idéaux canoniques en classes est donc
équivalente à la formation du groupe quotient des groupes quotients
(§|â)|(dl|â).

La relation dassociation (16) d'idéaux canoniques, qui se
présente naturellement, comme il a été dit (21), dans Valgorithme
du tableau de valeurs, entraîne une relation entre les classes.

Théorème des idéaux associés. — Deux idéaux canoniques
associés, relativement à une racine c, définissent —ou
engendrent— des classes inverses, donc conjuguées (23). En particulier
un idéal réfléchi définit une classe double (23).

En effet, le produit de deux idéaux associés, suivant une racine c,
étant l'idéal principal (0—c), le produit des classes qu'ils définissent
est la classe principale —ou chacun est congru à l'idéal conjugué de
l'autre— :

MxN (0—c) => M ~ N' et M'~ N.

On peut expliciter cette relation de congruence en précisant
une base de 1 idéal principal multiplicateur. Les expressions!

M {m, 0—c), N - (n, 0—c); mxn |/?(c)|;

L'Enseignement mathém t. VI, fasc. 4. 0
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Mx[(6'—c): m] N'; M N'x[(6— h].
En appliquant la règle du produit d'idéaux, définis l'un par une

basearithmétique, l'autre par une base algébrique (13), on obtient:

Mx(0'—c) (m, 6—c)x(6'— c)x(0— (6— x(0(mx(0'c), -E(c)) (mx(0-
On peut vérifier de même la seconde formule ; on peut aussi bien
former le produit des deux multiplicateurs indiqués qui doivent être
inverses :

[(0'—c) : m] x[(0—c):n]
[(0—c)x(6—c)]: (mxn) [F{c)]\ (mxn);

le résultat est bien égal à +1 ou à —1 (suivant le signe de F(c)).

La congruence de deux idéaux canoniques établit entre leurs
éléments une correspondance biunivoque qui conserve l'addition
—ou est un isomorphisme des modules— Elle fait par suite
corespondre des bases arithmétiques libres (9).

Theoreme des bases des idéaux congrus. — Une congruence
entre des idéaux canoniques M et M1? fait correspondre à une base
arithmétique libre, de l'un (qui peut être sa base canonique),
une base arithmétique libre de Vautre M (donc équivalente arithmé-
tiquement à sa base canonique (9).

Les éléments J*, de l'idéal canonique M1? sont des entiers algébriques,

représentés proprement, au moyen d'une base arithmétique
libre de deux éléments oq ßj par les expressions:

| ^Xoq+2/xßi; x,y entiers rationnels.

La congruence étant définie par un multiplicateur (élément du corps) p,
non nul, les produits:

pX l pXOrXoq+yXßi) ^X(pXa1)+?/X(pXß1),
sont des éléments de M pMl5 donc des entiers algébriques, qui sont
représentés ainsi au moyen de la base arithmétique pxoq pXßx. Cette
représentation est propre et la base est libre, car l'annulation de p x Ç

est équivalente à celle de donc à celle de x et de y.
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En outre les éléments de M et de se correspondent, en étant

représentés par les mêmes coefficients (entiers rationnels) relativement

aux bases correspondantes, ax ßx et p x oq p X ßx.

Cette correspondance peut notamment être appliquée à des

idéaux congrus, construits par l'intermédiaire d'idéaux associés:

M ï= (m, 0—c), N (ft, 0—c); M-, N'.

La congruence de M1 à M est réalisée par le multiplicateur
(0—c) : ft. Appliqué à la base (ft, 0'—c), de il donnerait la base

canonique de M. Mais, appliqué à une base (ft, 0—cj, (où ct est

une racine conjuguée de c, suivant le module ft), il donne une
base arithmétique libre de Mp

ftX[(0—c): ft] (0—c), [(0—c1)x(0—c)]: n

qui peut être différente de la base canonique, mais lui est arithmé-
tiquement équivalente.

Dans l'exemple du tableau I, on. peut considérer les idéaux
associés :

M - (3, 0—1), N (4, 0—1), N' (4, 0—2);

le multiplicateur de M1 étant (0—1): 4, à la base choisie de Mx, il fait
correspondre :

4x[(0—1): 4] - 0—1, [(0—1) x (0—2)]: 4 —0—2.

On vérifie bien que ce couple d'éléments est bien arithmétiquement
équivalent à la base canonique de M:

0—1 0 1 3

X
—6—2 —1 —1 6—1

25. Idéaux canoniques réduits.

Théorème du nombre de classes d'idéaux. — Dans un corps
quadratique, le nombre déclassés d'idéaux, (mod. öl) —ou l'ordre
du groupe quotient g\öl— est fini.
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Pour démontrer cette propriété, on peut ramener la construction

des classes à celle d'idéaux canoniques particuliers, appelés
réduits, pour lesquels on vérifie que:

1. Toute classe contient au moins un idéal réduit —ou tout
idéal canonique est congru à (au moins) un idéal réduit—

2. Le nombre total d'idéaux (canoniques) réduits est fini. Il
en est, à fortiori, de même du nombre de classés, qui lui est au
plus égal, et chacune d'elles ne renferme qu'un nombre fini
d'idéaux réduits.

Le choix d'une définition d'un idéal réduit présente évidemment

un certain caractère arbitraire; il est justifié, à posteriori,
par la vérification des deux qualités précédentes.

Définition. — Un idéal canonique réduit, ou, par abréviation,

un idéal réduit, est un idéal canonique (m, 0—c), dont le

carré de la norme est au plus égal à la valeur absolue du polynôme

fondamental, |i^(c)| pour la racine minimum c (de cet idéal):

|2c—S| < m, ou bien 2c—S — m; m2 < |F(c)|.

Deux idéaux (canoniques) conjugués (7), distincts, dont les

racines minimum sont c et S—c (21), sont simultanément réduits,

puisque F(c) et F(S—c) sont égaux.
Pour un idéal double, la norme m étant diviseur du

discriminant, d'après la valeur de la racine minimum indiquée
ci-dessus (21), la condition de réduction est équivalente, suivant
les cas à:

c — 0: m2 < |jF(0)|, ou 4m2 < \D\;

0- c / 2 ^ I 2 ni f3m2 < \DU D < 02c-S-m; 4ma < \ms D\; ^ < ^ ß > 0

L'idéal unité (1, 0—0) est manifestement réduit.

1. Pour tout idéal canonique M, on peut construire, au moins
un idéal congru, qui soit réduit.

On peut raisonner par récurrence sur la norme. La construction
est triviale si M vérifie les conditions de réduction ; il est congru
à lui-même.
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La construction est encore évidente s'il existe une racine c, de

l'idéal, pour laquelle |.F(c)| m. Alors l'idéal est principal (11):

(m, 0—c) (|i^(c)|, 0—c) î= (0—c);

il est congru à l'idéal unité qui est réduit.

La construction existe pour la valeur 1, de la norme, puisque
l'idéal est alors l'idéal unité, qui est réduit. Il suffit d'établir, par
récurrence, qu'un idéal canonique, qui ne vérifie pas les deux constructions

triviales précédentes, est congru à un idéal canonique, de norme

\plus petite.

Un tel idéal, a, au moins, une racine c (notamment sa racine

minimum) telle que:

m2 > \F(c) | et m < |.F(c)|.

L'idéal N (ra, 0—c), de norme |.F(c)|: m n, qui lui est associé,

vérifie les conditions de comparaison:

1 < n |i^(c)|: m < m.

Or l'idéal M est congru à l'idéal N' conjugué de N (22), dont la norme n
est bien inférieure à m.

Si la racine c est minimum pour N, cet idéal et son conjugué N'
sont réduits, et la récurrence est terminée.

2. Leê conditions de réduction entraînent une limitation des

racines minimum, donc aussi des normes des idéaux réduits, dont
le nombre est, par suite, fini.

Cette limitation est exprimée par la comparaison (générale) :

(2c—61)2 < |.F(c)|;

qui est équivalente, suivant le signe du discriminant D, à:

D >0: F(c) < 0; 5(2 \c—S)2<D ; et 4m2 < ;

D < 0: 3(2c—S)2< |D|; et 3m2 < |D|.

La condition générale résulte immédiatement de l'élimination
de m entre les conditions de réduction.

Si Dest positif, les valeurs de c qui rendent F{c) positif ne vérifient
pas cette condition, car:

4F(c)(2 c—Sf—D=> (2c— > 4F(c) > F(c).
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Pour les valeurs de c qui rendent F(c) négatif, l'expression du
polynôme entraîne l'équivalence:

4(2c— -S)2<4|F(c)| D—(2c—S)*>5(2c— < D.
En outre :

4m2 < D—(2c—S)2 < D => im2 < D.

Si D est négatif, l'expression du polynôme, dont la valeur est
toujours positive, entraîne l'équivalence:

4(2c—S)2 < 4F(c) (2c—S)2+\D\ o 3(2c—Sf < \D\;

en outre:

4m2, < (2c—^iS,)2+|Z)| < m2jr\D\ => 3m2 < \D\.

Ceci acquis, pour obtenir les idéaux réduits, en utilisant le
tableau des valeurs de F(c), pour c entier croissant à partir de 0,
on peut:

I. Déterminer la limite r des entiers, à partir de laquelle la
condition de limitation n'est plus vérifiée, c'est-à-dire telle que

(2c—S)2 > \F(e)\ o e > r;
ce qui est équivalent, suivant le signe de D, à:

D > 0: 5(2c—S)2 > D o e > r;
D < 0: 3(2c—S)2 > \D\ o c > r.

II. Pour les valeurs entières de c, limitées par:

0 < c < r;
chercher les diviseurs m (entiers positifs) des valeurs F{c), tels que

(2c—S) < m < \F(c)\: m.

III. A chaque couple d'entiers c et m, ainsi obtenus, correspond

1° si m est diviseur du discriminant D, un idéal double réduit :

(m, 0—c), 2c—S 0 ou m,

2° si m n'est pas diviseur de D, deux idéaux réduits conjugués,
différents :

(m, 0—c), {m, 0—cr); c' S—c.
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On peut remplacer la racine minimum négative c' par la plus

petite racine positive c'-\-m — m-\-S—c.

Exemple 1 (tableau I). — Dans le corps de discriminant D —39,
la valeur de r, déterminée par comparaison avec |D| est 2:

3.(2xl+ l)2 - 27 < 39 < 3.(2x2+l)2 75.

Il suffit de chercher les diviseurs de F(0) 10 et de +(1) — 12, qui
vérifient les conditions de réduction (compris entre 2c+l et la racine
carrée de |i^(c)|). On obtient deux idéaux doubles, de normes 1 et 3

(diviseurs de 39):

(î, 0-0), (3, e—î)
et deux idéaux conjugués distincts, de norme 2:

(2, 0-0) (2, 0+1) (2, 0-1).
Il y a quatre idéaux réduits différents, donc au plus quatre classes,

on vérifie ci-dessous que c'est effectivement le nombre de classes.

Exemple 2 (tableau II) — Dans le corps de discriminant D — +60
la valeur de r est 2:

5x(2xl)2 20 < 60 < 5x(2x2)2 80.

Il suffit de chercher les diviseurs de |+(0)| 15 et de |jP(1)| 14,
qui vérifient les conditions de réduction. On obtient ainsi trois idéaux
doubles, de normes 1, 3, 2 (diviseurs de 60):

(1, 0—0), (3, 0—0), (2, 0—1).

Il y a au plus trois classes; on vérifie ci-dessous qu'il n'y en a que deux,
la classe principale contenant l'idéal de norme 1, d'ailleurs égal à (1)
et une classe double contenant les deux idéaux de normes 3 et 2

(dont on peut vérifier qu'ils sont congrus).

26. Propriétés générales des groupes de classes d'idéaux.

Certaines relations entre les classes d'idéaux, d'un corps
quadratique, sont des applications de propriétés générales des
groupes abéliens d'ordre fini qu'on va indiquer sommairement 1).

x) Ces propriétés sont exposées et démontrées dans de nombreux
ouvrages. Je me permets de citer: Arithmétique et Algèbre modernes, ch. II,
§ 5 et 7; ch. III, n° 35 (1954 et 1955), ou, pour plus de développements:
Les groupes abéliens finis (1925).
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Deux puissances, d'exposants entiers quelconques, d'une même
classe (23) ou plus généralement d'un élément A, appartenant
à un groupe cl, d'ordre fini, (même non commutatif)— sont
égales, si et seulement si les exposants sont congrus, suivant un
certain module n:

Ax Ax/ <=> \x x', (mod. ri)}
On peut exprimer cette condition caractéristique d'égalité

en disant que :

la (valeur de la) puissance Ax est caractérisée —ou représentée
proprement— par l'exposant x, entier défini mod. n —ou par la
progression arithmétique £+Aft, de raison n\ ou par la classe
d'entiers mod. n (5)—

L'entier (positif) n est appelé l'ordre de l'élément A, —ou de
la classe dans le groupe cl ou Si A est l'élément unité du
groupe, désigné par E, ou (1) —ou ûi dans Ç\ûl— son ordre
est égal à 1, il est égal à toutes ses puissances, dont les expressions

forment la progression arithmétique, de raison 1.

Cette propriété est bien connue et sa vérification est immédiate.
Les puissances Ax, x entier quelconque, ne constituent qu'un nombre
fini d'éléments différents, au plus égal à l'ordre —ou au nombre
d'éléments— du groupe et. Il y a donc des puissances, d'exposants
différents égales entre elles; en choisissant l'une d'elles Ah, on peut
construire le plus petit entier positif n, tel que:

Ah+n Ah- donc An A~n ou (1), élément unité-

La conséquence est obtenue en multipliant les deux membres de
l'égalité par l'inverse (Ah)~{ A~h. On en déduit, A étant un entier
quelconque :

AnX Ex E et x' x+rik => Ax' AxxAnX Ax;

c'est la condition suffisante d'égalité.
D'autre part, pour tout entier positif r, la puissance Ah+r ne

peut être égale à Ah et Ar ne peut être égal à E. On en déduit l'implication

réciproque de la précédente:

A*' A* ^ a(x/~x) E => {X'—X xn; A entier}.



LES CORPS QUADRATIQUES 265

Il suffit de former le reste de la division (arithmétique) de x'—x par n:

x'—x \n-\-r\ 0 < r < n\ X entier;

la puissance d'exposant x'—x est égale à celle d'exposant r, elle ne

peut être égale à E, que si r est nul.

L'entier n, dont l'existence est ainsi établie, est indépendant
de la puissance A\ choisie pour le construire. Gomme il y a n
progressions arithmétiques, de raison n, définies notamment par les

entiers de 0 à n—1, il y a n éléments différents, égaux aux puissances
de A. On justifie ainsi la définition suivante.

Définition. — On appelle groupe cyclique, de générateur A,
et dé ordre n, le système de n valeurs des puissances Ax (x entier
défini mod. ri), d'un élément A, d'ordre n, dans le groupe cl
—ou Çf \<Jl—. Ces valeurs se composent par multiplication dans
CX; leur groupe qui sera désigné par A, est un sous-groupe de (X.

Un groupe cyclique, multiplicatif —ou noté comme tel—
d'ordre n, est isomorphe au groupe additif de ses exposants,
définis mod. n.

Il est manifeste que les n valeurs des puissances de A forment
un groupe (multiplicatif) puisque leur multiplication, définie dans Cl,
et réalisée par l'addition des exposants, est associative et que deux
puissances d'exposants opposés sont inverses —ou de produit égal à

l'élément unité E— :

A*xAv A*+v, A~xxAx E; x,y,x+y, (—a?), définis mod.-rc.-

La représentation d'un élément Ax par son exposant x, mod. n, est

propre —ou est une correspondance biunivoque— elle fait
correspondre l'opération de multiplication (alors nécessairement
commutative) avec l'addition; ce sont ces deux qualités qu'exprime le
terme d'isomorphisme.

On peut représenter le groupe additif des entiers, mod. n, par
les rotations, autour d'un axe —ou autour d'un point dans un plan—
d'angles multiples de (2iz \ ri). Au produit —ou composition— com-
mutatif de deux rotations correspond la somme des arcs —ou de
leurs mesures, au module 2tc près—. Cette représentation explique le
qualificatif cyclique.
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On peut aussi bien construire le groupe cyclique A, de
générateur A et d ordre n, en formant les puissances d'un de ses
éléments Aa, construit toutefois avec un exposant a, premier
avec n:

(Aa)y — Aaxy; y défini mod. n\
on peut notamment prendre pour valeurs de y, les n entiers
de 0 à n—1.

On constate en effet que les nouveaux exposants y vérifient la
même condition caractéristique d'égalité des puissances: *

{(ay'—ay) a{y'~y) 0, (mod. n)} o {y' (mod.

L équivalence résulte du fait que 72, premier avec a, ne peut diviser
le produit a{y'~y) qu'en divisant le second facteur.

Une telle puissance Aa est encore un générateur du groupe
cyclique A. Un groupe cyclique, d'ordre n, a ainsi 9(n) générateurs.

On rappelle que la fonction 9(ri), de l'entier (positif) 72, appelée
1 indicateur d Euler, est le nombre d'entiers, positifs, inférieurs à n
—ou d'entiers, définis mod. n— premiers avec n.

Sa valeur, pour n égal à une puissance ph, d'un nombre premier,
est

?(/) (p— l)xph~l;cp(2h)
Pour un produit de puissances de nombres premiers différents —et,
plus généralement, pour un produit de nombres premiers entre
eux, deux à deux sa valeur est égale au produit des valeurs pour
chacun des facteurs:

?(IInti) II (<p(Wi)); p\\
Il est équivalent de dire qu'une puissance Ah, d'un élément A,

d'ordre n, est aussi un élément d'ordre n, lorsque h est premier avec n.
Dans le cas général, il est aisé de constater que l'ordre de cette
puissance est égal au quotient de n par le p.g.c.d. de h et n.

Lorsque,dans un groupe cl, d'ordre fini —notamment dans
ÇjcK— il existe un élément A dont Vordre est égal à celui du groupe
—ou au nombre de ses éléments— le groupe, qui est alors
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évidemment formé des seules puissances de A, est, lui-même,
un groupe cyclique, de générateur A —ou est égal à A—

Un raisonnement, usuel et simple, montre que, dans un
groupe, même non commutatif, d'ordre fini, l'ordre de tout sous-

groupe, et, notamment, Vordre de tout élément est diviseur de

(et éventuellement égal à) Vordre du groupe.

Un sous-groupe définit une répartition des éléments du groupe
en classes, dont chacune est formée des produits des éléments du

sous-groupe par un élément du groupe n'appartenant pas à une autre
classe —et défini lui-même au produit près par un élément du sous-

groupe—. L'ordre du groupe est, par suite, égal au produit de l'ordre
du sous-groupe par le nombre de classes, ainsi constituées.

En rapprochant ces deux propriétés, on constate que: un
groupe, dont Vordre g est un nombre premier, est cyclique, puisque
l'ordre de tout élément, à l'exception de E, ou (1), étant diviseur
de g, ne peut que lui être égal, en sorte que cet élément est un
générateur du groupe, qui en a 9(g) g—1.

Définition. — Dans un groupe abélien —ou commutatif— eX,
d'ordre fini —notamment dans Q\(R—, deux éléments, différents
de l'unité E:

A, d'ordre u\ 5, d'ordre v;

—ou les sous-groupes cycliques A et B, qu'ils engendrent— sont
qualifiés indépendants, lorsque ces sous-groupes n'ont, en commun,
que le seul élément unité E :

Ax By o {x 0, (mod. u) et y 0, (mod. e)};

dans le vocabulaire de l'algèbre des ensembles: l'intersection
[A,B] des deux sous-groupes est égal au sous-groupe trivial,
formé du seul élément unité E.

Il est équivalent de dire que le monôme AxxBy n'est égal à
l'élément unité E que si x et y sont respectivement congrus à 0,
suivant les modules u et v.

Deux éléments sont notamment indépendants, lorsque leurs
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ordres u et v sont premiers entre eux. Car, dans ce cas:

Ax By => Axv Byv E

=> xv 0, (mod. u) => x 0 ;

=> By E => y 0, (mod. e).

Définition. — On appelle produit direct de deux sous-

groupes cycliques indépendants, A de générateur A, d'ordre h et B
de générateur 5, d'ordre e, Ze sous-groupe constitué par le système
de monômes;

AxxBy; x, mod. k, ?/, mod. y;

—ou par les produits, en nombre &xe, de chaque élément de A
par chaque élément de B (dans un ordre quelconque, puisque (51

est abélien)—
Ce produit direct est désigné par AxB et le couple de

générateurs A,B en est appelé une base.

Les monômes ainsi constitués sont bien inégaux, car, en raison
de la commutativité de la multiplication, dans le groupe (ft et de V

indépendance des générateurs:

AxxBy Ax/ x By/

=> Ax'~xxBy,~v E ou (1)
=> {x'—x 0, (mod. u) et y'—y 0, (mod. e)}.

Ils constituent un groupe, car le produit (ou le quotient) de deux
monômes est encore un monôme, obtenu par les sommes (ou les

différences) des exposants respectifs:

(Ax x By) x (Axf x By') Ax+x' x By+yf ;

{AxxBy)x{A~xxB-y) E.

Les monômes sont représentés proprement par les couples d'exposants

I# y y. On dit encore que le produit direct AxB, des groupes
cycliques multiplicatifs est isomorphe au produit direct des groupes
additifs, des entiers, mod. u et mod. ç.

Le sous-groupe cyclique A, de générateur A, peut être considéré

comme égal à son produit direct par le sous-groupe trivial (E),
formé du seul élément unité E.
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On peut étendre par récurrence les notions d'indépendance et
de produit direct à un nombre quelconque s, d'éléments d'un
groupe abélien et aux sous-groupes cycliques qu'ils engendrent.

Des éléments d'un groupe abélien, en nombre «9:

Au d'ordre u{1 (i de 1 à s);

—ou les sous-groupes cycliques qu'ils engendrent— sont
qualifiés indépendants, lorsque: les s—1 premiers le sont et que
leur produit direct Axx... X As-1 et le groupe cyclique As, engendré

par le dernier élément ^ls, n'ont en commun que le seul élément
unité E\ [l'intersection [Axx X As-1, As] est égal à (£)].

On appelle produit direct de s sous-groupes cycliques
indépendants, Ai engendré par l'élément A{1 le système des produits
de tout élément du produit direct Ax x... X As_1 par tout élément
de As.

L'indépendance et le produit direct ayant été définis pour s 2,
sont ainsi définis, ou construits, de proche en proche pour s 3,

puis 4, puis s. On en déduit des propriétés caractéristiques,
indépendantes de l'ordre adopté pour les éléments.

Les éléments Ax —ou les sous-groupes Ai— sont indépendants

si un monôme formé avec les Ai n'est égal à l'élément
unité E, que pour des exposants respectivement congrus à 0,
relativement à l'ordre de l'élément qu'ils affectent:

A*1 x ...Ags — E o 0, (mod. ut); tout

Le produit direct des sous-groupes cycliques Ai9 est le système
des monômes, en nombre z^x... X us;

Ai1 x xAf ; xi défini mod. u{.

Ces monômes sont inégaux ; ils constituent un sous-groupe de (51,
leur multiplication, définie dans (51, est réalisée par l'addition des

exposants respectifs. Ils sont représentés proprement par les systèmes
—ou le s-uple— de leurs exposants. On dit encore que leur groupe est



270 A. CHATELET

isomorphe au produit direct des s groupes additifs, des entiers définis
respectivement suivant les modules u{.

On généralise aisément les propriétés indiquées pour s — 2
et s 1.

1. Des éléments Au d'ordre u%, sont, notamment, indépendants
lorsque leurs ordres u^ sont premiers entre eux, cfewo; d deux,
chacun d eux étant, par suite, premier avec le produit des
autres.

2. Uordre d'un produit direct, de 5 .sous-groupes cycliques
indépendants (dans un groupe abéliencl) est égal au produit 11^,
des ordres u{, des sous-groupes composants.

3. Si, dans un groupe abélien CL, d'ordre fini g, il existe s
éléments indépendants Au dont le produit des ordres IIu{ est
égal à l'ordre g, de Cl, ce groupe, qui est évidemment formé des
seuls monômes des Au est égal au produit direct des groupes
cycliques Ai7 qu'ils engendrent:

u1X Xus g => Cl A1x...xAs.

En particulier un groupe cyclique A, de générateur A, dont
l'ordre g est décomposable en un produit d'entiers gi (i de 1 à s),
premiers entre eux, deux à deux, —notamment puissances de
nombres premiers différents— est égal au produit direct des sous-
groupes cycliques, engendrés par les s générateurs:

Af:9\ d'ordre gx.

Exemple. — Dans un groupe cyclique, d'ordre 15 3x5:

Az, [z, mod. 15] (A*)x X(A5)y; [x, mod. 5; y, mod. 3].

La relation entre les entiers z et x,y est exprimée par les congruences:

z 3xA~5y, (mod. 15)

=> {z 3x, (mod. 5) et z 5y, (mod. 3)}

=> {x 2z, (mod. 5) et y ~ 2z, (mod. 3)}.
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Réciproquement, un produit direct de groupes cycliques,
d'ordres premiers entre eux, deux à deux, —notamment de

puissances de nombres premiers différents— est égal à un groupe
cyclique, dont un générateur est égal au produit des générateurs
des groupes composants.

Théorème de decomposition des groupes abéliens d'ordre
fini. Tout groupe abélien d'ordre fini, est égal à un produit
direct de groupes cycliques, dont les générateurs sont des éléments

indépendants, convenablement choisis dans (Si, différents de E.

Pour cette construction qui peut, en général être réalisée de

diverses façons, on peut toujours disposer des sous-groupes
composants Ai et de leur numérotage, de façon que Vordre g{,
de chacun d'eux, soit diviseur de —ou égal à— Vordre gl+i
du suivant1).

Ceci peut encore être réalisé, en général, par divers choix
possibles des sous-groupes cycliques; toutefois leur nombre r,
est déterminé, ainsi que leurs ordres g{. Toute décomposition du

groupe en produit cyclique comporte alors au moins r groupes
composants et la décomposition, ainsi formée, est, en quelque
sorte, minimum.

D'une façon opposée, on peut construire une décomposition
maximum, en un produit direct de groupes cycliques, dont les

ordres sont des puissances de nombres premiers, en remplaçant
dans la décomposition minimum éventuellement chaque sous-
groupe cyclique par un produit de cette forme. Les ordres ainsi
obtenus sont encore déterminés.

Exemple. — Un groupe abélien, d'ordre 12, produit direct de

groupes cycliques d'ordre 2 et 6 a pour éléments 12 monômes:

AxxBy; x, mod. 2; y, mod. 6.

Aucun n'est d'ordre 12 (leurs ordres étant 6, ou 3, ou 2 —ou 1 pour

1) La démonstration de ce théorème et des précisions qui en sont
données est plus complexe que celles des propriétés précédentes. On peut
la rattacher à une analyse linéaire diophantienne, ou à des propriétés
générales de décomposition d'un module —ou groupe additif— en somme
—ou produit— directe. Je renvoie aux ouvrages cités ci-dessus.
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l'élément unité—, le groupe n'est donc pas cyclique et sa décomposition

est minimum. Elle peut être réalisée en remplaçant A par un
des trois éléments d'ordre 2, et B par un des quatre éléments d'ordre
6, dont les puissances ne contiennent pas A ; ceci donne 12 décompositions

possibles:

A et B; A et B5; A et AxB; A et AxB5
B3 et AxB; B3 et AxB5; B3 et AxB2; B3 et AxB*
B3xAetB2xA; B3xAetB*xA; B3xAetA; B3xAetA5

On peut encore construire une décomposition maximum, en

groupes cycliques d'ordres 2, 2, 3, par exemple:

Axx(B3)y'x(B2)v"; x,y', mod. 2, y" mod. 3.
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