Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 6 (1960)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: LES MODÈLES LINÉAIRES EN ANALYSE STATISTIQUE

Autor: Breny, H.

Kapitel: 4, 4. Covariance.

DOI: https://doi.org/10.5169/seals-36341

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 14.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

On montre aisément que $SC\{\hat{\theta}_1, \hat{\theta}_2\}$ n'est autre que SCEM du modèle additif. Chacune de ces deux sommes de carrés est en effet due à un sous-espace de V^* ayant deux dimensions et orthogonal tant à $\hat{\mu}$, $\hat{\Delta}\lambda$, $\hat{\Delta_1}\gamma$, $\hat{\Delta_2}\gamma$ qu'aux différences « internes » $x_{2i} - x_{2i-1}$, et un tel espace est unique.

 $\hat{\theta}_1$ et $\hat{\theta}_2$ (et leurs combinaisons linéaires, notamment $\hat{\theta}_3$) portent le nom de « contrastes de non-additivité » (le terme « contrastes d'interaction » n'est guère heureux). On remarquera que, si les M_i déterminent entièrement les paramètres « orthogonalement estimables » μ , $\Delta\lambda$, $\Delta_1\gamma$, $\Delta_2\gamma$, θ_1 , θ_2 , ceux-ci à leur tour déterminent entièrement les M_i . C'est en le posant au moyen des paramètres μ , ..., θ_2 que le problème de la classification (2 × 3) (avec un nombre quelconque d'observations par cellule) se traite le plus aisément. Toutefois, ces paramètres ne restent orthogonalement estimables que si toutes les cellules renferment un même nombre d'observations.

Remarque. — Ces considérations s'étendent immédiatement aux autres problèmes de classification.

4, 4. Covariance 15).

4, 41. Supposons que l'on dispose d'une observation de chacune de n variables aléatoires indépendantes, normales, de même variance σ^2 , réparties en s groupes, le $i^{ème}$ groupe étant formé de n_i éléments, avec

$$\left\{ \begin{array}{ll} \mathbf{E} \, \mathbf{x}_{i,j} = T_i \, + \, \beta \, \wp_{i,j} \\ i = 1, \, ..., \, s \; ; & j = 1, \, ..., \, n_i \; ; & n_1 + ... + n_8 = n \; ; \end{array} \right.$$

les $v_{i,j}$ étant des nombres certains ¹⁶). On a ici

$$\mathfrak{b}_{H}=\mid\mid T_{1},...,T_{s},\left.eta\mid\mid^{T}$$
 ,

et, en supposant que dans chaque groupe il y a au moins deux valeurs $v_{i,j}$ distinctes,

$$p=r=s+1.$$

On se convainc aisément que la matrice \mathfrak{G}_H n'est pas diagonale. Toutefois, il est aisé d'orthogonaliser le problème; il suffit de poser

$$\begin{array}{l} {{v}_{i,-}} = \; (1/{n_i}) \; \sum_{j} \; {{v}_{i,j}} \\ {{u}_{i,j}} = \; {{v}_{i,j}} - \; {{v}_{i,}} \; \; , \end{array}$$

ce qui entraîne

$$\begin{cases} \mathbf{E} \, x_{i,j} = A_i \, + \, \beta \, u_{i,j} \\ i = 1, \, ..., \, s \; ; \quad j = 1, \, ..., \, n_i \; ; \quad \sum_j u_{i,j} = 0 \\ A_i \equiv T_i - \beta \, v_{i,-} \; . \end{cases}$$

En fait, cela revient à référer B à une base R telle que

On a alors

(les termes non écrits étant nuls).

4, 42. Il est alors utile de poser

$$\begin{split} S_{i;t,q} &= \sum_{j} (u_{i,j})^{t} (x_{i,j})^{q}, \\ S_{;t,q} &= \sum_{i} S_{i;t,q}, \\ S'_{i;t,q} &= \sum_{j} (v_{i,j})^{t} (x_{i,j})^{q}, \\ S'_{;t,q} &= \sum_{i} S'_{i;t,q}, \end{split}$$

ce qui conduit à

$$\mathfrak{A}_{K}^{T}\mathfrak{x} = || S_{1;0,1}, ..., S_{s;0,1}, S_{;1,1} ||,$$

$$\mathfrak{G}_{K} = \operatorname{diag}(n_{1}, ..., n_{s}, S_{;2,0}),$$

d'où

$$\left\{ egin{aligned} \hat{\mathbf{A}}_i &= \mathbf{S}_{i\,;0,1}/n_i \ \hat{eta} &= \mathbf{S}_{;1,1}/S_{\,;2,0} \end{array}
ight.$$

$$\mathbf{SC}T = \mathbf{S}_{:0,2}$$
 (avec n degrés de liberté),

$$\mathbf{SC}\left\{\; \hat{\mathbf{A}}_i\;\right\} = \; \mathbf{red}\; [A_i] \; = \; (\mathbf{S}_{i;0,1})^2/n_i \qquad \qquad (\text{avec 1 degr\'e de libert\'e}),$$

$$\mathbf{SC}\left\{\hat{\boldsymbol{\beta}}\right\} = \mathbf{red}\left[\boldsymbol{\beta}\right] = (\mathbf{S}_{:1,1})^2 / S_{:2,0}$$
 (avec 1 degré de liberté),

$$SCN = \sum_{i} SC\{\hat{\mathbf{A}}_i\} + SC\{\hat{\mathbf{\beta}}\}$$
 (avec $s+1$ degrés de liberté),

$$SCE = SCT - SCN$$

$$=\sum_{i=1}^{s}\frac{n_{i}\;\mathbf{S}_{i;0,2}-(\mathbf{S}_{i;0,1})^{2}}{n_{i}}-\frac{\sum_{i}\left[n_{i}\;\mathbf{S}_{i;1,1}'-S_{i;1,0}'\;\mathbf{S}_{i;0,1}\right]}{\sum_{i}\left[n_{i}\;S_{i;2,0}'-\left(S_{i;1,0}'\right)^{2}\right]}$$

(avec n - s - 1 degrés de liberté).

 σ^2 est estimé par SCE/(n-s-1).

4, 43. En fait, l'intérêt se porte généralement sur l'estimation des différences T_i — T_k , les paramètres A_i n'ayant pas d'intérêt propre. On a, en posant $v_{i,-}$ — $v_{k,-}$ = $d_{i,k}$,

$$\begin{split} \left(\mathbf{T}_{i} - \mathbf{T}_{k}\right)^{\hat{}} &= \left[\left(\hat{\mathbf{A}}_{i} + \hat{\boldsymbol{\beta}} \, \boldsymbol{\rho}_{i,-}\right) - \left(\hat{\mathbf{A}}_{k} + \hat{\boldsymbol{\beta}} \, \boldsymbol{\rho}_{k,-}\right)\right]^{\hat{}} \\ &= \hat{\mathbf{A}}_{i} - \hat{\mathbf{A}}_{k} + \hat{\boldsymbol{\beta}} \, d_{i,k} \\ &= \boldsymbol{\mathfrak{I}}^{\star} \, \boldsymbol{\mathfrak{x}} \equiv \left\| \, l_{1,1} \, , \, \ldots , \, l_{s,n_{s}} \, \right\| \, \boldsymbol{\mathfrak{x}} \end{split}$$

moyennant

$$\begin{split} l_{t,q} &= \, d_{i,k} \, u_{t,q} / S_{;2,0} & \text{si } t \neq i, \, t \neq k \; , \\ l_{i,q} &= \, d_{i,k} \, u_{i,q} / S_{;2,0} \, + \, 1 / n_i \; , \\ l_{k,q} &= \, d_{i,k} \, u_{k,q} / S_{;2,0} \, - \, 1 / n_k \; , \end{split}$$

d'où

$$\mathfrak{l}^{\, \bigstar} \, \mathfrak{l} \, = \, (d_{i,k})^2 / S_{;2,0} \, + \, 1/n_i \, + \, 1/n_k \; .$$

Il résulte de là que l'expression

$$\Delta_{i,k} = \frac{\left[\left(\mathbf{\hat{T}}_i - \mathbf{\hat{T}}_k\right) - \left(T_i - T_k\right)\right]}{\sqrt{\left[\mathbf{SC}E/(n-s-1)\right] \cdot \sqrt{\left[(d_{i,k})^2/S_{:2,0} + 1/n_i + 1/n_k\right]}}}$$

est une aléatoire \mathbf{t}_{n-s-1} .

On voit que l'erreur-type de $\Delta_{i,k}$, produit de σ par

$$\varepsilon_{i,k} = \left[\frac{(d_{i,k})^2}{S_{:2,0}} + \frac{1}{n_i} + \frac{1}{n_k} \right]^{1/2},$$

varie, en général, avec la paire (i, k), même si les n_i sont égaux entre eux $(n_1 = ... = n_s = \nu)$. Toutefois, dans ce dernier cas, on utilise d'ordinaire une expression approchée de $\varepsilon_{i,k}$, obtenue en considérant les $v_{i,j}$ comme n observations indépendantes d'une même aléatoire, de moyenne v et écart-type 0^{17}). En désignant par \mathbf{M} la valeur moyenne prise par rapport à la distribution de cette aléatoire (fictive), on a

$$\begin{split} \mathbf{M} \; (\mathbf{v}_{i,-} - \mathbf{v}_{k,-})^2 &= \mathbf{M} \; [(\mathbf{v}_{i,-} - \mathbf{v}) - (\mathbf{v}_{k,-} - \mathbf{v})]^2 \\ &= 2 \; \mathbf{M} \; (\mathbf{v}_{i,-} - \mathbf{v})^2 = 2 \; \theta^2 / \mathbf{v} \; ; \\ \mathbf{M} \; S_{;2,0} &= \mathbf{M} \; \sum_i \; \sum_j \; (\mathbf{v}_{i,j} - \mathbf{v}_{i,-})^2 = \; \sum_i \; (\mathbf{v} - 1) \; \theta = k \; (\mathbf{v} - 1) \; \theta^2 \; ; \\ & \left\{ \frac{\mathbf{M} \; (\mathbf{v}_{i,-} - \mathbf{v}_{k,-})^2}{\mathbf{M} \; S_{;2,0}} + \frac{1}{n_i} \; \frac{1}{n_k} \right\}^{1\!\!/2} = \left\{ \frac{2}{\mathbf{v}} \left[1 \; + \; \frac{1}{k \; (\mathbf{v} - 1)} \right] \right\}^{1\!\!/2} \; ; \end{split}$$

c'est cette dernière expression que l'on utilise comme valeur approchée de $\varepsilon_{i,h}$.

4, 44. Il est utile aussi de calculer la somme de carrés due au sous-espace U^* engendré par les estimateurs des contrastes $T_i - T_k$, afin de pouvoir construire une épreuve globale de la nullité de ceux-ci. On pourrait évidemment construire une base orthogonale de U^* , mais les calculs nécessaires sont d'une grande complication. Il est beaucoup plus simple d'appliquer le théorème du § 2, 31, en procédant comme suit: on considère le modèle

$$\mathbf{E} \mathbf{x}_{i,j} = T + \beta \, v_{i,j}$$

et on calcule la somme de carrés de l'erreur qui lui est associée, c'est-à-dire (voir § 4, 211)

$$(\mathbf{SC}E)_{T_i=T} = \mathbf{S}_{;0,2} - \frac{(\mathbf{S}_{;0,1})^2}{n} - \frac{(\mathbf{S}_{;1,1})^2}{S_{;2,0}}$$
;

or ce modèle s'obtient à partir du modèle initial en supposant

que, pour tout vecteur $[^*]$ de U^* , on a $\mathfrak{E}[^*] = 0$; par conséquent

$$\mathbf{SC} \ \mathbf{U}^{\star} = (\mathbf{SC}E)_{T_i = T} - \mathbf{SC}E$$

$$= \sum_{i=1}^{n} \frac{(\mathbf{S}_{i;0,1})^2}{n_i} - \frac{(\mathbf{S}_{;0,1})^2}{n} . \tag{19}$$

Si on pose

$$\mathbf{x}_{i,-} = \frac{1}{n} \sum_{j} \mathbf{x}_{i,j}$$
, $\mathbf{x}_{-,-} = \frac{1}{n} \sum_{i} \sum_{j} \mathbf{x}_{i,j} = \sum_{i} \left(\frac{n_{i}}{n} \right) \mathbf{x}_{i,-}$,

la formule (19) peut s'écrire

SC U* =
$$\sum_{i=1}^{s} \frac{\left(\sum_{j} \mathbf{x}_{i,j}\right)^{2}}{n_{i}} - \frac{1}{n} \left(\sum_{i=1}^{n} \sum_{j} \mathbf{x}_{i,j}\right)^{2}$$

= $n \sum_{i=1}^{s} \frac{n_{i}}{n} (\mathbf{x}_{i,-})^{2} - n \left(\sum_{i=1}^{s} \frac{n_{i}}{n} \mathbf{x}_{i,-}\right)^{2}$
= $\sum_{i=1}^{s} n_{i} (\mathbf{x}_{i,-} - \mathbf{x}_{-,-})^{2}$. (20)

L'expression (20), moins aisée à mettre en nombres que l'expression (19), est plus parlante qu'elle.

L'hypothèse $T_1 = T_2 = \dots = T_s$ s'éprouve en comparant

$$\frac{\mathbf{SC} \ \mathsf{U}^{\,\star}/(s - 1)}{\mathbf{SC} E/(n - s - 1)}$$

à la distribution de \mathbf{F} à (s-1) et (n-s-1) degrés de liberté. La table d'analyse de variance se présente ainsi:

$$\begin{split} SCT &= S_{;0,2} & n \text{ d.l.} \\ & \sum_{\substack{SCN \\ \text{red } [T] = (S_{;0,1})^2/S_{;2,0} \\ \text{red } [T_1 - T_2, ..., T_1 - T_s \mid T, \ \beta] = \text{SC} \ \mathbf{U}^{\star}} & (s+1) \begin{cases} 1 \text{ d.l.} \\ 1 \text{ d.l.} \\ (s-1) \text{ d.l.} \end{cases} \\ SCE &= SCT - SCN \qquad (n-s-1) \text{ d.l.} \end{split}$$

Si plusieurs paires (i, j) correspondent à une même valeur de $v_{i,j}$, on peut introduire, en outre, la décomposition habituelle de SCE en SCint et SCEM.