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A A
On montre aisément que SC{ 0l5 02} n'est autre que SC EM

du modèle additif. Chacune de ces deux sommes de carrés est en

effet due à un sous-espace de V* ayant deux dimensions et
A A A A

orthogonal tant à [x, AX, y, A2 y qu'aux différences « internes »

x2i — x2i_i, et un tel espace est unique.

et ô2 (et leurs combinaisons linéaires, notamment 03)

portent le nom de «contrastes de non-additivité » (le terme
« contrastes d'interaction » n'est guère heureux). On remarquera
que, si les Mi déterminent entièrement les paramètres «

orthogonalem ent estimables» p., AX, Ax y, A2 y, 0l5 02, ceux-ci à

leur tour déterminent entièrement les M{. C'est en le posant au
moyen des paramètres p, 02 que le problème de la classification

(2 x 3) (avec un nombre quelconque d'observations par
cellule) se traite le plus aisément. Toutefois, ces paramètres ne
restent orthogonalement estimables que si toutes les cellules
renferment un même nombre d'observations.

Remarque. — Ces considérations s'étendent immédiatement
aux autres problèmes de classification.

4, 41. Supposons que l'on dispose d'une observation de
chacune de n variables aléatoires indépendantes, normales, de même
variance g2, réparties en s groupes, le ième groupe étant formé
de ^ éléments, avec

A A A

4, 4. Covariance 15).

I Exi,i Ti +

les ç{j étant des nombres certains 16). On a ici

bH H Ts, ß ||T

et, en supposant que dans chaque groupe il y a au moins deux
valeurs distinctes,



236 H. BRENY

On se convainc aisément que la matrice &H n'est pas
diagonale. Toutefois, il est aisé d'orthogonaliser le problème; il
suffit de poser

V - W 2s <„
"u- "1,1 — "t. •

ce qui entraîne

[ E XiJ Ai + ß Ui,j

=1,s ; / 1, n. ; 0j i 1,

ß"i.- •

En fait, cela revient à référer B à une base $ telle que
1 0 0

0 1

On a alors

0

0

1

i

1

o i

âi,I

vn

1 ,ni
*2,1

2,n2

1 14
'8,1

1 Mo

(les termes non écrits étant nuls).

4, 42. Il est alors utile de poser

s

^Si'

S j t

S.'M Si ^i;t,q '

ce qui conduit à

21K % — Il ^1 ;0,1 ' ^s;0,1 ' ^;1,1 H
»

®K dia^ n.S' ^;25o) '
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d'où

1 ß *;IAIS;2,0

SCT S.0 2 (avec n degrés de liberté),

SC { At | red [A^] (Si;0 ])2lni (avec 1 degré de liberté),
A

SC { ß } red [ß] (S;1 ^/S^ 0 (avec 1 degré de liberté),

SCiV 2i SC { } + SC { ß } (avec s + 1 degrés de liberté),

SCE SCT — SCiV

^ ni Si;0,2 (Si;0,l)2 Si [ni SÛ1,1 1,0 Si;0,l ]

lâ n\ Si Ki.o)*]
(avec n — s — 1 degrés de liberté).

a2 est estimé par SCE/(tt —s — 1).

4, 43. En fait, l'intérêt se porte généralement sur l'estimation
des différences Ti — Th, les paramètres Ai n'ayant pas d'intérêt
propre. On a, en posant — vk_ di k,

(Ti-Tft)A [(Âj + - (ift + ßcV)]^

^ At Aft + ß

'..«j»
moyennant

h.q ^i,k Ut,q/SSI t i, t k

k,q di,kui,q/S.2jQ + 1/^

^ Uk,q/S.ç>}0 — l/nk,
d'où

l* 1 [ditk)*/S.XQ + 1/rt- +

Il résulte de là que l'expression

A- [(*i-fy-(r«-rQ]
\/[8C E/(n s 1) V 2,0 ~t~ ^ "t"

est une aléatoire tn_s_j.
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On voit que l'erreur-type de Ai fe, produit de a par

M_2 + 1 + 1'
1;2,0 ni nh

y2

varie, en général, avec la paire (i, &), même si les n{ sont égaux
entre eux (nx ns — v). Toutefois, dans ce dernier cas,
on utilise d'ordinaire une expression approchée de obtenue
en considérant les comme n observations indépendantes d'une
même aléatoire, de moyenne v et écart-type 0 17). En désignant
par M la valeur moyenne prise par rapport à la distribution de
cette aléatoire (fictive), on a

M v - M [(v - ç) - (%_- p)]»

2 M (p. _ — p)2 2 62/v ;

M ^;2,o « Si Si - <v>2 Si <v - o0 =* (v - *)02 ;

M (e, — c, J2 iily»,ii[1 +
nink J l v L

1%
1 M ^2,0 nink\ l v L k (v — 1)J J

c'est cette dernière expression que l'on utilise comme valeur
approchée de zi>k.

4, 44. Il est utile aussi de calculer la somme de carrés due au
sous-espace U* engendré par les estimateurs des contrastes
Ti — afin de pouvoir construire une épreuve globale de la
nullité de ceux-ci. On pourrait évidemment construire une base

orthogonale de U*, mais les calculs nécessaires sont d'une grande
complication. Il est beaucoup plus simple d'appliquer le théorème

du § 2,31, en procédant comme suit: on considère le
modèle

E \j T + ß %j

et on calcule la somme de carrés de l'erreur qui lui est associée,
c'est-à-dire (voir § 4, 211)

(S.n a)2 (S.,)
(SCE)Ti=T S;0>2 -++ -n +2,0

or ce modèle s'obtient à partir du modèle initial en supposant
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que, pour tout vecteur l* de U*, on a @ I* =0; par conséquent

SCU* (SCS)T.=T—

y (Si;0,l)2 _
(S;0,l)a

_ Mgj

t=l ni U

Si on pose

v-ÏS-u-
la formule (19) peut s'écrire

2,-«'
2=1 2 U \i— 1

2=1 \2=1

SC I

2 (X2 - — X--)2 • (20)
2=1

L'expression (20), moins aisée à mettre en nombres que l'expression

(19), est plus parlante qu'elle.
L'hypothèse T1 T2 Ts s'éprouve en comparant

SCU*/(s — 1)

SCE/(n — s — 1)

à la distribution de F à (s — 1) et (n — s — 1) degrés de liberté.
La table d'analyse de variance se présente ainsi:

SCT S;Qf2 n d.i.

red [T] (S;0ti)*/n

SON- red [ß] )2/^;2,o {* + 1)

red [T± — T2, T1 — Ts | T, ß] SC U*

SCE SCT — SCN (n — s — 1) d.i.

1 d.i.

l d.i.

(5 — 1) d.i.

Si plusieurs paires (t, /) correspondent à une même valeur de

on peut introduire, en outre, la décomposition habituelle de
SCE en ^SCint et SCEM.
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