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®K

d'où
"

6 0 0 y0 Ax/6

0 4 0 yx A2/4

0 0 60 y2 A3/60

SC { y0 } ^4x/6 SC { yx } A22/4 SC { y2 } A32/60

SC{y0} red[ß0], SC{yx} redfßj ß0], SC (y2} red [ß2 | ß0, ßx]

SCiV=SC{y0}+SC{y1} + SC{y2})
sc# scr — sciv.

4, 3. Problèmes de

4,31. Supposons que l'on dispose des valeurs observées de
douze aléatoires normales, indépendantes, de même variance g2,
classées suivant deux critères : « lignes », de « valeurs » Lx et L2,
et « colonnes », de « valeurs » C±, C2, C3, suivant le schéma

Lr
U

Ci

xlt x2

Xy, Xq

C2

X3, Xi
Xg * Xi |

x5, Xq

xn, xt
On suppose a priori qu'il y a additivité, c'est-à-dire qu'il

existe cinq nombres Xl7 X2, ylt y2, y3 tels que la valeur moyenne
d'une observation de la ligne L, et de la colonne Ch soit \ + Tft
(i 1, 2; k4= 1, 2, 3). On a donc, par hypothèse,

X1 1 1

X2 1 1

X3 1 1

X4 1 1

X5 1 1

X6 1 1

X7 1 1

X8 1 1

X9 1 1

X10 1 1

X11 1 1

X12 1 1

^2

Tl
T2

Ï3

Si on appelle Su_,la somme des observations de la ligne Lu et
S_j celle des observations de la colonne Ck, les équations nor-
males s'écrivent:

6 Ai + 2 yi -j- 2 v2 -f 2 y3 Slf_ (a)
/v

6A2 + 2yt + 2ys + 2 y3 S2_ (b)
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2 Xi + 2 X2 + 4 yt S-,l (c)
/V /\

2 "Xi ~{- 2 ^.2 h 4 y2 — (d)

2^1 + 2^2 + 4Y3 - S_i3 (*)

Ici, manifestement, p 5, r 4 [en effet, (a) + (b)
(c) -f- (d) + (e)]. On est donc amené à mettre en évidence

quatre combinaisons estimables fondamentales ; on peut prendre

(i, 6 (Xf + X2) + 4 (Yi + Ï2 +-ï3)
AX \ — X2

Ai ï Ti — Ï2 > A' ï Yi — Ts •

On constate immédiatement que les estimateurs privilégiés de
ces quatre combinaisons sont deux à deux orthogonaux, à
l'exception près de la dernière paire; l'orthogonalité complète
est atteinte en remplaçant A' y par

A2 y + X2 — 2X3)/2 (Xi -f X2)/2 — x3.

Alors :

ß Sls_ + s2}_ s_}1 + s_}2 + s_ 3)

'
(S1 _ —s2 J/6

AÎy(S_4-S_2)/4

4 Y (S_;1 + S_^2 2 S_ 3)/8

Ici, on peut calculer

SCint (1/2) [(Xl x2)2 + + (xn — x12)2]

avec six degrés de liberté, puis, avec deux degrés de liberté,
SCEM SCE — SCint

On notera que, ici, on a

SC{ P- } red M red l> I A^1 ••• red |> | AX, At y, A2 y]

et des relations analogues pour les autres paramètres; ceci en
vertu de 1 orthogonalité de leurs estimateurs privilégiés.

SC£7Jf peut servir à éprouver l'hypothèse d'additivité, mais
on ne le voit clairement qu'en étudiant le modèle non additif.



234 H. BRENY

4, 32. Ne supposons donc plus a priori qu'il y ait additivité;
admettons que

^ x2i-l ^ x2i '

de sorte que p — 6, bH || M1 M2 M% M$ Me ||T. On voit
aisément que

© diag (2, 2)

d'où

(x2i—1 + x2i>/2 >

£C{mJ (*2i-l + x2i) 2/2

6^

SC N y sefa }
12

1

6

2 xi - SCN (!/2) 2 <x2i - x2i-l)2 •

1 1

Donc, pour le modèle général actuel, SCE vaut l'expression
SC int du modèle additif.

L'hypothèse d'additivité (c'est-à-dire, répétons-le, l'hypothèse

qu'il existe cinq nombres Xx, X2, yl5 y2, y3 tels que

Mi » \ M2 \ + y2 •••, x2 + y3)

est satisfaite si et seulement si

01 M1 — M2 — Mé -|~ M5 — 0 j 02 Mx — M3 — M4 + Mg 0

On doit donc former, pour éprouver cette hypothèse,

Oi M, — M2 — M4 + M5 02 M, — M3 — M4 + M6

A A A A

puis SC { Oi, 02}, et éprouver si SC { Oi, 02 } est, ou non, signifi-
cativement plus grande que SCI? (SCm£ du modèle additif),
A A

f)2 n'est pas orthogonal à 0X, mais bien

Os 2 Û2 — 0! M, + M2 — 2M3 + M4 + M6 — 2 M6 ;

°r'
se { 0! } Öi/8 SC { 63 } 0s/24

SC { 61, Ô2 } 86(0,, Ôs}= 86(0!}+ se { Os }

ce qui permet d'éprouver l'additivité.
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A A
On montre aisément que SC{ 0l5 02} n'est autre que SC EM

du modèle additif. Chacune de ces deux sommes de carrés est en

effet due à un sous-espace de V* ayant deux dimensions et
A A A A

orthogonal tant à [x, AX, y, A2 y qu'aux différences « internes »

x2i — x2i_i, et un tel espace est unique.

et ô2 (et leurs combinaisons linéaires, notamment 03)

portent le nom de «contrastes de non-additivité » (le terme
« contrastes d'interaction » n'est guère heureux). On remarquera
que, si les Mi déterminent entièrement les paramètres «

orthogonalem ent estimables» p., AX, Ax y, A2 y, 0l5 02, ceux-ci à

leur tour déterminent entièrement les M{. C'est en le posant au
moyen des paramètres p, 02 que le problème de la classification

(2 x 3) (avec un nombre quelconque d'observations par
cellule) se traite le plus aisément. Toutefois, ces paramètres ne
restent orthogonalement estimables que si toutes les cellules
renferment un même nombre d'observations.

Remarque. — Ces considérations s'étendent immédiatement
aux autres problèmes de classification.

4, 41. Supposons que l'on dispose d'une observation de
chacune de n variables aléatoires indépendantes, normales, de même
variance g2, réparties en s groupes, le ième groupe étant formé
de ^ éléments, avec

A A A

4, 4. Covariance 15).

I Exi,i Ti +

les ç{j étant des nombres certains 16). On a ici

bH H Ts, ß ||T

et, en supposant que dans chaque groupe il y a au moins deux
valeurs distinctes,
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