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4,12." Soit (xy, ..., x,) un échantillon simple et fortuit d’une

population normale de moyenne u, et écart-type o, (%44, -

o Xp)

un échantillon simple et fortuit d’une population normale de
moyenne p., et écart-type o, les deux échantillons étant mutuelle-
ment indépendants. La théorie des modeles linéaires s’applique

encore:
Xy 1 0
xq'+1 01 o )
x, 0 1
r=p=2, th=lmuwl, Tu=| 17
2 H 1 2 ) 0 " — q
Si on pose
q n
X "
Z X‘?i == Si,S ’ 2_] X,Si = SQ,S ,
1 q+1
on a
fr=Si4/a. o= Syllh—aq),
SCE — 981,0 — 151,0)° + (n—q) 8y 9 — .89 4)?
q n q b

de sorte que, sous ’hypothése w, — w, = A, I'expression
(B — g —8) V{n—2)
VIG5 ses]
q n—gq

, * . 9 7 i 2
est une aléatoire t, o; SCE/c? est une aléatoire vy, o .

4, 2. Problémes de régression.

4, 211. Supposons que, u, ..., u, étant des constantes certaines

deux & deux distinctes, on ait » = X{k, variables aléatoires x. .

3

(t=1, ..,8;,7] =1, .., k), normales, de variance commune o2,

indépendantes, avec
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Ce cas rentre dans le cadre général des modeles linéaires moyen-
nant

1 ...1 1 .1 ... 1..1
Up oo Uy Uy oo Uy ... U u

b=« 8|7, wu= '

S e (]

(% composée de s groupes ayant respectivement %, k,, ..., k,
lignes identiques entre elles); ici, r — p = 2. Si Pon procéde
comme au § 3, 232, en posant

ki

1

q bt . — . _ q .

2. 1uixi,,-~5q,t, So0 =n; Sgo= D kul;
i= 1

1=

—

2
nSyo— S1 0 ) nSyy — S1,0 So,1 )

uu n ) u,x 7 )
on a, successivement,
8 — n Si,()
S0 Sa
S — Vin Sie/Vn Ty — S0,1 f So./V/n
0o VI, 1,1 s
BT — S’(‘)L,i . S:l,o zux L,
u,u w,u
d’ou la table d’analyse de variance: |
SCT = 8y, nd.l.
{red [a] = (Sg,1)%/n . {1 d.l.
red [B | ] = (Lo )2 1d.1.
SCN = red [a] + red [@ | a] 2d.1.
SCE = SCT — SCN | (n —2)d.L.

4,212. On peut traiter ce méme probléme d’une maniére un
peu différente, en posant

/
Uy = Uy — Sy /n ,

0wt Buy=o +Fu; (B =B, o= @+ B8y of/n) ;

ceci revient & changer de base dans B, et nous écrirons

by = Il o B 1] -
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On a alors, en marquant de ’apostrophe les expressions
propres & la forme actuelle du modele considéré,

( .11 .01 0 1. ||T
2[’ = 7 7 V4 ’ ’ V4 ’
u1 ui u2 u2 us us
/ / /7
51,0 =0, 52,0 = Lu,u J S1,1 - Lu,x’

& = S0,1/n B, = Lu,x/Lu,u (: @) )

La table d’analyse de la variance ne change évidemment pas.

La méthode du § 3,232 constitue, en quelque sorte, une
- orthogonalisation a posteriori: on part de by, les vecteurs
el by (6V*) ne sont pas orthogonaux, mais les calculs intro-
duisent d’eux-méme une base & telle que les vecteurs ! §,, soient
orthogonaux. Ici, nous venons de procéder & une orthogonalisa-
tion a priori: nous avons d’emblée introduit une base ' telle
que la matrice ©' relative a cette base soit diagonale, ce qui
garantit l'orthogonalité des vecteurs ¢ll,,. Cette seconde
méthode est souvent préférable a la premiére. C’est sur elle que
reposent, notamment, les procédés de « codage linéaire » utilisés,
dans les manuels d’analyse statistique, pour I’étude des plans
factoriels & facteurs quantitatifs (plans factoriels « de régression »).

4,213. Il arrive que I’on désire controler, par les observations
elles-mémes, la validité de la relation (17). Le modéle basé sur
(17) est alors considéré comme un cas particulier du modéle
défini par '

Ex,. = M, ;

(2%

dans ce modele plus général, Pespace des erreurs, V., est engendré
par les fonctionnelles de ¢ qui sont de la forme (z;; — x;,); il
admet donc la base suivante:

i,
x,i’1 h— xi’2, --.‘, xi’1 — xi,hi s i == 1, 2, cees S

laquelle s’orthogonalise en
{bifzg =Ty T F g — = 1),

I:=/1,...,S; t:2,..., k’l.
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On a alors
) S Ri
SCint = SCV* _ Z 2 SC{ bz*t}
=1 i=2
S ki
5,
= > > bk E)2e—1)e

~
I
[
o~
I
o

(18)

I
[\Am
N

=~

-~
I

avec ; (k; — 1) = n — s degrés de liberté. Le controle envisagé
n’est donc possible que si 'un au moins des entiers-k; est > 1,
et il ne présente, en pratique, quelque intérét que si n — s est,
au moins, de ordre de s. On le fait alors en comparant SCEM
& §Cint au moyen des tables de F. Si 'on proceéde ainsi, il sied
d’utiliser SCint, et non SCE, comme dénominateur des divers F
calculés.

Remarque. — Le calcul qui a conduit & Pexpression (18) de
SCint est valide dans des conditions extrémement générales.

4,214. On peut évidemment éprouver des hypothéses trés
diverses relativement & « et 3 (ou, ce qui revient au méme, a o’
et 8') 1). Ainsi, I’on pourrait éprouver I’hypothése 8 = q, @ étant
un nombre donné; il suffit d’appliquer la formule du § 2, 23, en
remplagant, au besoin, SCE et (n — r) par SCint et (n — s). Le
seul point un peu délicat est le calcul de (*[; or, on a

é = ” li,i’ ceny li,kl’ ceny ls,ks H g = I* &‘

moyennant

li,j = (nu; — Sl,O)/nLu,u 5

=0 Dby = ULy s |
par consequent, sous I’hypothése § = a, ’expression

f—avi—d 5, V/(n — Ly
vV (1* 1. SC int) in

on a donce

est une valeur observée d’une aléatoire t, . .
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On éprouverait de méme, par exemple, I’hypothése que, pour
des valeurs données u, et z,, on a « + Pu, = z, (on considé-
rerait lexpression o + Bu, qui, sous cette hypothése, a
comme moyenne ).

4, 22. | Supposons que, u et ¢ étant deux variables certaines,

on ait A
Exu,v:BO‘l‘Blu“{“Bz‘)a (19)

et que les observations aient été faites aux « points » (0, 0), (2, 0),
(2,1), (1,2), (0,2) et (1,1); les observations sont, ici encore,
censées étre des valeurs observées d’aléatoires normales, indé-
‘pendantes, de méme variance o2. La théorie générale s’applique
alors, avec

BH = ” n807 Bl: BZ ”T ’ g[H' =

T

111111 :
022101 |, n=6, p=r=3.
001221

Il est commode de traiter ce probléme par orthogonalisa-
tion & priori; on rapporte donc B & une base & telle que les
oolonnes de Ay soient deux & deux orthogonales; si 'on pose

by = H Yor Y15 Y2 HT cela revient & chercher deux polynémes du
premier degré, o (u) et (u, ¢), tels que

Y0+Y1(P()+Y2¢(u’0)560+61u+829,
i s
D)@ lw) =10, Z‘P(“i’”i):‘), Do () §(ug 05) = 0.
1 1 -

On peut prendre

o) =u—1, $(u,0)=—5+u-+ 4o,
ce qui correspond &
1 —1. —5
Ber = 0 1 1 b, .
H
0 0 s || K
On a alors
X 1 1 —3
E X3 = 1 1 1 Yo
Xy 1 0 4 Y1
X5 1 —1 3 Y2
A X1+X2+X+X+X+x
A, —-5x1-—3x2—!—x3+4x4+x5
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d’ou
6 0 0 Yo = A,/6
Spe=1 0 & o0 |, 1= Ak
0 0 60 Y2 = Ay/60
SC{ %} = A4j/6 , SC{ % }= Ay, SC{ ¥, } = A;/60 .

SC{ %} = red[B,], SC{%,} = red [P, | B,], SC{%:} = red[B, By, B:]

SCN =8C{ %o} +8C{ 9, }+5¢{3,},
SCE = SCT — SCN .

4, 3. Problémes de classification.

4,31. Supposons que I'on dispose des valeurs observées de
douze aléatoires normales, indépendantes, de méme variance o2,
classées suivant deux critéres: « lignes », de « valeurs» L, et L,,
et « colonnes », de « valeurs » C;, C,, C,, suivant le schema

Cy - G C,
Ll xla x2 x3a Xy .’L’5, Zg
Lz Zq, Xg Ty, 10 Zy1, Z1g -

On suppose a priori qu’il y a additivité, c’est-a-dire qu’il
existe cing nombres Ay, Ay, Y1, Yo, Ys tels que la valeur moyenne
d’une observation de la ligne L, et de la colonne C, soit A; + v,
(t=1,2; k=1,2,3). On a done, par hypothese,

X, 1 1

X, 1 1

Xg 1 1

X, 1 1 A

X; 1 1 Ay
E Xg == 1 1 Y1

X7 11 Y2

Xg 11 T3

Xg 1 1

X10 1 1

X1 1 1

X9 1 1

Si on appelle §; _, la somme des observations de la ligne L;, et
S_; celle des observatlons de la colonne C,, les équations nor-

males s’écrivent:
6 A +2«}1+2§/2+2«?3=51_ (a)

6)\2‘{‘24‘\’14‘2’?2‘*‘2?3:82_ (b)
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