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4, 12. Soit (xx, xg) un échantillon simple et fortuit d'une

population normale de moyenne (xx et écart-type a, (xg+1, x„)
un échantillon simple et fortuit d'une population normale de

moyenne p.2 et écart-type a, les deux échantillons étant mutuellement

indépendants. La théorie des modèles linéaires s'applique
encore :
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de sorte que, sous l'hypothèse p,x — p2 A, l'expression

(P-i — fiz —A) V(n — 2)

VRF^M
est une aléatoire tn_2; SC E/g2, est une aléatoire yj^_2

' 4, 2. Problèmes de régression.

4, 211. Supposons que, us étant des constantes certaines
deux à deux distinctes, on ait n 2® /q variables aléatoires ^

(i 1, s; j 1, /q), normales, de variance commune a2r

indépendantes, avec

E xy oc + ßiq (17)
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Ce cas rentre dans le cadre général des modèles linéaires moyennant

hH a P
1 1 1 1 1 1

u± u% u% UQ u„

(21 composée de 5 groupes ayant respectivement kv k2, ks
lignes identiques entre elles); ici, 2. Si l'on procède
comme au § 3, 232, en posant

S ki ^

2i uï \j Sq,t ' ^0,0 338 n ' Sq 0 k- uf ;

i=l 3 1

^2,0 — SU0
u,u n

on a, successivement,

W®1,1 ^1,0^0,1

@

©
A/n ^l,o/^n
0

d'où la table d'analyse de variance:

SCT £0>2

f red [a] (SQA)*/n

n ^1,0

<*1.0 ^2,0

21= S0,l

Sl,l

^1,0

n X
u,u

*K
\Jy/n

nd.l.

1 red [ß I »1 [Lu,xV

SCN red [a] + red [ß | a]

SCE SCT— SCN

f 1

{ 1 d.i.
2 d.i.

(n—2)

4, 212. On peut traiter ce même problème d'une manière un
peu différente, en posant

u i~ui " ^1,0 '

oc + ß cq a + ß iq (ß ß a' a + ß q/ti) ;

ceci revient à changer de base dans B, et nous écrirons

hH, Il a' ß' Il
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On a alors, en marquant de l'apostrophe les expressions

propres à la forme actuelle du modèle considéré,

1 1 1 1 1 1 T
%' / / / / / r 3

Uï ui ^2 ^2 " • "s

ilo
0 ^2,0 Lu,u ' SM I'u,x

®* diag (n,Luu); S[T r || S0J Lux ||T

£' S 0A/nß' W •

La table d'analyse de la variance ne change évidemment pas.
La méthode du § 3, 232 constitue, en quelque sorte, une

orthogonalisation a posteriori: on part de les vecteurs

zï(GV*) ne sont pas orthogonaux, mais les calculs
introduisent d'eux-même une base Ä telle que les vecteurs zï bjc soient
orthogonaux. Ici, nous venons de procéder à une orthogonalisation

a priori: nous avons d'emblée introduit une base £>' telle
que la matrice ©' relative à cette base soit diagonale, ce qui
garantit l'orthogonalité des vecteurs zj bH,. Cette seconde
méthode est souvent préférable à la première. C'est sur elle que
reposent, notamment, les procédés de « codage linéaire » utilisés,
dans les manuels d'analyse statistique, pour l'étude des plans
factoriels à facteurs quantitatifs (plans factoriels « de régression »).

4, 213. Il arrive que l'on désire contrôler, par les observations
elles-mêmes, la validité de la relation (17). Le modèle basé sur
(17) est alors considéré comme un cas particulier du modèle
défini par

dans ce modèle plus général, l'espace des erreurs, V*, est engendré
par les fonctionnelles de £ qui sont de la forme (xu — zik); il
admet donc la base suivante :

xi, 1 xi,2 ' xi i xi,k. »
1 L 5

laquelle s'orthogonalise en

bi* 1~ + •• + *4,1-1 xi t

i1, s; 1=2, ki
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On a alors
s kt

SCint SC V
* S

i— 1 t=2
s ki

2 2 (»£*)'/(*-D*
1=1 1=21=1 1=2

(18)

avec S| (kt — 1) — n — s degrés de liberté. Le contrôle envisagé
n'est donc possible que si l'un au moins des entiers k{ est > 1,
et il ne présente, en pratique, quelque intérêt que si n — s est,
au moins, de l'ordre de s. On le fait alors en comparant SCEM
à SCint au moyen des tables de F. Si l'on procède ainsi, il sied
d'utiliser SCint, et non SCE1 comme dénominateur des divers F
calculés.

Remarque. — Le calcul qui a conduit à l'expression (18) de
SCint est valide" dans des conditions extrêmement générales.

4,214. On peut évidemment éprouver des hypothèses très
diverses relativement à oc et ß (ou, ce qui revient au même, à oc7

et ß')14). Ainsi, l'on pourrait éprouver l'hypothèse ß a, a étant
un nombre donné; il suffit d'appliquer la formule du § 2, 23, en
remplaçant, au besoin, SCE et (n — r) par SCint et (n — s). Le
seul point un peu délicat est le calcul de f* l ; or, on a

ß — H V li ki, l^ks I) J 1* £

moyennant
hj ^ui — si,o)/nLu,u ;

on a donc



MODÈLES LINÉAIRES EN ANALYSE STATISTIQUE 231

On éprouverait de même, par exemple, l'hypothèse que, pour
des valeurs données u0 et x0, on a oc -f ßw0 — x0 (on considérerait

l'expression oc + ß u0j qui, sous cette hypothèse, a

comme moyenne x0).

4, 22. Supposons que, u et v étant deux variables certaines,
on ait

E Xu,v ßo + + ßa? (19)

et que les observations aient été faites aux « points » (0, 0), (2, 0),
(2,1), (1,2), (0,2) et (1,1); les observations sont, ici encore,
censées être des valeurs observées d'aléatoires normales,
indépendantes, de même variance a2. La théorie générale s'applique
alors, avec lllili0 2 2 1 0 1

0 0 1 2 2 1

6 H II ßo, ßx, ß2 f — n — 6 p r 3

Il est commode de traiter ce problème par orthogonalisa-
tion à priori; on rapporte donc B à une base ^ telle que les
colonnes de 21K soient deux à deux orthogonales; si l'on pose
^k Il Yo> Yi» Y2 f, cela revient à chercher deux polynômes du
premier degré, ç (») et (u, c), tels que

Yo + ïi (u) + y2 (u, ç) ß0 + ßi u + ß2 p

02 (Ui) o, 2 + (*
1 1

On peut prendre

9 K) K, Vi) 0

1

9 iu) — ^ 1 4* (^j p) — — 5 -j- u -f- 4ç>

ce qui correspond à

On a alors

*•5

*6

Ax
A2
Aa

1 — 1

0 1

0 0
VK

Yo

Yi
Y2

X1 + X2 + X3 + X4 + X5 + X6
X1 + x2 + x3

— 5 — 3 3 x3 -f 4x4 + X5
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®K

d'où
"

6 0 0 y0 Ax/6

0 4 0 yx A2/4

0 0 60 y2 A3/60

SC { y0 } ^4x/6 SC { yx } A22/4 SC { y2 } A32/60

SC{y0} red[ß0], SC{yx} redfßj ß0], SC (y2} red [ß2 | ß0, ßx]

SCiV=SC{y0}+SC{y1} + SC{y2})
sc# scr — sciv.

4, 3. Problèmes de

4,31. Supposons que l'on dispose des valeurs observées de
douze aléatoires normales, indépendantes, de même variance g2,
classées suivant deux critères : « lignes », de « valeurs » Lx et L2,
et « colonnes », de « valeurs » C±, C2, C3, suivant le schéma

Lr
U

Ci

xlt x2

Xy, Xq

C2

X3, Xi
Xg * Xi |

x5, Xq

xn, xt
On suppose a priori qu'il y a additivité, c'est-à-dire qu'il

existe cinq nombres Xl7 X2, ylt y2, y3 tels que la valeur moyenne
d'une observation de la ligne L, et de la colonne Ch soit \ + Tft
(i 1, 2; k4= 1, 2, 3). On a donc, par hypothèse,

X1 1 1

X2 1 1

X3 1 1

X4 1 1

X5 1 1

X6 1 1

X7 1 1

X8 1 1

X9 1 1

X10 1 1

X11 1 1

X12 1 1

^2

Tl
T2

Ï3

Si on appelle Su_,la somme des observations de la ligne Lu et
S_j celle des observations de la colonne Ck, les équations nor-
males s'écrivent:

6 Ai + 2 yi -j- 2 v2 -f 2 y3 Slf_ (a)
/v

6A2 + 2yt + 2ys + 2 y3 S2_ (b)
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