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^ H. BRENY

On calcule et vérifie © comme ci-dessus, puis:

xax — n ya1-\-ua2 p zax v a2 wa3 — q

A ax + a2 + a3 T n + p q tax + ra2 + sa3 T

Ci x c2 y + u c3 z -f v -f w

wb3 a3 ç b3 -)- ub2 a2 zb3 -f- yb2 + xbx ax

b\ cx -f~ b2 c2 -f- b3c3 A

SCN a\ + a\ + 4

4. Exemples.

4, 1. Les épreuves de Student.

4, 11. Soit x1? xn un échantillon simple et fortuit d'une
population normale de moyenne p, et écart-type g. La théorie
des modèles linéaires s'applique ici, avec

r — p 1 31-Hi,...,! H V-IM!
StT2t H n H 2 xi «

î
et le système normal se réduit à

ln fi 2 xi ' P- ^Sxi m-
î n î

On a alors

SCN =(^xiy/n SCT= 2 xi >

1

n \ 2

n / n \ 2 n
71 2 Xi 2 Xi

** /«= S K-m)« -i Ai—

Si p. a, l'expression

; y(m «) V___J
n

x • — n a

\/(SC/47n) ' \/(»SCß)

est une aléatoire tn_t ; SC E/a2estune aléatoire
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4, 12. Soit (xx, xg) un échantillon simple et fortuit d'une

population normale de moyenne (xx et écart-type a, (xg+1, x„)
un échantillon simple et fortuit d'une population normale de

moyenne p.2 et écart-type a, les deux échantillons étant mutuellement

indépendants. La théorie des modèles linéaires s'applique
encore :

Xl 1 0

- xs i 6
\hL

fc
xa+i 0 1

^2

xn
Ô 1

2 IIEsfcJsO Il Mi> ^2 II
> II53

0

Si on pose

S Xi ^ Sl,s > S xi =: S2,S '
1 q+1

on a

p-l Sl,l/7 ' p-2 S2,l/(M — >

SCE
lSl>1>2

+
(ra~ S^2 ~ 'S2'l)2

qn— q

de sorte que, sous l'hypothèse p,x — p2 A, l'expression

(P-i — fiz —A) V(n — 2)

VRF^M
est une aléatoire tn_2; SC E/g2, est une aléatoire yj^_2

' 4, 2. Problèmes de régression.

4, 211. Supposons que, us étant des constantes certaines
deux à deux distinctes, on ait n 2® /q variables aléatoires ^

(i 1, s; j 1, /q), normales, de variance commune a2r

indépendantes, avec

E xy oc + ßiq (17)
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Ce cas rentre dans le cadre général des modèles linéaires moyennant

hH a P
1 1 1 1 1 1

u± u% u% UQ u„

(21 composée de 5 groupes ayant respectivement kv k2, ks
lignes identiques entre elles); ici, 2. Si l'on procède
comme au § 3, 232, en posant

S ki ^

2i uï \j Sq,t ' ^0,0 338 n ' Sq 0 k- uf ;

i=l 3 1

^2,0 — SU0
u,u n

on a, successivement,

W®1,1 ^1,0^0,1

@

©
A/n ^l,o/^n
0

d'où la table d'analyse de variance:

SCT £0>2

f red [a] (SQA)*/n

n ^1,0

<*1.0 ^2,0

21= S0,l

Sl,l

^1,0

n X
u,u

*K
\Jy/n

nd.l.

1 red [ß I »1 [Lu,xV

SCN red [a] + red [ß | a]

SCE SCT— SCN

f 1

{ 1 d.i.
2 d.i.

(n—2)

4, 212. On peut traiter ce même problème d'une manière un
peu différente, en posant

u i~ui " ^1,0 '

oc + ß cq a + ß iq (ß ß a' a + ß q/ti) ;

ceci revient à changer de base dans B, et nous écrirons

hH, Il a' ß' Il
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On a alors, en marquant de l'apostrophe les expressions

propres à la forme actuelle du modèle considéré,

1 1 1 1 1 1 T
%' / / / / / r 3

Uï ui ^2 ^2 " • "s

ilo
0 ^2,0 Lu,u ' SM I'u,x

®* diag (n,Luu); S[T r || S0J Lux ||T

£' S 0A/nß' W •

La table d'analyse de la variance ne change évidemment pas.
La méthode du § 3, 232 constitue, en quelque sorte, une

orthogonalisation a posteriori: on part de les vecteurs

zï(GV*) ne sont pas orthogonaux, mais les calculs
introduisent d'eux-même une base Ä telle que les vecteurs zï bjc soient
orthogonaux. Ici, nous venons de procéder à une orthogonalisation

a priori: nous avons d'emblée introduit une base £>' telle
que la matrice ©' relative à cette base soit diagonale, ce qui
garantit l'orthogonalité des vecteurs zj bH,. Cette seconde
méthode est souvent préférable à la première. C'est sur elle que
reposent, notamment, les procédés de « codage linéaire » utilisés,
dans les manuels d'analyse statistique, pour l'étude des plans
factoriels à facteurs quantitatifs (plans factoriels « de régression »).

4, 213. Il arrive que l'on désire contrôler, par les observations
elles-mêmes, la validité de la relation (17). Le modèle basé sur
(17) est alors considéré comme un cas particulier du modèle
défini par

dans ce modèle plus général, l'espace des erreurs, V*, est engendré
par les fonctionnelles de £ qui sont de la forme (xu — zik); il
admet donc la base suivante :

xi, 1 xi,2 ' xi i xi,k. »
1 L 5

laquelle s'orthogonalise en

bi* 1~ + •• + *4,1-1 xi t

i1, s; 1=2, ki
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On a alors
s kt

SCint SC V
* S

i— 1 t=2
s ki

2 2 (»£*)'/(*-D*
1=1 1=21=1 1=2

(18)

avec S| (kt — 1) — n — s degrés de liberté. Le contrôle envisagé
n'est donc possible que si l'un au moins des entiers k{ est > 1,
et il ne présente, en pratique, quelque intérêt que si n — s est,
au moins, de l'ordre de s. On le fait alors en comparant SCEM
à SCint au moyen des tables de F. Si l'on procède ainsi, il sied
d'utiliser SCint, et non SCE1 comme dénominateur des divers F
calculés.

Remarque. — Le calcul qui a conduit à l'expression (18) de
SCint est valide" dans des conditions extrêmement générales.

4,214. On peut évidemment éprouver des hypothèses très
diverses relativement à oc et ß (ou, ce qui revient au même, à oc7

et ß')14). Ainsi, l'on pourrait éprouver l'hypothèse ß a, a étant
un nombre donné; il suffit d'appliquer la formule du § 2, 23, en
remplaçant, au besoin, SCE et (n — r) par SCint et (n — s). Le
seul point un peu délicat est le calcul de f* l ; or, on a

ß — H V li ki, l^ks I) J 1* £

moyennant
hj ^ui — si,o)/nLu,u ;

on a donc
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On éprouverait de même, par exemple, l'hypothèse que, pour
des valeurs données u0 et x0, on a oc -f ßw0 — x0 (on considérerait

l'expression oc + ß u0j qui, sous cette hypothèse, a

comme moyenne x0).

4, 22. Supposons que, u et v étant deux variables certaines,
on ait

E Xu,v ßo + + ßa? (19)

et que les observations aient été faites aux « points » (0, 0), (2, 0),
(2,1), (1,2), (0,2) et (1,1); les observations sont, ici encore,
censées être des valeurs observées d'aléatoires normales,
indépendantes, de même variance a2. La théorie générale s'applique
alors, avec lllili0 2 2 1 0 1

0 0 1 2 2 1

6 H II ßo, ßx, ß2 f — n — 6 p r 3

Il est commode de traiter ce problème par orthogonalisa-
tion à priori; on rapporte donc B à une base ^ telle que les
colonnes de 21K soient deux à deux orthogonales; si l'on pose
^k Il Yo> Yi» Y2 f, cela revient à chercher deux polynômes du
premier degré, ç (») et (u, c), tels que

Yo + ïi (u) + y2 (u, ç) ß0 + ßi u + ß2 p

02 (Ui) o, 2 + (*
1 1

On peut prendre

9 K) K, Vi) 0

1

9 iu) — ^ 1 4* (^j p) — — 5 -j- u -f- 4ç>

ce qui correspond à

On a alors

*•5

*6

Ax
A2
Aa

1 — 1

0 1

0 0
VK

Yo

Yi
Y2

X1 + X2 + X3 + X4 + X5 + X6
X1 + x2 + x3

— 5 — 3 3 x3 -f 4x4 + X5
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®K

d'où
"

6 0 0 y0 Ax/6

0 4 0 yx A2/4

0 0 60 y2 A3/60

SC { y0 } ^4x/6 SC { yx } A22/4 SC { y2 } A32/60

SC{y0} red[ß0], SC{yx} redfßj ß0], SC (y2} red [ß2 | ß0, ßx]

SCiV=SC{y0}+SC{y1} + SC{y2})
sc# scr — sciv.

4, 3. Problèmes de

4,31. Supposons que l'on dispose des valeurs observées de
douze aléatoires normales, indépendantes, de même variance g2,
classées suivant deux critères : « lignes », de « valeurs » Lx et L2,
et « colonnes », de « valeurs » C±, C2, C3, suivant le schéma

Lr
U

Ci

xlt x2

Xy, Xq

C2

X3, Xi
Xg * Xi |

x5, Xq

xn, xt
On suppose a priori qu'il y a additivité, c'est-à-dire qu'il

existe cinq nombres Xl7 X2, ylt y2, y3 tels que la valeur moyenne
d'une observation de la ligne L, et de la colonne Ch soit \ + Tft
(i 1, 2; k4= 1, 2, 3). On a donc, par hypothèse,

X1 1 1

X2 1 1

X3 1 1

X4 1 1

X5 1 1

X6 1 1

X7 1 1

X8 1 1

X9 1 1

X10 1 1

X11 1 1

X12 1 1

^2

Tl
T2

Ï3

Si on appelle Su_,la somme des observations de la ligne Lu et
S_j celle des observations de la colonne Ck, les équations nor-
males s'écrivent:

6 Ai + 2 yi -j- 2 v2 -f 2 y3 Slf_ (a)
/v

6A2 + 2yt + 2ys + 2 y3 S2_ (b)
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2 Xi + 2 X2 + 4 yt S-,l (c)
/V /\

2 "Xi ~{- 2 ^.2 h 4 y2 — (d)

2^1 + 2^2 + 4Y3 - S_i3 (*)

Ici, manifestement, p 5, r 4 [en effet, (a) + (b)
(c) -f- (d) + (e)]. On est donc amené à mettre en évidence

quatre combinaisons estimables fondamentales ; on peut prendre

(i, 6 (Xf + X2) + 4 (Yi + Ï2 +-ï3)
AX \ — X2

Ai ï Ti — Ï2 > A' ï Yi — Ts •

On constate immédiatement que les estimateurs privilégiés de
ces quatre combinaisons sont deux à deux orthogonaux, à
l'exception près de la dernière paire; l'orthogonalité complète
est atteinte en remplaçant A' y par

A2 y + X2 — 2X3)/2 (Xi -f X2)/2 — x3.

Alors :

ß Sls_ + s2}_ s_}1 + s_}2 + s_ 3)

'
(S1 _ —s2 J/6

AÎy(S_4-S_2)/4

4 Y (S_;1 + S_^2 2 S_ 3)/8

Ici, on peut calculer

SCint (1/2) [(Xl x2)2 + + (xn — x12)2]

avec six degrés de liberté, puis, avec deux degrés de liberté,
SCEM SCE — SCint

On notera que, ici, on a

SC{ P- } red M red l> I A^1 ••• red |> | AX, At y, A2 y]

et des relations analogues pour les autres paramètres; ceci en
vertu de 1 orthogonalité de leurs estimateurs privilégiés.

SC£7Jf peut servir à éprouver l'hypothèse d'additivité, mais
on ne le voit clairement qu'en étudiant le modèle non additif.
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4, 32. Ne supposons donc plus a priori qu'il y ait additivité;
admettons que

^ x2i-l ^ x2i '

de sorte que p — 6, bH || M1 M2 M% M$ Me ||T. On voit
aisément que

© diag (2, 2)

d'où

(x2i—1 + x2i>/2 >

£C{mJ (*2i-l + x2i) 2/2

6^

SC N y sefa }
12

1

6

2 xi - SCN (!/2) 2 <x2i - x2i-l)2 •

1 1

Donc, pour le modèle général actuel, SCE vaut l'expression
SC int du modèle additif.

L'hypothèse d'additivité (c'est-à-dire, répétons-le, l'hypothèse

qu'il existe cinq nombres Xx, X2, yl5 y2, y3 tels que

Mi » \ M2 \ + y2 •••, x2 + y3)

est satisfaite si et seulement si

01 M1 — M2 — Mé -|~ M5 — 0 j 02 Mx — M3 — M4 + Mg 0

On doit donc former, pour éprouver cette hypothèse,

Oi M, — M2 — M4 + M5 02 M, — M3 — M4 + M6

A A A A

puis SC { Oi, 02}, et éprouver si SC { Oi, 02 } est, ou non, signifi-
cativement plus grande que SCI? (SCm£ du modèle additif),
A A

f)2 n'est pas orthogonal à 0X, mais bien

Os 2 Û2 — 0! M, + M2 — 2M3 + M4 + M6 — 2 M6 ;

°r'
se { 0! } Öi/8 SC { 63 } 0s/24

SC { 61, Ô2 } 86(0,, Ôs}= 86(0!}+ se { Os }

ce qui permet d'éprouver l'additivité.



MODÈLES LINÉAIRES EN ANALYSE STATISTIQUE 235

A A
On montre aisément que SC{ 0l5 02} n'est autre que SC EM

du modèle additif. Chacune de ces deux sommes de carrés est en

effet due à un sous-espace de V* ayant deux dimensions et
A A A A

orthogonal tant à [x, AX, y, A2 y qu'aux différences « internes »

x2i — x2i_i, et un tel espace est unique.

et ô2 (et leurs combinaisons linéaires, notamment 03)

portent le nom de «contrastes de non-additivité » (le terme
« contrastes d'interaction » n'est guère heureux). On remarquera
que, si les Mi déterminent entièrement les paramètres «

orthogonalem ent estimables» p., AX, Ax y, A2 y, 0l5 02, ceux-ci à

leur tour déterminent entièrement les M{. C'est en le posant au
moyen des paramètres p, 02 que le problème de la classification

(2 x 3) (avec un nombre quelconque d'observations par
cellule) se traite le plus aisément. Toutefois, ces paramètres ne
restent orthogonalement estimables que si toutes les cellules
renferment un même nombre d'observations.

Remarque. — Ces considérations s'étendent immédiatement
aux autres problèmes de classification.

4, 41. Supposons que l'on dispose d'une observation de
chacune de n variables aléatoires indépendantes, normales, de même
variance g2, réparties en s groupes, le ième groupe étant formé
de ^ éléments, avec

A A A

4, 4. Covariance 15).

I Exi,i Ti +

les ç{j étant des nombres certains 16). On a ici

bH H Ts, ß ||T

et, en supposant que dans chaque groupe il y a au moins deux
valeurs distinctes,
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On se convainc aisément que la matrice &H n'est pas
diagonale. Toutefois, il est aisé d'orthogonaliser le problème; il
suffit de poser

V - W 2s <„
"u- "1,1 — "t. •

ce qui entraîne

[ E XiJ Ai + ß Ui,j

=1,s ; / 1, n. ; 0j i 1,

ß"i.- •

En fait, cela revient à référer B à une base $ telle que
1 0 0

0 1

On a alors

0

0

1

i

1

o i

âi,I

vn

1 ,ni
*2,1

2,n2

1 14
'8,1

1 Mo

(les termes non écrits étant nuls).

4, 42. Il est alors utile de poser

s

^Si'

S j t

S.'M Si ^i;t,q '

ce qui conduit à

21K % — Il ^1 ;0,1 ' ^s;0,1 ' ^;1,1 H
»

®K dia^ n.S' ^;25o) '



MODÈLES LINÉAIRES EN ANALYSE STATISTIQUE 237

d'où

1 ß *;IAIS;2,0

SCT S.0 2 (avec n degrés de liberté),

SC { At | red [A^] (Si;0 ])2lni (avec 1 degré de liberté),
A

SC { ß } red [ß] (S;1 ^/S^ 0 (avec 1 degré de liberté),

SCiV 2i SC { } + SC { ß } (avec s + 1 degrés de liberté),

SCE SCT — SCiV

^ ni Si;0,2 (Si;0,l)2 Si [ni SÛ1,1 1,0 Si;0,l ]

lâ n\ Si Ki.o)*]
(avec n — s — 1 degrés de liberté).

a2 est estimé par SCE/(tt —s — 1).

4, 43. En fait, l'intérêt se porte généralement sur l'estimation
des différences Ti — Th, les paramètres Ai n'ayant pas d'intérêt
propre. On a, en posant — vk_ di k,

(Ti-Tft)A [(Âj + - (ift + ßcV)]^

^ At Aft + ß

'..«j»
moyennant

h.q ^i,k Ut,q/SSI t i, t k

k,q di,kui,q/S.2jQ + 1/^

^ Uk,q/S.ç>}0 — l/nk,
d'où

l* 1 [ditk)*/S.XQ + 1/rt- +

Il résulte de là que l'expression

A- [(*i-fy-(r«-rQ]
\/[8C E/(n s 1) V 2,0 ~t~ ^ "t"

est une aléatoire tn_s_j.
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On voit que l'erreur-type de Ai fe, produit de a par

M_2 + 1 + 1'
1;2,0 ni nh

y2

varie, en général, avec la paire (i, &), même si les n{ sont égaux
entre eux (nx ns — v). Toutefois, dans ce dernier cas,
on utilise d'ordinaire une expression approchée de obtenue
en considérant les comme n observations indépendantes d'une
même aléatoire, de moyenne v et écart-type 0 17). En désignant
par M la valeur moyenne prise par rapport à la distribution de
cette aléatoire (fictive), on a

M v - M [(v - ç) - (%_- p)]»

2 M (p. _ — p)2 2 62/v ;

M ^;2,o « Si Si - <v>2 Si <v - o0 =* (v - *)02 ;

M (e, — c, J2 iily»,ii[1 +
nink J l v L

1%
1 M ^2,0 nink\ l v L k (v — 1)J J

c'est cette dernière expression que l'on utilise comme valeur
approchée de zi>k.

4, 44. Il est utile aussi de calculer la somme de carrés due au
sous-espace U* engendré par les estimateurs des contrastes
Ti — afin de pouvoir construire une épreuve globale de la
nullité de ceux-ci. On pourrait évidemment construire une base

orthogonale de U*, mais les calculs nécessaires sont d'une grande
complication. Il est beaucoup plus simple d'appliquer le théorème

du § 2,31, en procédant comme suit: on considère le
modèle

E \j T + ß %j

et on calcule la somme de carrés de l'erreur qui lui est associée,
c'est-à-dire (voir § 4, 211)

(S.n a)2 (S.,)
(SCE)Ti=T S;0>2 -++ -n +2,0

or ce modèle s'obtient à partir du modèle initial en supposant



MODÈLES LINÉAIRES EN ANALYSE STATISTIQUE 239

que, pour tout vecteur l* de U*, on a @ I* =0; par conséquent

SCU* (SCS)T.=T—

y (Si;0,l)2 _
(S;0,l)a

_ Mgj

t=l ni U

Si on pose

v-ÏS-u-
la formule (19) peut s'écrire

2,-«'
2=1 2 U \i— 1

2=1 \2=1

SC I

2 (X2 - — X--)2 • (20)
2=1

L'expression (20), moins aisée à mettre en nombres que l'expression

(19), est plus parlante qu'elle.
L'hypothèse T1 T2 Ts s'éprouve en comparant

SCU*/(s — 1)

SCE/(n — s — 1)

à la distribution de F à (s — 1) et (n — s — 1) degrés de liberté.
La table d'analyse de variance se présente ainsi:

SCT S;Qf2 n d.i.

red [T] (S;0ti)*/n

SON- red [ß] )2/^;2,o {* + 1)

red [T± — T2, T1 — Ts | T, ß] SC U*

SCE SCT — SCN (n — s — 1) d.i.

1 d.i.

l d.i.

(5 — 1) d.i.

Si plusieurs paires (t, /) correspondent à une même valeur de

on peut introduire, en outre, la décomposition habituelle de
SCE en ^SCint et SCEM.
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