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226 L H. BRENY

.On calcule et vérifie & comme ci-dessus, puis:

Xa, =n ya, + uay, = p za1+va2+wg3#q
A=gq +a,+ a T=n+4+p+gqg ta; + ra, + sa; = T
£y = & Ca =Y + u 3 =23+ ¢+ w

wby = a4 0bg + ub, = a, zb3+yb2—|—x§1=a,

bycy + byey + byey = A
SCN = af + a3 + a? .

4. EXEMPLES.

4,1. Les épreuves de Student.

4,11. Soit xy, ..., x, un échantillon simple et fortuit d’une
population normale de moyenne p. et écart-type o. La théorie
des modéles linéaires s’applique ici, avec

r=p=1, A=|[1,.,1] bg=]|ul,

n
wWa=rel, aTs=>Dx,
' 1

et le systeme normal se réduit a

On a alors
SCN = (D) x,)2/n , scT — >\ x;,

n n 2 n nz_;2i<gxi>
SCE=Ex§_<2xi>/n:2-(xi_m)2: — £
1 1

1

S1 p = a, expression

(m"—a)\/(n——i)l: T &
A/ (SCE/n) \/(- " 4/(nSCE)

est une aléatoire t, ; ; SCE/o? est une aléatoire y?2_, .
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4,12." Soit (xy, ..., x,) un échantillon simple et fortuit d’une

population normale de moyenne u, et écart-type o, (%44, -

o Xp)

un échantillon simple et fortuit d’une population normale de
moyenne p., et écart-type o, les deux échantillons étant mutuelle-
ment indépendants. La théorie des modeles linéaires s’applique

encore:
Xy 1 0
xq'+1 01 o )
x, 0 1
r=p=2, th=lmuwl, Tu=| 17
2 H 1 2 ) 0 " — q
Si on pose
q n
X "
Z X‘?i == Si,S ’ 2_] X,Si = SQ,S ,
1 q+1
on a
fr=Si4/a. o= Syllh—aq),
SCE — 981,0 — 151,0)° + (n—q) 8y 9 — .89 4)?
q n q b

de sorte que, sous ’hypothése w, — w, = A, I'expression
(B — g —8) V{n—2)
VIG5 ses]
q n—gq

, * . 9 7 i 2
est une aléatoire t, o; SCE/c? est une aléatoire vy, o .

4, 2. Problémes de régression.

4, 211. Supposons que, u, ..., u, étant des constantes certaines

deux & deux distinctes, on ait » = X{k, variables aléatoires x. .

3

(t=1, ..,8;,7] =1, .., k), normales, de variance commune o2,

indépendantes, avec
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Ce cas rentre dans le cadre général des modeles linéaires moyen-
nant

1 ...1 1 .1 ... 1..1
Up oo Uy Uy oo Uy ... U u

b=« 8|7, wu= '

S e (]

(% composée de s groupes ayant respectivement %, k,, ..., k,
lignes identiques entre elles); ici, r — p = 2. Si Pon procéde
comme au § 3, 232, en posant

ki

1

q bt . — . _ q .

2. 1uixi,,-~5q,t, So0 =n; Sgo= D kul;
i= 1

1=

—

2
nSyo— S1 0 ) nSyy — S1,0 So,1 )

uu n ) u,x 7 )
on a, successivement,
8 — n Si,()
S0 Sa
S — Vin Sie/Vn Ty — S0,1 f So./V/n
0o VI, 1,1 s
BT — S’(‘)L,i . S:l,o zux L,
u,u w,u
d’ou la table d’analyse de variance: |
SCT = 8y, nd.l.
{red [a] = (Sg,1)%/n . {1 d.l.
red [B | ] = (Lo )2 1d.1.
SCN = red [a] + red [@ | a] 2d.1.
SCE = SCT — SCN | (n —2)d.L.

4,212. On peut traiter ce méme probléme d’une maniére un
peu différente, en posant

/
Uy = Uy — Sy /n ,

0wt Buy=o +Fu; (B =B, o= @+ B8y of/n) ;

ceci revient & changer de base dans B, et nous écrirons

by = Il o B 1] -
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On a alors, en marquant de ’apostrophe les expressions
propres & la forme actuelle du modele considéré,

( .11 .01 0 1. ||T
2[’ = 7 7 V4 ’ ’ V4 ’
u1 ui u2 u2 us us
/ / /7
51,0 =0, 52,0 = Lu,u J S1,1 - Lu,x’

& = S0,1/n B, = Lu,x/Lu,u (: @) )

La table d’analyse de la variance ne change évidemment pas.

La méthode du § 3,232 constitue, en quelque sorte, une
- orthogonalisation a posteriori: on part de by, les vecteurs
el by (6V*) ne sont pas orthogonaux, mais les calculs intro-
duisent d’eux-méme une base & telle que les vecteurs ! §,, soient
orthogonaux. Ici, nous venons de procéder & une orthogonalisa-
tion a priori: nous avons d’emblée introduit une base ' telle
que la matrice ©' relative a cette base soit diagonale, ce qui
garantit l'orthogonalité des vecteurs ¢ll,,. Cette seconde
méthode est souvent préférable a la premiére. C’est sur elle que
reposent, notamment, les procédés de « codage linéaire » utilisés,
dans les manuels d’analyse statistique, pour I’étude des plans
factoriels & facteurs quantitatifs (plans factoriels « de régression »).

4,213. Il arrive que I’on désire controler, par les observations
elles-mémes, la validité de la relation (17). Le modéle basé sur
(17) est alors considéré comme un cas particulier du modéle
défini par '

Ex,. = M, ;

(2%

dans ce modele plus général, Pespace des erreurs, V., est engendré
par les fonctionnelles de ¢ qui sont de la forme (z;; — x;,); il
admet donc la base suivante:

i,
x,i’1 h— xi’2, --.‘, xi’1 — xi,hi s i == 1, 2, cees S

laquelle s’orthogonalise en
{bifzg =Ty T F g — = 1),

I:=/1,...,S; t:2,..., k’l.
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On a alors
) S Ri
SCint = SCV* _ Z 2 SC{ bz*t}
=1 i=2
S ki
5,
= > > bk E)2e—1)e

~
I
[
o~
I
o

(18)

I
[\Am
N

=~

-~
I

avec ; (k; — 1) = n — s degrés de liberté. Le controle envisagé
n’est donc possible que si 'un au moins des entiers-k; est > 1,
et il ne présente, en pratique, quelque intérét que si n — s est,
au moins, de ordre de s. On le fait alors en comparant SCEM
& §Cint au moyen des tables de F. Si 'on proceéde ainsi, il sied
d’utiliser SCint, et non SCE, comme dénominateur des divers F
calculés.

Remarque. — Le calcul qui a conduit & Pexpression (18) de
SCint est valide dans des conditions extrémement générales.

4,214. On peut évidemment éprouver des hypothéses trés
diverses relativement & « et 3 (ou, ce qui revient au méme, a o’
et 8') 1). Ainsi, I’on pourrait éprouver I’hypothése 8 = q, @ étant
un nombre donné; il suffit d’appliquer la formule du § 2, 23, en
remplagant, au besoin, SCE et (n — r) par SCint et (n — s). Le
seul point un peu délicat est le calcul de (*[; or, on a

é = ” li,i’ ceny li,kl’ ceny ls,ks H g = I* &‘

moyennant

li,j = (nu; — Sl,O)/nLu,u 5

=0 Dby = ULy s |
par consequent, sous I’hypothése § = a, ’expression

f—avi—d 5, V/(n — Ly
vV (1* 1. SC int) in

on a donce

est une valeur observée d’une aléatoire t, . .
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On éprouverait de méme, par exemple, I’hypothése que, pour
des valeurs données u, et z,, on a « + Pu, = z, (on considé-
rerait lexpression o + Bu, qui, sous cette hypothése, a
comme moyenne ).

4, 22. | Supposons que, u et ¢ étant deux variables certaines,

on ait A
Exu,v:BO‘l‘Blu“{“Bz‘)a (19)

et que les observations aient été faites aux « points » (0, 0), (2, 0),
(2,1), (1,2), (0,2) et (1,1); les observations sont, ici encore,
censées étre des valeurs observées d’aléatoires normales, indé-
‘pendantes, de méme variance o2. La théorie générale s’applique
alors, avec

BH = ” n807 Bl: BZ ”T ’ g[H' =

T

111111 :
022101 |, n=6, p=r=3.
001221

Il est commode de traiter ce probléme par orthogonalisa-
tion & priori; on rapporte donc B & une base & telle que les
oolonnes de Ay soient deux & deux orthogonales; si 'on pose

by = H Yor Y15 Y2 HT cela revient & chercher deux polynémes du
premier degré, o (u) et (u, ¢), tels que

Y0+Y1(P()+Y2¢(u’0)560+61u+829,
i s
D)@ lw) =10, Z‘P(“i’”i):‘), Do () §(ug 05) = 0.
1 1 -

On peut prendre

o) =u—1, $(u,0)=—5+u-+ 4o,
ce qui correspond &
1 —1. —5
Ber = 0 1 1 b, .
H
0 0 s || K
On a alors
X 1 1 —3
E X3 = 1 1 1 Yo
Xy 1 0 4 Y1
X5 1 —1 3 Y2
A X1+X2+X+X+X+x
A, —-5x1-—3x2—!—x3+4x4+x5
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d’ou
6 0 0 Yo = A,/6
Spe=1 0 & o0 |, 1= Ak
0 0 60 Y2 = Ay/60
SC{ %} = A4j/6 , SC{ % }= Ay, SC{ ¥, } = A;/60 .

SC{ %} = red[B,], SC{%,} = red [P, | B,], SC{%:} = red[B, By, B:]

SCN =8C{ %o} +8C{ 9, }+5¢{3,},
SCE = SCT — SCN .

4, 3. Problémes de classification.

4,31. Supposons que I'on dispose des valeurs observées de
douze aléatoires normales, indépendantes, de méme variance o2,
classées suivant deux critéres: « lignes », de « valeurs» L, et L,,
et « colonnes », de « valeurs » C;, C,, C,, suivant le schema

Cy - G C,
Ll xla x2 x3a Xy .’L’5, Zg
Lz Zq, Xg Ty, 10 Zy1, Z1g -

On suppose a priori qu’il y a additivité, c’est-a-dire qu’il
existe cing nombres Ay, Ay, Y1, Yo, Ys tels que la valeur moyenne
d’une observation de la ligne L, et de la colonne C, soit A; + v,
(t=1,2; k=1,2,3). On a done, par hypothese,

X, 1 1

X, 1 1

Xg 1 1

X, 1 1 A

X; 1 1 Ay
E Xg == 1 1 Y1

X7 11 Y2

Xg 11 T3

Xg 1 1

X10 1 1

X1 1 1

X9 1 1

Si on appelle §; _, la somme des observations de la ligne L;, et
S_; celle des observatlons de la colonne C,, les équations nor-

males s’écrivent:
6 A +2«}1+2§/2+2«?3=51_ (a)

6)\2‘{‘24‘\’14‘2’?2‘*‘2?3:82_ (b)
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20 + 2% + 4% =5 (¢)
2j\\l == .25\2 + 4"};2 = S_,Q ()
2’7\\1 + 25\\2 —I— 44‘\,3 = S—’3 (6’)

Ici, manifestement, p = 5, r = 4 [en effet, (a) .—}— ()
= (¢) + (d) + (e)]. On est donc amené & mettre en évidence
quatre combinaisons estimables fondamentales; on peut prendre

=060+ %)+ &(vi+ Y2+ vs)
Ay=v1—172, Ay = v — Y3 -

On constate immédiatement que les estimateurs privilégiés de
ces quatre combinaisons sont deux & deux orthogonaux, &
Pexception prés de la derniére paire; I'orthogonalité compléte
est atteinte en remplacant A’ y par

Agy = (A 4+ 2 —205)/2 = (M + 25)/2 — 2 .
Alors:
=S8 _+8 (=85 ,+8,+8,,
AN = (s, _—s; )6
Aoy = (8. —S_ )/
A;Y = (S, +8_,—25_,)/8 .
Ici, on peut calculer |
SCint = (1/2) [(x; — x5)% + ... + (x; — X15)?] ,
avec six degrés de liberté, puis, avec deux degrés de liberté,
SCEM = SCE — SCint . |

On notera que, ici, on a

SC{ (L } = red [u] = red [p]| A%] = ... = red [y | A, Ary, Ay,
et des relations analogues pour les autres parameétres; ceci en
vertu de I'orthogonalité de leurs estimateurs privilégiés.

SCEM peut servir a éprouver I’hypothese d’additivité, mais
on ne le voit clairement qu’en étudiant le modéle non additif.
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4, 32.. Ne supposons donc plus a priori qu’il y ait additivité;
admettons que :

Exgiq = Exyy = M;
de sorte que p = 6, b, = ” M, My My My, Mz M, HT On voit
aisément que

& = diag (2, ..., 2)

d’ou

M; = (x5 4 + xp,)/2 )

SC{M,; } = (%oiq + x)22

6
scN = > sc{m; },
1

12 6
SCE = ; x; — SCN = (1/2) “12 (xg; — Xo;_4)? .

Donc, pour le modele général actuel, SCE vaut 1’expression
SCint du modéle additif.

L’hypothése d’additivité (c’est-a-dire, répétons-le, I’hypo-
theése qu’il existe cinqg nombres A, A, vy, Yo, Y3 tels que

M, =M+ v, My =27+ Y55 .or) M6:7\2+Y3)
est satisfaite si et seulement si
=M —M,— M, + M;=0, =M —M—M,+ My=0.

On doit donc former, pour éprouver cette hypothese,

A

A A A A A A A A A
01:M1——M2—‘M4+M5, 62:M1_M3—M4‘|‘Me,

puis SC{ 61, 62 }, et éprouver si SC { 61, 62 } est, ou non, signifi-
cativement plus grande que SCE (SCint du modéle additif).

f, n’est pas orthogonal a (), , mais bien

05 =20, — 0, = Ml‘lf M, —2M; + M, + M; —2M,;

or,

sc{f,} =08, sc{f,}= 022,
Sc{ 0y, 0.} =5c{0,. 0.} =sc{l,}+sc{l,},

ce qui permet d’éprouver I'additivité.
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On montre aisément que SC{ 6, 0, } n’est autre que SCEM
du modéle additif. Chacune de ces deux sommes de carres est en
effet due 4 un sous-espace de V* ayant deux dimensions et

orthogonal tant & ., AN Ay, A,y qu’aux différences « internes »
Tai —— Taicg et un tel espace est unique.

01 et 6 (et leurs combinaisons linéaires, notamment 0,)
portent le nom de «contrastes de non-additivité » (le terme
« contrastes d’interaction » n’est guére heureux). On remarquera
que, si les M; déterminent entiérement les parameétres « ortho-
gonalement estimables» w, AA, A; v, A, v, 0;, 0,, ceux-ci &
_leur tour déterminent entierement les M;. C’est en le posant au
moyen des parameétres y, ..., 0, que le probléme de la classifica-
tion (2 X 3) (avec un nombre quelconque d’observations par
cellule) se traite le plus aisément. Toutefois, ces paramétres ne
restent orthogonalement estimables que si toutes les cellules
renferment un méme nombre d’observations.

Ces considérations s’étendent immédiatement
aux autres problémes de classification.

Remarque.

4, 4. Covariance 15),

4,41. Supposons que l'on dispose d’une observation de cha-
cune de n variables aléatoires indépendantes, normales, de méme
variance o?, réparties en s groupes, le ©™ groupe étant formé
de n; elements avec

Exij=Ti+ By
1’:17'73; ]:1"'°:ni; n1+°'-+nS:n;

les 0;; étant des nombres certains 16). On a ici
by = Il Tyy oo, T, 8117

et, en supposant que dans chaque groupe il y a au moins deux
- valeurs ¢, ; distinctes,

=r=s+4+1.
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On se convainc aisément que la matrice & n’est pas dia-
gonale. Toutefois, il est aisé d’orthogonaliser le probléme; il
suffit de poser

0 = (1/n;) 23

u".' — () — ‘) )
ce qui entraine
[Ex” = A; + By ;

11:: 7...,3; ]:1,...,ni; Ejul,:’:()

- En fait, cela revient & référer B & une base § telle que

1 0 s O — ()1 _
0 1 ‘
b = : T b
K : -~ 11
0 1 —py
0 0 1
On a alors
1 Uy
1 u1,n1
1 Uy 4
g = 1 .. ty
1 u,,
1 ugy,

(Ies termes non écrits étant nuls).

4,42, 1l est alors utile de poser

t
Si;t,q :2] ( 13) (xi:’)q ’
Sitg = Z Sistg -
i5t,q 2 ,3) ,9) ’

ce qui conduit &

. o
Ug t =11 Sy5000 0 Ssy000 S Il
@K = diag (nl, ceey ns, S;z,o) ’
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d’ou

SCT = S;O,Q :
SC{ A, } = red [4;] = (8,0,)%m;
SC{ B } = red‘[m = (5;1,1)2/‘9;2,0

sev = S, sc{A,} +sc{ B}

(avec n degrés de liberté),

(avec 1 degré de liberté),
(avec 1 degré de liberté),

(avec s 4+ 1 degrés de liberté),

SCE = SCT — SCN

’

i i S0 — Bia)* i [ S0 — S0 Siso,]
.l 21: [ni Sii00 — (51;1,0)2}

(avec n — s — 1 degrés de liberté).

i1=1

o2 est estimé par SCE/(n — s — 1).

4,43. En fait, I'intérét se porte généralement sur I’estimation
des différences T; — T, les paramétres A, n’ayant pas d’intérét
propre. On a, en posant ¢; . — ¢, _ = d;,, |

A

(T —1)" = [(A; + Bo; ) — (R + Bop )]

:I*f—“l11, .,ls’ns f
moyennant
by = & p ut,q/S;2,0 sit#u,t#k,
li,(l = d’i,k ui,q/S;Q,O + 1/ni ’
lk,q = di,k u’k,q/‘g;g,o — 1/nk 3
d’ou

0= (d; p)?*S .00 + 1/n; + 1/ny, .

Il résulte de 1a que ’expression

A'k: [(%i_—'i‘k)‘—‘(T@_Tk)]
b \I[SCE/(n —s —1) .

purem—"

VU RS g0 + 1/n; + 1]

est une aléatoire t,___,.
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On voit que l'erreur-type de A, , produit de o par

d; 1
Ei’h:[( A, k]/z

520 ty

varie, en général, avec la paire (i, k), méme si les n, sont égaux
entre eux (n, = ... = ny = v). Toutefois, dans ce dernier cas,
on utilise d’ordinaire une expression approchée de ¢;,, obtenue
en considérant les ¢; ; comme n observations indépendantes d’une
méme aléatoire, de moyenne ¢ et écart-type 6 17). En désignant
par M la valeur moyenne prise par rapport & la distribution de
cette aléatoire (fictive), on a |

1,—

| M(o;  —op )%= Mo, —0) — (0, — 0)]2

=2M (o, _—0)? = 262 ;
O_MZ,L_” 0; 5 — 9; )2 Ei(v——1)6=k(v~—1)92;

M, —o ) 11]% (2 1 NY%
{ M S0 +nink} —l7[1+k(v—1)]f ’

c’est cette derniére expression que lon utilise comme Valeur
approchée de ¢;

4,44, 11 est utile aussi de calculer la somme de carrés due au
sous-espace U* engendré par les estimateurs des contrastes
T, — T,, afin de pouvoir construire une épreuve globale de la
nullité de ceux-ci. On pourrait évidemment construire une base
orthogonale de U™, mais les calculs nécessaires sont d’une grande
complication. Il est beaucoup plus simple d’appliquer le théo-
reme du § 2,31, en procedant comme suit: on considére le

modeéle
Exiy =T+ Boy

et on calcule la somme de carrés de 'erreur qui lui est associée,
c’est-a-dire (voir § 4, 211)

(S;0,1)2 . (S;j,']_)z
n S0

(SCE) g1 = S99 —

b

or ce modele s’obtient & partir du modele initial en supposant
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que; pour tout vecteur [* de U*, on a §(* = 0; par conséquent
SCU* = (SCE)p,_ o — SCE

_ o Bioal® - Bial® (19)
- 2 = o G
i=1 t

Si on pose

L _ =3 () x
xi,_ - ]—?,— 23 x?"'j ’ X'_f—' o —]’7 21 29 X,L,,’ T 4—-]1 n. 1"7— ’

la formule (19) peut s’écrire

2 n 2
SCU* = "sﬂ (2% %) _%( M xm->

L’expression (20), moins aisée & mettre en nombres que I'expres-
sion (19), est plus parlante qu’elle.
L’hypothése T, = Ty = ... = T, s’éprouve en comparant

SCU*/(s — 1)
SCE/(n — s — 1)

a la distﬁbution de Fa(s—1)et (n —s— 1) degrés de liberté.

La table d’analyse de variance se présente ainsi:

SCT = S, n d.l.

red [T] = (8,5,4)%/n ‘ 1d.l.
SCNqred [B] = (S, 1)%/S .90 | (s +1)91d.lL
red [Ty — Ty, ..., T, — T, | T, 8] = SCU* (s —1) d.l.

SCE = SCT — SCN  (n—s—1) d.1.

Si plusieurs paires (i, j) correspondent & une méme valeur de

¢; i, on peut introduire, en outre, la décomposition habituelle de
SCE en SCint et SCEM.
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