Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 6 (1960)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: LES MODÈLES LINÉAIRES EN ANALYSE STATISTIQUE

Autor: Breny, H.

Kapitel: 4. Exemples.

DOI: https://doi.org/10.5169/seals-36341

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 11.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

On calcule et vérifie & comme ci-dessus, puis:

$$x = a_1 = n$$
 $y = a_1 + u = a_2 = p$ $z = a_1 + v = a_2 + w = a_3 = q$
 $A = a_1 + a_2 + a_3$ $T = n + p + q$ $t = a_1 + r = a_2 + s = a_3 = T$
 $c_1 = x$ $c_2 = y + u$ $c_3 = z + v + w$
 $w = b_3 = a_3$ $v = b_3 + u = b_2 = a_2$ $z = b_3 + y = b_2 + x = b_1$
 $b_1 c_1 + b_2 c_2 + b_3 c_3 = A$
 $SCN = a_1^2 + a_2^2 + a_3^2$.

4. Exemples.

4, 1. Les épreuves de Student.

4, 11. Soit $\mathbf{x}_1, ..., \mathbf{x}_n$ un échantillon simple et fortuit d'une population normale de moyenne μ et écart-type σ . La théorie des modèles linéaires s'applique ici, avec

$$r=p=1$$
 , $\mathfrak{A}=\parallel 1,...,1\parallel$ $\mathfrak{b}_{H}=\parallel \mu \parallel$, $\mathfrak{A}^{T}\mathfrak{A}=\parallel n \parallel$, $\mathfrak{A}^{T}\mathfrak{A}=\parallel n \parallel$, $\mathfrak{A}^{T}\mathfrak{A}=\parallel n \parallel$,

et le système normal se réduit à

$$n\,\hat{\boldsymbol{\mu}} = \sum_{1}^{n}\,\mathbf{x}_{i}$$
 , $\hat{\boldsymbol{\mu}} = \frac{1}{n}\,\sum_{1}^{n}\,\mathbf{x}_{i} = \mathbf{m}$.

On a alors

$$\mathbf{SC}N = ig(\sum \mathbf{x}_iig)^2/n$$
 , $\mathbf{SC}T = \sum_{i=1}^n \mathbf{x}_i^2$,

$$\mathbf{SC}E = \sum_{1}^{n} \mathbf{x}_{i}^{2} - \left(\sum_{1}^{n} \mathbf{x}_{i}\right)^{2}/n = \sum_{1}^{n} (\mathbf{x}_{i} - \mathbf{m})^{2} = \frac{n \sum_{1}^{n} - \dot{\mathbf{x}}_{i}^{2} \left(\sum_{1}^{n} \mathbf{x}_{i}\right)^{2}}{n}.$$

Si $\mu = a$, l'expression

$$\frac{(\mathbf{m}-a)\sqrt{(n-1)}}{\sqrt{(\mathbf{SC}E/n)}} = \sqrt{(n-1)}\frac{\sum_{1}^{n}\mathbf{x}_{i}-na}{\sqrt{(n\,\mathbf{SC}E)}}$$

est une aléatoire \mathbf{t}_{n-1} ; $\mathbf{SC}E/\sigma^2$ est une aléatoire χ^2_{n-1} .

4, 12. Soit $(\mathbf{x}_1, ..., \mathbf{x}_q)$ un échantillon simple et fortuit d'une population normale de moyenne μ_1 et écart-type σ , $(\mathbf{x}_{q+1}, ..., \mathbf{x}_n)$ un échantillon simple et fortuit d'une population normale de moyenne μ_2 et écart-type σ , les deux échantillons étant mutuellement indépendants. La théorie des modèles linéaires s'applique encore:

$$\mathbf{E} \left\| \begin{array}{c} \mathbf{x}_1 \\ \vdots \\ \mathbf{x}_q \\ \mathbf{x}_{q+1} \\ \vdots \\ \mathbf{x}_n \end{array} \right\| = \left\| \begin{array}{ccc} 1 & 0 \\ \vdots & \vdots \\ 1 & 0 \\ 0 & 1 \\ \vdots & \vdots \\ 0 & 1 \end{array} \right\| \left\| \begin{array}{c} \mu_1 \\ \mu_2 \end{array} \right\|,$$

$$r = p = 2 \ , \qquad \mathfrak{b}_H^T = \left\| \left. \mu_1, \, \mu_2 \right\| \ , \qquad \mathfrak{A}^T \, \mathfrak{A} = \left\| \begin{array}{ccc} q & 0 \\ 0 & n - q \end{array} \right\|.$$

Si on pose

$$\sum_{1}^{q} \mathbf{x}_{i}^{s} = \mathbf{S}_{1,s}, \qquad \sum_{q+1}^{n} \mathbf{x}_{i}^{s} = \mathbf{S}_{2,s},$$

on a

$$\begin{split} \hat{\mu}_1 &= \mathbf{S}_{1,1}/q \ , \qquad \hat{\mu}_2 = \mathbf{S}_{2,1}/(n-q) \ , \\ \mathbf{SCE} &= \frac{q\,\mathbf{S}_{1,2} - (\mathbf{S}_{1,1})^2}{q} + \frac{(n-q)\,\mathbf{S}_{2,2} - (\mathbf{S}_{2,1})^2}{n-q} \ , \end{split}$$

de sorte que, sous l'hypothèse $\mu_1 - \mu_2 = \Delta$, l'expression

$$\frac{\left(\hat{\mu}_{1}-\hat{\mu}_{2}-\Delta\right)\sqrt{(n-2)}}{\sqrt{\left[\left(\frac{1}{q}+\frac{1}{n-q}\right)\mathbf{SC}E\right]}}$$

est une aléatoire \mathbf{t}_{n-2} ; $\mathbf{SC} E/\sigma^2$ est une aléatoire χ^2_{n-2} .

4, 2. Problèmes de régression.

4, 211. Supposons que, $u_1, ..., u_s$ étant des constantes certaines deux à deux distinctes, on ait $n = \sum_{i=1}^{s} k_i$ variables aléatoires $\mathbf{x}_{i,j}$ $(i = 1, ..., s; j = 1, ..., k_i)$, normales, de variance commune σ^2 , indépendantes, avec

$$\mathbf{E} \mathbf{x}_{i,j} = \alpha + \beta u_i . \tag{17}$$

Ce cas rentre dans le cadre général des modèles linéaires moyennant

(\mathfrak{A} composée de s groupes ayant respectivement $k_1, k_2, ..., k_s$ lignes identiques entre elles); ici, r=p=2. Si l'on procède comme au $\S 3, 232$, en posant

$$\begin{split} \sum_{i=1}^{s} \sum_{j=1}^{k_{i}} u_{i}^{q} \mathbf{x}_{i,j}^{t} &= \mathbf{S}_{q,t} \; ; \quad S_{0,0} \equiv n \; ; \quad S_{q,0} &= \sum_{1}^{i} k_{i} \; u_{i}^{q} \; ; \\ L_{u,u} &= \frac{n \; S_{2,0} - S_{1,0}^{2}}{n} \; ; \quad \mathbf{L}_{u,x} &= \frac{n \; \mathbf{S}_{1,1} - S_{1,0} \; \mathbf{S}_{0,1}}{n} \; ; \end{split}$$

on a, successivement,

$$\mathfrak{S} = \left\| \begin{matrix} n & S_{1,0} \\ S_{1,0} & S_{2,0} \end{matrix} \right\|$$

$$\mathfrak{S} = \left\| \begin{matrix} \sqrt{n} & S_{1,0}/\sqrt{n} \\ 0 & \sqrt{L_{u,u}} \end{matrix} \right\| \qquad \mathfrak{A}^T \mathfrak{x} = \left\| \begin{matrix} \mathbf{S}_{0,1} \\ \mathbf{S}_{1,1} \end{matrix} \right\| \qquad \hat{\mathbf{f}}_K = \left\| \begin{matrix} \mathbf{S}_{0,1}/\sqrt{n} \\ \mathbf{L}_{u,x} \end{matrix} \right\|$$

$$\hat{\mathbf{f}}_H^T = \left\| \begin{matrix} \frac{\mathbf{S}_{0,1}}{n} - \frac{S_{1,0}}{n} \frac{\mathbf{L}_{u,x}}{L_{u,u}} & \frac{\mathbf{L}_{u,x}}{L_{u,u}} \end{matrix} \right\|$$

d'où la table d'analyse de variance:

$$\begin{split} SCT &= S_{0,2} & n \, d.l. \\ & \left\{ \begin{array}{l} \operatorname{red} \left[\alpha \right] = (S_{0,1})^2 / n & \left\{ \begin{array}{l} 1 \, d.l. \\ 1 \, d.l. \end{array} \right. \\ SCN &= \operatorname{red} \left[\alpha \right] + \operatorname{red} \left[\beta \mid \alpha \right] & 2 \, d.l. \\ SCE &= SCT - SCN & (n-2) \, d.l. \end{split} \right. \end{split}$$

4, 212. On peut traiter ce même problème d'une manière un peu différente, en posant

$$u_i^{'}=u_i-S_{1,0}/n\ ,$$

$$\alpha+\beta\,u_i\equiv\alpha^{\prime}+\beta^{\prime}\,u_i^{'}\qquad (\beta^{\prime}=\beta\ ,\quad \alpha^{\prime}=\alpha+\beta\,S_{1,0}/n)\ ;$$

ceci revient à changer de base dans B, et nous écrirons

$$\mathfrak{b}_{H'} = || \alpha' \beta' ||$$
.

On a alors, en marquant de l'apostrophe les expressions propres à la forme actuelle du modèle considéré,

La table d'analyse de la variance ne change évidemment pas.

La méthode du § 3, 232 constitue, en quelque sorte, une orthogonalisation a posteriori: on part de \mathfrak{h}_H , les vecteurs $\mathbf{\epsilon}_i^T \hat{\mathbf{h}}_H \ (\in \mathbf{V}^*)$ ne sont pas orthogonaux, mais les calculs introduisent d'eux-même une base \mathfrak{K} telle que les vecteurs $\mathbf{\epsilon}_i^T \hat{\mathbf{h}}_K$ soient orthogonaux. Ici, nous venons de procéder à une orthogonalisation a priori: nous avons d'emblée introduit une base \mathfrak{H}' telle que la matrice \mathfrak{H}' relative à cette base soit diagonale, ce qui garantit l'orthogonalité des vecteurs $\mathbf{\epsilon}_i^T \hat{\mathbf{h}}_{H'}$. Cette seconde méthode est souvent préférable à la première. C'est sur elle que reposent, notamment, les procédés de « codage linéaire » utilisés, dans les manuels d'analyse statistique, pour l'étude des plans factoriels à facteurs quantitatifs (plans factoriels « de régression »).

4, 213. Il arrive que l'on désire contrôler, par les observations elles-mêmes, la validité de la relation (17). Le modèle basé sur (17) est alors considéré comme un cas particulier du modèle défini par

$$\mathbf{E}\,\mathbf{x}_{i,j}=\,M_i\,\,;$$

dans ce modèle plus général, l'espace des erreurs, V_* , est engendré par les fonctionnelles de $\mathfrak x$ qui sont de la forme $(x_{i,j} - x_{i,k})$; il admet donc la base suivante:

$$x_{i,1} - x_{i,2}, ..., x_{i,1} - x_{i,k_i}, i = 1, 2, ..., s$$

laquelle s'orthogonalise en

$$\begin{cases} \mathfrak{d}_{i,t}^{\star}\mathfrak{x} \equiv x_{i,1} + \ldots + x_{i,t-1} - (t-1) \, x_{i,t} \\ i = 1, \, \ldots, s; \quad t = 2, \, \ldots, \, k_i \, . \end{cases}$$

On a alors

$$SCint \equiv SC \mathbf{V}_{*} = \sum_{i=1}^{s} \sum_{t=2}^{k_{i}} SC \left\{ b_{i,t}^{\star} \right\}$$

$$= \sum_{i=1}^{s} \sum_{t=2}^{k_{i}} \left(b_{i,t}^{\star} \mathbf{x} \right)^{2} / (t-1) t$$

$$= \sum_{i=1}^{s} \frac{k_{i} \sum_{j=1}^{k_{i}} x_{i,j}^{2} - \left(\sum_{j=1}^{k_{i}} x_{i,j} \right)^{2}}{k_{i}}$$

$$(18)$$

avec Σ_i $(k_i-1)=n-s$ degrés de liberté. Le contrôle envisagé n'est donc possible que si l'un au moins des entiers k_i est >1, et il ne présente, en pratique, quelque intérêt que si n-s est, au moins, de l'ordre de s. On le fait alors en comparant SCEM à SCint au moyen des tables de \mathbf{F} . Si l'on procède ainsi, il sied d'utiliser SCint, et non SCE, comme dénominateur des divers F calculés.

Remarque. — Le calcul qui a conduit à l'expression (18) de SCint est valide dans des conditions extrêmement générales.

4, 214. On peut évidemment éprouver des hypothèses très diverses relativement à α et β (ou, ce qui revient au même, à α' et β') ¹⁴). Ainsi, l'on pourrait éprouver l'hypothèse $\beta = a$, a étant un nombre donné; il suffit d'appliquer la formule du § 2, 23, en remplaçant, au besoin, SCE et (n-r) par SCint et (n-s). Le seul point un peu délicat est le calcul de [*[]; or, on a

$$\hat{\boldsymbol{\beta}} = ||\ \boldsymbol{l}_{1,1},...,\ \boldsymbol{l}_{1,h_1},...,\ \boldsymbol{l}_{s,h_s}\ ||\ \boldsymbol{\mathfrak{x}} \equiv \boldsymbol{\mathfrak{l}}^{\bigstar}\ \boldsymbol{\mathfrak{x}}$$

moyennant

$$l_{i,j} = (n u_i - S_{1,0})/n L_{u,u}$$
;

on a donc

$$\mathfrak{l}^{\star}\mathfrak{l} = \sum_{i} \sum_{j} l_{i,j}^{2} = 1/L_{u,u} ;$$

par conséquent, sous l'hypothèse $\beta = a$, l'expression

$$\frac{(\hat{\beta}-a)\ \sqrt{(n-s)}}{\sqrt{(\mathfrak{l}^{\star}\ \mathfrak{l}.\ SC\ int)}}=(\hat{\beta}-a)\ \sqrt{\frac{(n-s)\ L_{u,u}}{SC\ int}}$$

est une valeur observée d'une aléatoire \mathbf{t}_{n-s} .

On éprouverait de même, par exemple, l'hypothèse que, pour des valeurs données u_0 et x_0 , on a $\alpha + \beta u_0 = x_0$ (on considérerait l'expression $\hat{\alpha} + \hat{\beta} u_0$, qui, sous cette hypothèse, a comme moyenne x_0).

4, 22. Supposons que, u et v étant deux variables certaines, on ait

$$\mathbf{E} \, \mathbf{x}_{u,v} = \, \beta_0 \, + \, \beta_1 \, u \, + \, \beta_2 \, o \, \, , \tag{19}$$

et que les observations aient été faites aux « points » (0, 0), (2, 0), (2, 1), (1, 2), (0, 2) et (1, 1); les observations sont, ici encore, censées être des valeurs observées d'aléatoires normales, indépendantes, de même variance σ^2 . La théorie générale s'applique alors, avec

Il est commode de traiter ce problème par orthogonalisation à priori; on rapporte donc B à une base \Re telle que les colonnes de \Re_K soient deux à deux orthogonales; si l'on pose $\Re_K = \| \gamma_0, \gamma_1, \gamma_2 \|^T$, cela revient à chercher deux polynômes du premier degré, $\varphi(u)$ et $\psi(u, v)$, tels que

$$\gamma_0 + \gamma_1 \varphi(u) + \gamma_2 \psi(u, \rho) \equiv \beta_0 + \beta_1 u + \beta_2 \rho ,$$

$$\sum_{i=1}^{6} \varphi(u_i) = 0 , \quad \sum_{i=1}^{6} \psi(u_i, \rho_i) = 0 , \quad \sum_{i=1}^{6} \varphi(u_i) \psi(u_i, \rho_i) = 0 .$$

On peut prendre

$$\varphi(u) = u - 1$$
, $\psi(u, v) = -5 + u + 4v$,

ce qui correspond à

On a alors

$$\mathbf{E} \begin{pmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2} \\ \mathbf{x}_{3} \\ \mathbf{x}_{4} \\ \mathbf{x}_{5} \\ \mathbf{x}_{6} \end{pmatrix} = \begin{pmatrix} 1 & -1 & -5 \\ 1 & 1 & -3 \\ 1 & 1 & 1 \\ 1 & 0 & 4 \\ 1 & -1 & 3 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} \gamma_{0} \\ \gamma_{1} \\ \gamma_{2} \end{pmatrix}$$

$$\mathfrak{A}_{K}^{T} \mathbf{x} \equiv \begin{pmatrix} \mathbf{A}_{1} \\ \mathbf{A}_{2} \\ \mathbf{A}_{3} \end{pmatrix} = \begin{pmatrix} \mathbf{x}_{1} + \mathbf{x}_{2} + \mathbf{x}_{3} + \mathbf{x}_{4} + \mathbf{x}_{5} + \mathbf{x}_{6} \\ -\mathbf{x}_{1} + \mathbf{x}_{2} + \mathbf{x}_{3} & -\mathbf{x}_{5} \\ -5 \mathbf{x}_{1} - 3 \mathbf{x}_{2} + \mathbf{x}_{3} + 4 \mathbf{x}_{4} + \mathbf{x}_{5} \end{pmatrix}$$

d'où

4, 3. Problèmes de classification.

4, 31. Supposons que l'on dispose des valeurs observées de douze aléatoires normales, indépendantes, de même variance σ^2 , classées suivant deux critères: « lignes », de « valeurs » L_1 et L_2 , et « colonnes », de « valeurs » C_1 , C_2 , C_3 , suivant le schéma

On suppose a priori qu'il y a additivité, c'est-à-dire qu'il existe cinq nombres λ_1 , λ_2 , γ_1 , γ_2 , γ_3 tels que la valeur moyenne d'une observation de la ligne L_i et de la colonne C_k soit $\lambda_i + \gamma_k$ (i = 1, 2; k = 1, 2, 3). On a donc, par hypothèse,

Si on appelle $S_{i,-}$, la somme des observations de la ligne L_i , et $S_{-,j}$ celle des observations de la colonne C_k , les équations normales s'écrivent:

$$6\,\hat{\lambda}_{1} + 2\,\hat{\gamma}_{1} + 2\,\hat{\gamma}_{2} + 2\,\hat{\gamma}_{3} = \mathbf{S}_{1,-}$$

$$6\,\hat{\lambda}_{2} + 2\,\hat{\gamma}_{1} + 2\,\hat{\gamma}_{2} + 2\,\hat{\gamma}_{3} = \mathbf{S}_{2,-}$$

$$(a)$$

$$2\,\hat{\lambda}_1 + 2\,\hat{\lambda}_2 + 4\,\hat{\gamma}_1 \qquad = S_{-1} \qquad (c)$$

$$2\hat{\lambda}_1 + 2\hat{\lambda}_2 + 4\hat{\gamma}_2 = S_{-2}$$
 (d)

$$2\hat{\lambda}_1 + 2\hat{\lambda}_2 + 4\hat{\gamma}_3 = S_{-3}$$
 (e)

Ici, manifestement, p = 5, r = 4 [en effet, (a) + (b) $\equiv (c) + (d) + (e)$]. On est donc amené à mettre en évidence quatre combinaisons estimables fondamentales; on peut prendre

$$\begin{array}{l} \mu=6 \left(\lambda_1+\lambda_2\right)+4 \left(\gamma_1+\gamma_2+\gamma_3\right) \\ \Delta \lambda=\lambda_1-\lambda_2 \\ \Delta_1 \ \gamma=\gamma_1-\gamma_2 \ , \qquad \Delta' \ \gamma=\gamma_1-\gamma_3 \ . \end{array}$$

On constate immédiatement que les estimateurs privilégiés de ces quatre combinaisons sont deux à deux orthogonaux, à l'exception près de la dernière paire; l'orthogonalité complète est atteinte en remplaçant Δ' γ par

$$\Delta_2 \; \gamma = (\lambda_1 \, + \, \lambda_2 \, - \, 2 \, \lambda_3)/2 \, = \, (\lambda_1 \, + \, \lambda_2)/2 \, - \, \lambda_3 \; .$$

Alors:

$$\begin{split} \hat{\mu} &= \mathbf{S}_{1,-} + \, \mathbf{S}_{2,-} \, (= \, \mathbf{S}_{-,1} \, + \, \mathbf{S}_{-,2} \, + \, \mathbf{S}_{-,3}) \ , \\ \hat{\Delta \lambda} &= (\mathbf{S}_{1,-} - \, \mathbf{S}_{2,-})/6 \\ \hat{\Delta_1 \gamma} &= (\mathbf{S}_{-,1} - \, \mathbf{S}_{-,2})/4 \\ \hat{\Delta_2 \gamma} &= (\mathbf{S}_{-,1} + \, \mathbf{S}_{-,2} - 2 \, \mathbf{S}_{-,3})/8 \ . \end{split}$$

Ici, on peut calculer

$$SCint = (1/2) [(\mathbf{x_1} - \mathbf{x_2})^2 + ... + (\mathbf{x_{11}} - \mathbf{x_{12}})^2],$$

avec six degrés de liberté, puis, avec deux degrés de liberté,

$$SCEM = SCE - SCint$$
.

On notera que, ici, on a

$$SC\left\{\;\hat{\boldsymbol{\mu}}\;\right\} = \, red\left[\boldsymbol{\mu}\right] = \, red\left[\boldsymbol{\mu} \mid \Delta\boldsymbol{\lambda}\right] = \ldots = \, red\left[\boldsymbol{\mu} \mid \Delta\boldsymbol{\lambda},\, \Delta_1\;\boldsymbol{\gamma},\, \Delta_2\;\boldsymbol{\gamma}\right]\;,$$

et des relations analogues pour les autres paramètres; ceci en vertu de l'orthogonalité de leurs estimateurs privilégiés.

SCEM peut servir à éprouver l'hypothèse d'additivité, mais on ne le voit clairement qu'en étudiant le modèle non additif.

4, 32. Ne supposons donc plus a priori qu'il y ait additivité; admettons que

$$\mathbf{E} \, \mathbf{x}_{2i-1} = \mathbf{E} \, \mathbf{x}_{2i} = M_i \; ,$$

de sorte que $p=6,~\mathfrak{h}_H=\parallel M_1\,M_2\,M_3\,M_4\,M_5\,M_6\,\parallel^T$. On voit aisément que

= diag
$$(2, ..., 2)$$

d'où

$$\begin{split} \hat{\mathbf{M}}_i &= (\mathbf{x}_{2i-1} + \mathbf{x}_{2i})/2 \ , \\ SC\left\{ \begin{array}{c} \hat{\mathbf{M}}_i \end{array} \right\} &= (\mathbf{x}_{2i-1} + \mathbf{x}_{2i})^2/2 \ , \\ \mathbf{SC}N &= \sum_{1}^{6} SC\left\{ \hat{\mathbf{M}}_i \right\} \ , \\ \mathbf{SC}E &= \sum_{1}^{12} \mathbf{x}_i^2 - \mathbf{SC}N = (1/2) \sum_{1}^{6} (\mathbf{x}_{2i} - \mathbf{x}_{2i-1})^2 \ . \end{split}$$

Donc, pour le modèle général actuel, SCE vaut l'expression SCint du modèle additif.

L'hypothèse d'additivité (c'est-à-dire, répétons-le, l'hypothèse qu'il existe cinq nombres $\lambda_1,\ \lambda_2,\ \gamma_1,\ \gamma_2,\ \gamma_3$ tels que

$$M_1 = \lambda_1 + \gamma_1$$
, $M_2 = \lambda_1 + \gamma_2$, ..., $M_6 = \lambda_2 + \gamma_3$)

est satisfaite si et seulement si

$$heta_1 \equiv M_1 - M_2 - M_4 + M_5 = 0$$
 , $heta_2 \equiv M_1 - M_3 - M_4 + M_6 = 0$.

On doit donc former, pour éprouver cette hypothèse,

$$\hat{\theta}_1 = \hat{\mathbf{M}}_1 - \hat{\mathbf{M}}_2 - \hat{\mathbf{M}}_4 + \hat{\mathbf{M}}_5$$
, $\hat{\theta}_2 = \hat{\mathbf{M}}_1 - \hat{\mathbf{M}}_3 - \hat{\mathbf{M}}_4 + \hat{\mathbf{M}}_6$,

puis $SC\{\hat{\theta}_1, \hat{\theta}_2\}$, et éprouver si $SC\{\hat{\theta}_1, \hat{\theta}_2\}$ est, ou non, significativement plus grande que SCE (SCint du modèle additif). $\hat{\theta}_2$ n'est pas orthogonal à $\hat{\theta}_1$, mais bien

$$\hat{\theta}_3 = 2 \hat{\theta}_2 - \hat{\theta}_1 = M_1 + M_2 - 2M_3 + M_4 + M_5 - 2 M_6$$
;

or,

$$\begin{split} \mathbf{SC}\left\{\; \hat{\boldsymbol{\theta}}_{1}\; \right\} &=\; \hat{\boldsymbol{\theta}}_{1}^{2}/8 \;, \qquad \mathbf{SC}\left\{\; \hat{\boldsymbol{\theta}}_{3}\; \right\} =\; \hat{\boldsymbol{\theta}}_{3}^{2}/24 \;, \\ \mathbf{SC}\left\{\; \hat{\boldsymbol{\theta}}_{1}\; ,\; \hat{\boldsymbol{\theta}}_{2}\; \right\} &=\; \mathbf{SC}\left\{\; \hat{\boldsymbol{\theta}}_{1}\; ,\; \hat{\boldsymbol{\theta}}_{3}\; \right\} =\; \mathbf{SC}\left\{\; \hat{\boldsymbol{\theta}}_{1}\; \right\} +\; \mathbf{SC}\left\{\; \hat{\boldsymbol{\theta}}_{3}\; \right\}, \end{split}$$

ce qui permet d'éprouver l'additivité.

On montre aisément que $SC\{\hat{\theta}_1, \hat{\theta}_2\}$ n'est autre que SCEM du modèle additif. Chacune de ces deux sommes de carrés est en effet due à un sous-espace de V^* ayant deux dimensions et orthogonal tant à $\hat{\mu}$, $\hat{\Delta}\lambda$, $\hat{\Delta_1}\gamma$, $\hat{\Delta_2}\gamma$ qu'aux différences « internes » $x_{2i} - x_{2i-1}$, et un tel espace est unique.

 $\hat{\theta}_1$ et $\hat{\theta}_2$ (et leurs combinaisons linéaires, notamment $\hat{\theta}_3$) portent le nom de « contrastes de non-additivité » (le terme « contrastes d'interaction » n'est guère heureux). On remarquera que, si les M_i déterminent entièrement les paramètres « orthogonalement estimables » μ , $\Delta\lambda$, $\Delta_1\gamma$, $\Delta_2\gamma$, θ_1 , θ_2 , ceux-ci à leur tour déterminent entièrement les M_i . C'est en le posant au moyen des paramètres μ , ..., θ_2 que le problème de la classification (2 × 3) (avec un nombre quelconque d'observations par cellule) se traite le plus aisément. Toutefois, ces paramètres ne restent orthogonalement estimables que si toutes les cellules renferment un même nombre d'observations.

Remarque. — Ces considérations s'étendent immédiatement aux autres problèmes de classification.

4, 4. Covariance 15).

4, 41. Supposons que l'on dispose d'une observation de chacune de n variables aléatoires indépendantes, normales, de même variance σ^2 , réparties en s groupes, le $i^{ème}$ groupe étant formé de n_i éléments, avec

$$\left\{ \begin{array}{ll} \mathbf{E} \, \mathbf{x}_{i,j} = T_i \, + \, \beta \, \wp_{i,j} \\ i = 1, \, ..., \, s \; ; & j = 1, \, ..., \, n_i \; ; & n_1 + ... + n_8 = n \; ; \end{array} \right.$$

les $v_{i,j}$ étant des nombres certains ¹⁶). On a ici

$$\mathfrak{b}_{H}=\mid\mid T_{1},...,T_{s},\left.eta\mid\mid^{T}$$
 ,

et, en supposant que dans chaque groupe il y a au moins deux valeurs $v_{i,j}$ distinctes,

$$p=r=s+1.$$

On se convainc aisément que la matrice \mathfrak{G}_H n'est pas diagonale. Toutefois, il est aisé d'orthogonaliser le problème; il suffit de poser

$$\begin{array}{l} {{v}_{i,-}} = \; (1/{n_i}) \; \sum_{j} \; {{{\wp }_{i,j}}} \\ {{u}_{i,j}} = \; {{\wp }_{i,j}} - \; {{\wp }_{i,}} \; \; , \end{array}$$

ce qui entraîne

$$\begin{cases} \mathbf{E} \, x_{i,j} = A_i \, + \, \beta \, u_{i,j} \\ i = 1, \, ..., \, s \; ; \quad j = 1, \, ..., \, n_i \; ; \quad \sum_j u_{i,j} = 0 \\ A_i \equiv T_i - \beta \, v_{i,-} \; . \end{cases}$$

En fait, cela revient à référer B à une base R telle que

On a alors

(les termes non écrits étant nuls).

4, 42. Il est alors utile de poser

$$S_{i;t,q} = \sum_{j} (u_{i,j})^{t} (x_{i,j})^{q},$$
 $S_{;t,q} = \sum_{i} S_{i;t,q},$
 $S'_{i;t,q} = \sum_{j} (v_{i,j})^{t} (x_{i,j})^{q},$
 $S'_{i;t,q} = \sum_{i} S'_{i;t,q},$

ce qui conduit à

$$\mathfrak{A}_{K}^{T}\mathfrak{x} = || S_{1;0,1}, ..., S_{s;0,1}, S_{;1,1} ||,$$

$$\mathfrak{G}_{K} = \operatorname{diag}(n_{1}, ..., n_{s}, S_{;2,0}),$$

d'où

$$\left\{egin{aligned} oldsymbol{\hat{A}}_i &= \mathbf{S}_{i;0,1}/n_i \ oldsymbol{\hat{eta}} &= \mathbf{S}_{;1,1}/S_{;2,0} \end{array}
ight.$$

$$\mathbf{SC}T = \mathbf{S}_{:0.2}$$
 (avec *n* degrés de liberté),

$$\mathbf{SC}\left\{\; \hat{\mathbf{A}}_i\;\right\} = \; \mathbf{red}\; [A_i] \; = \; (\mathbf{S}_{i;0,1})^2/n_i \qquad \qquad (\text{avec 1 degr\'e de libert\'e}),$$

$$\mathbf{SC}\left\{\hat{\boldsymbol{\beta}}\right\} = \mathbf{red}\left[\boldsymbol{\beta}\right] = (\mathbf{S}_{:1,1})^2 / S_{:2,0}$$
 (avec 1 degré de liberté),

$$SCN = \sum_{i} SC\{\hat{\mathbf{A}}_i\} + SC\{\hat{\mathbf{\beta}}\}$$
 (avec $s+1$ degrés de liberté),

$$SCE = SCT - SCN$$

$$=\sum_{i=1}^{s}\frac{n_{i}\;\mathbf{S}_{i;0,2}-(\mathbf{S}_{i;0,1})^{2}}{n_{i}}-\frac{\sum_{i}\left[n_{i}\;\mathbf{S}_{i;1,1}'-S_{i;1,0}'\;\mathbf{S}_{i;0,1}\right]}{\sum_{i}\left[n_{i}\;S_{i;2,0}'-\left(S_{i;1,0}'\right)^{2}\right]}$$

(avec n - s - 1 degrés de liberté).

 σ^2 est estimé par SCE/(n-s-1).

4, 43. En fait, l'intérêt se porte généralement sur l'estimation des différences T_i — T_k , les paramètres A_i n'ayant pas d'intérêt propre. On a, en posant $v_{i,-}$ — $v_{k,-}$ = $d_{i,k}$,

$$\begin{split} \left(\mathbf{T}_{i} - \mathbf{T}_{k}\right)^{\hat{}} &= \left[\left(\hat{\mathbf{A}}_{i} + \hat{\boldsymbol{\beta}} \, \boldsymbol{\rho}_{i,-}\right) - \left(\hat{\mathbf{A}}_{k} + \hat{\boldsymbol{\beta}} \, \boldsymbol{\rho}_{k,-}\right)\right]^{\hat{}} \\ &= \hat{\mathbf{A}}_{i} - \hat{\mathbf{A}}_{k} + \hat{\boldsymbol{\beta}} \, d_{i,k} \\ &= \boldsymbol{\mathfrak{I}}^{\star} \, \boldsymbol{\mathfrak{x}} \equiv \left\| \, l_{1,1} \, , \, \ldots , \, l_{s,n_{s}} \, \right\| \, \boldsymbol{\mathfrak{x}} \end{split}$$

moyennant

$$\begin{split} l_{t,q} &= \, d_{i,k} \, u_{t,q} / S_{;2,0} & \text{si } t \neq i, \, t \neq k \; , \\ l_{i,q} &= \, d_{i,k} \, u_{i,q} / S_{;2,0} \, + \, 1 / n_i \; , \\ l_{k,q} &= \, d_{i,k} \, u_{k,q} / S_{;2,0} \, - \, 1 / n_k \; , \end{split}$$

d'où

$$\mathfrak{l}^{\,\star}\,\mathfrak{l}\,=\,(d_{i,k})^{\,2}\!/S_{\,;2,0}\,+\,1/n_{i}\,+\,1/n_{k}\;.$$

Il résulte de là que l'expression

$$\Delta_{i,k} = \frac{\left[\left(\mathbf{\hat{T}}_i - \mathbf{\hat{T}}_k\right) - \left(T_i - T_k\right)\right]}{\sqrt{\left[\mathbf{SC}E/(n-s-1)\right] \cdot \sqrt{\left[(d_{i,k})^2/S_{:2,0} + 1/n_i + 1/n_k\right]}}}$$

est une aléatoire \mathbf{t}_{n-s-1} .

On voit que l'erreur-type de $\Delta_{i,k}$, produit de σ par

$$\varepsilon_{i,k} = \left[\frac{(d_{i,k})^2}{S_{:2,0}} + \frac{1}{n_i} + \frac{1}{n_k} \right]^{1/2},$$

varie, en général, avec la paire (i, k), même si les n_i sont égaux entre eux $(n_1 = ... = n_s = \nu)$. Toutefois, dans ce dernier cas, on utilise d'ordinaire une expression approchée de $\varepsilon_{i,k}$, obtenue en considérant les $v_{i,j}$ comme n observations indépendantes d'une même aléatoire, de moyenne v et écart-type 0^{17}). En désignant par \mathbf{M} la valeur moyenne prise par rapport à la distribution de cette aléatoire (fictive), on a

$$\begin{split} \mathbf{M} \; (\mathbf{v}_{i,-} - \mathbf{v}_{k,-})^2 &= \mathbf{M} \; [(\mathbf{v}_{i,-} - \mathbf{v}) - (\mathbf{v}_{k,-} - \mathbf{v})]^2 \\ &= 2 \; \mathbf{M} \; (\mathbf{v}_{i,-} - \mathbf{v})^2 = 2 \; \theta^2 / \mathbf{v} \; ; \\ \mathbf{M} \; S_{;2,0} &= \mathbf{M} \; \sum_i \; \sum_j \; (\mathbf{v}_{i,j} - \mathbf{v}_{i,-})^2 = \; \sum_i \; (\mathbf{v} - 1) \; \theta = k \; (\mathbf{v} - 1) \; \theta^2 \; ; \\ & \left\{ \frac{\mathbf{M} \; (\mathbf{v}_{i,-} - \mathbf{v}_{k,-})^2}{\mathbf{M} \; S_{;2,0}} + \frac{1}{n_i} \; \frac{1}{n_k} \right\}^{1\!\!/2} = \left\{ \frac{2}{\mathbf{v}} \left[1 \; + \; \frac{1}{k \; (\mathbf{v} - 1)} \right] \right\}^{1\!\!/2} \; ; \end{split}$$

c'est cette dernière expression que l'on utilise comme valeur approchée de $\varepsilon_{i,h}$.

4, 44. Il est utile aussi de calculer la somme de carrés due au sous-espace U^* engendré par les estimateurs des contrastes $T_i - T_k$, afin de pouvoir construire une épreuve globale de la nullité de ceux-ci. On pourrait évidemment construire une base orthogonale de U^* , mais les calculs nécessaires sont d'une grande complication. Il est beaucoup plus simple d'appliquer le théorème du § 2, 31, en procédant comme suit: on considère le modèle

$$\mathbf{E} \mathbf{x}_{i,j} = T + \beta \, v_{i,j}$$

et on calcule la somme de carrés de l'erreur qui lui est associée, c'est-à-dire (voir § 4, 211)

$$(\mathbf{SC}E)_{T_i=T} = \mathbf{S}_{;0,2} - \frac{(\mathbf{S}_{;0,1})^2}{n} - \frac{(\mathbf{S}_{;1,1})^2}{S_{;2,0}}$$
;

or ce modèle s'obtient à partir du modèle initial en supposant

que, pour tout vecteur $[^*]$ de U^* , on a $\mathfrak{E}[^*] = 0$; par conséquent

$$\mathbf{SC} \ \mathbf{U}^{\star} = (\mathbf{SC}E)_{T_i = T} - \mathbf{SC}E$$

$$= \sum_{i=1}^{n} \frac{(\mathbf{S}_{i;0,1})^2}{n_i} - \frac{(\mathbf{S}_{;0,1})^2}{n} . \tag{19}$$

Si on pose

$$\mathbf{x}_{i,-} = \frac{1}{n} \sum_{j} \mathbf{x}_{i,j}$$
, $\mathbf{x}_{-,-} = \frac{1}{n} \sum_{i} \sum_{j} \mathbf{x}_{i,j} = \sum_{i} \left(\frac{n_i}{n}\right) \mathbf{x}_{i,-}$

la formule (19) peut s'écrire

SC U* =
$$\sum_{i=1}^{s} \frac{\left(\sum_{j} \mathbf{x}_{i,j}\right)^{2}}{n_{i}} - \frac{1}{n} \left(\sum_{i=1}^{n} \sum_{j} \mathbf{x}_{i,j}\right)^{2}$$

= $n \sum_{i=1}^{s} \frac{n_{i}}{n} (\mathbf{x}_{i,-})^{2} - n \left(\sum_{i=1}^{s} \frac{n_{i}}{n} \mathbf{x}_{i,-}\right)^{2}$
= $\sum_{i=1}^{s} n_{i} (\mathbf{x}_{i,-} - \mathbf{x}_{-,-})^{2}$. (20)

L'expression (20), moins aisée à mettre en nombres que l'expression (19), est plus parlante qu'elle.

L'hypothèse $T_1 = T_2 = \dots = T_s$ s'éprouve en comparant

$$\frac{\mathbf{SC} \ \mathsf{U}^{\,\star}/(s - 1)}{\mathbf{SC} E/(n - s - 1)}$$

à la distribution de \mathbf{F} à (s-1) et (n-s-1) degrés de liberté. La table d'analyse de variance se présente ainsi:

$$\begin{split} SCT &= S_{;0,2} & n \text{ d.l.} \\ & \sum_{\substack{SCN \\ \text{red } [T] = (S_{;0,1})^2/S_{;2,0} \\ \text{red } [T_1 - T_2, ..., T_1 - T_s \mid T, \ \beta] = \text{SC} \ \mathbf{U}^{\star}} & (s+1) \begin{cases} 1 \text{ d.l.} \\ 1 \text{ d.l.} \\ (s-1) \text{ d.l.} \end{cases} \\ SCE &= SCT - SCN \qquad (n-s-1) \text{ d.l.} \end{split}$$

Si plusieurs paires (i, j) correspondent à une même valeur de $v_{i,j}$, on peut introduire, en outre, la décomposition habituelle de SCE en SCint et SCEM.