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LES MODÈLES LINÉAIRES
EN ANALYSE STATISTIQUE

par H. Breny

(suite)

3. Cas ou rg 2t dim B.

3, 1. Remarques théoriques.

3, 11. Lorsque r p, © 3lT 3t est une matrice symétrique
p x p, régulière, dont on peut former l'inverse ©-1. Alors, de

@ Êjy

on tire

bH *
et on en déduit

C bH E (bH hH) (bH hH)T

E ©-1 ^tT (* — E ft) {ft — E *)T-2l (5T1

Mais

E {ft — Er) (t — E ft)T C ft =- ?n a2

donc

C (S)"1 21T (3n a2) 21 <T* (IT* 2lr2ï @-1) a2 a2 (13)

Le calcul de @_1 équivaut donc à celui de C bH

3, 12. Pour le calcul de SCN, il faut former les équations (7);
ici, les h* sont représentés par les lignes de 31T, cf, de sorte que,
aux inconnues près, le système (7) n'est autre que le système
normal (donc, \'= bH>i); il résulte alors de (8) que

SCN- S Vicf*=
1

(** s) ®-1 (aT*) (14)
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3, 13. SCE acquiert ici une signification très simple. En effet',
si on pose

v21 4- t
(de sorte que les composantes rHi de rH sont les «résidus»), on
a, d'une part,

%Tv %,et, d'autre part,
21T -r 1lT21+ 21T r ;

on a donc 3tTr 0; dès lors

*** (<»lr2l'r + *T) (*£jr +

bJjiaT%bH + tTx + bJI%Tx + vT%bn

bfl217* + tTt SCN + tTt

d'où, puisque v* * SCT,

sce *t*
1

3, 14. Si ® est diagonale (ce qui arrive si et seulement si les
lignes de 2lT correspondent à des vecteurs deux à deux
orthogonaux de V+), les bH>i sont deux à deux orthogonaux, et

SCN= Ssc{bH>i}.
1

3, 2. Exécution des calculs.

3, 21. La résolution des équations normales peut évidemment
se faire par un procédé quelconque. On sait toutefois, depuis
Benoît et Banachiewicz, que les procédés « compacts » habituels
constituent tous des variations plus ou moins heureuses de la
méthode de « factorisation triangulaire », particulièrement simple
à appliquer dans le cas d'une matrice symétrique, comme l'est ©
(cfr. [VI, VII]).

3, 22. Il s'agit, en principe, de trouver une matrice ©,
triangulaire supérieure, telle que

@ g''® S x'ë



MODÈLES LINÉAIRES EN ANALYSE STATISTIQUE 221

Le calcul de © se fait ligne par ligne, suivant le schéma 13)

(> e4)X 0 (© Zj) s? ® Sj-

i 1, /'= 1, 2, i 2, j 2, 3, etc.

Si on désigne par la colonne des sommes des éléments des

lignes de ©, et par la colonne des sommes des éléments des

lignes de ©, on a

(Be,)X»2 (©£j.)
j=i i=i

ou (8et) x°ê2 e? ôs ;

chaque ligne de © est ainsi vérifiée dès qu'elle est calculée.

3, 23. © étant calculée, on a le choix, pour poursuivre, entre
deux méthodes; la première fournit SCN et ©-1 (donc, à un
facteur près, C bH) ; la seconde fournit une décomposition de SCN
en termes de la forme red [Uf I U*, U*J, les U* étant
orthogonaux et unidimensionnels.

3, 231. Dans la première méthode, on calcule gr1 sans calculer
(g-1, à partir de la relation ©-1 — ©_1 (©T)_1, qui donne

© Xo (Qs>~u>t (©T)_1 ;

mais, d'une part, (©_1)T ®_1 et, d'autre part, (©T)_1 est une
matrice triangulaire inférieure, de sorte que

ef (&T)~{ zj — 0 (i < j) zj £. zl (S"1 e. [eT © s.]"1

On part donc de

et on prend successivement

j p i p p — 1, p — 2 ...;
i P — 1, i p — 1, P — 2, ;

etc.

On calcule ensuite aisément

(<r1*rï)T=-@-i x0(aTj-)T
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puis
SCNS^2tT? b£ x0 («Tï)T •

Une vérification des calculs est possible : comme (5T1 © gp,
on a

(|>£i) 2 3^ IIU-.IH.
donc

(T1 x°o2 H 1, ...,1||T

ce qui vérifie chaque colonne de (g-1 dès qu'elle est calculée.

3,2321. DansJa seconde méthode, on pose (cfr. [VIII]),
rapportant B à la base £ au lieu de <g:

bK © bH bK © b#
d'où

©TbK - ©bjg- mT¥

ou encore
© x°bK 31 Tic

formule qui se prête immédiatement au calcul numérique.
èK est évidemment l'estimateur privilégié de bK. Il jouit de la

propriété suivante:

CbK E[@ (bH —6h)] [© {bH — bH)]T ©[CbH] ©T

© (@_1 a2) ©T a2 ;

est donc orthonormal, et l'on a

var (sf bK)o»

" cov (£tT ** ' ^ 1*A') 0 (*#/)>

SCN J SC{ ^ }
1

Mais, si l'on pose ef [* r, oïl a var (ef Êx) ct2(*
ce qui montre que I* 1 ; dès lors, puisque

SC{ zjbK}SC{ l* } (1* *)2/ (t* (t* „)«
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on a

SCN S {*ï *k)2(15)
1

3, 2322. bn s'obtient immédiatement à païtir de b# par la
formule

x o b# —

où l'on utilise successivement les lignes de © en remontant de
la dernière à la première.

Ici aussi, des vérifications sont possibles. On doit en effet
avoir

(4<ST)
d'où

«s X o bK2 eï%T? '
i

ce qui vérifie le calcul de bK. Si, ensuite, on appelle g£ la ligne
des sommes des termes des colonnes de ©, on doit avoir

1

ce qui vérifie le calcul de b#.

3, 2323. Considérons la matrice formée par les t premières
lignes et colonnes de © ; le mode de calcul de © montre immédiatement

que ©t ne dépend que de la matrice ©t formée des t
premières lignes et colonnes de ©. Par contre, (®É)~* ne dépend pas
seulement de ©t (le calcul de ®_1 commence par le coin inférieur
droit). De même, zj bK, zj b^ ne dépendent que de ©t, mais
eft#, etrbH dépendent de l'ensemble de © (le calcul de bH
commence par SpbH). Dès lors, supposons que le modèle soit
réduit à ses t premiers paramètres, ef bH, zjbH, ce qui revient
à remplacer © par ©t et bH par [s^b#, •••, stT b#]T, ou encore
à supposer zf+i bn — ••• — zpbn — 0; ce modèle est donc caractérisé

par le fait que

(l* G{e*l» •••> e* }) implique E1** 0, (16)

relation de la forme (11). Dans ce modèle réduit, rien n'est changé
au calcul de s { bx, bK si l'en note SCiVt et SCEn_t res-
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pectivement la somme de carrés normale et la somme de carrés
de l'erreur de ce modèle, on a, en vertu de (15),

SCiV, SC{e1*1...,et*}=2kT^)2,
donc

SCtf SCT — 2 (ef bK)2 '

1+1

sc£tt_M scr-2 kTi*)2,
1

ce qui implique

red [{ et+l} | {e* > "•> e* }] (zÏ+1^k)2 '

La notation du premier membre de cette formule est entièrement

comparable à celles du § 2, 4; elle est toutefois un peu
lourde, et on la remplace le plus souvent par

red [ZI+1 kH | zï %

H ' •••' zÏ^h\ red [{e*l} | {el*' c*}] •

Dans ces conditions, la table d'analyse de variance s'écrit
ainsi :

Sommes de carrés

SCT

SCN

Formules

i

S ieï Ûk)2

red[sfbH]
red [ej bH | sf bH~\

red [ej bH | zï •••> £J-i ^h]

{eï ^k)2
{ZI bK)2

(Ä)2

Degrés de liberté

n

SCE

SCint
SCEM

SCT —SCN

1

n— p

SCE —SCint
j u
1 n — i

3, 24. La disposition matérielle des calculs a une certaine
importance; le cas p 3 est décrit en détail ci-dessous.
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3, 241. Première méthode.

a b c I 1 k
© b d e 9s 1

c e f 1
1 m

X y z t
© u V «s r

w s

1 1 1

X u w

A B G
1 k

®-4 B D
^

E | On l
G E F 1

m

Il,
H

1 n P y 1 1

1II h h 1 I

On calcule successivement (les inconnues sont soulignées)

xy — b

y2 + u2 d

xz c

yz -f uv e

z2 + P2 + w2 /

xt k

yt -f- ur — l

zt + vr + ws m

wF — vF + uE
— w —

0 zF + yE + zC 0 CU + EI + Fm 1

çE + - zE + yD + 0 Bk + Dl + Em 1

«C + i ,4/c + 5Z + Cro 1

61 ^4/2-{-2?P+£#, — + + &3=Ctt-f-£'/?-j-.F<2r,
jSCiV bxn + b2p + bzq

3, 242. Seconde méthode.

abc
® 6

'

d e

c d f
x y z

U V

w

bl ^2 ^3

e « VK

%

a3

A

9s

/c

/

m

7Ï

P

<1

L'Enseignement mathém., t. VI, fasc. 3.
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On calcule et vérifie © comme ci-dessus, puis:

xax — n ya1-\-ua2 p zax v a2 wa3 — q

A ax + a2 + a3 T n + p q tax + ra2 + sa3 T

Ci x c2 y + u c3 z -f v -f w

wb3 a3 ç b3 -)- ub2 a2 zb3 -f- yb2 + xbx ax

b\ cx -f~ b2 c2 -f- b3c3 A

SCN a\ + a\ + 4

4. Exemples.

4, 1. Les épreuves de Student.

4, 11. Soit x1? xn un échantillon simple et fortuit d'une
population normale de moyenne p, et écart-type g. La théorie
des modèles linéaires s'applique ici, avec

r — p 1 31-Hi,...,! H V-IM!
StT2t H n H 2 xi «

î
et le système normal se réduit à

ln fi 2 xi ' P- ^Sxi m-
î n î

On a alors

SCN =(^xiy/n SCT= 2 xi >

1

n \ 2

n / n \ 2 n
71 2 Xi 2 Xi

** /«= S K-m)« -i Ai—

Si p. a, l'expression

; y(m «) V___J
n

x • — n a

\/(SC/47n) ' \/(»SCß)

est une aléatoire tn_t ; SC E/a2estune aléatoire
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