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LES MODELES LINEAIRES
EN ANALYSE STATISTIQUE

par H. BRENY

(suite)

3. Cas ou rg A = dim B.

3, 1. Remarques théoriques.

3,11. Lorsque r = p, & = AT A est une matrice symétrique
p X p, réguliére, dont on peut former linverse &', Alors, de
Gy =uTw

on tire
by = G Taly,

et on en déduit

Chy — E(Byy—by) (b —5)7

| —EG' AT (¢ —Ev) ¢ —Ex)T A,

Mais

Ex—E#)(+ —E#)" = Cx =, 02,
donc

Ciy =61 uT (3,00 A6 = (1 uTAG ) ot = G Lo2. (13)

Le calcul de ™! équivaut donc & celui de CﬁH .

3,12. Pour le calcul de SCN, il faut former les équations (7);
ici, les u; sont représentés par les lignes de 97, ¢7, de sorte que,
aux inconnues pres, le systéme (7) n’est autre que le systéme
normal (donc, ;= { ;); il résulte alors de (8) que

b
SCN = ; by, fe=bLuTe

= @* et @y . (14
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3,13. SCE acquiert ici une signification trés simple. En effet,
sl on pose
¥ = Uby + v

(de sorte que les composantes rg; de ry sont les «résidus»), on
a, d’une part,
Ay = aTowby,,
et, d’autre part,
We=aTupy + uTr ;

on a donc ATy = 0; dés lors
¥ = (b AT 4+ T (by + )
= b T wby + 2T + AT + «Tuky,
== GIEQIT%' -+ ¢y — SCN -+ vl ,

d’ou, puisque #* # = SCT,
n
T D

3,14. Si © est diagonale (ce qui arrive si et seulement si les
lignes de AT correspondent & des vecteurs deux a4 deux ortho-
gonaux de V), les by ; sont deux & deux orthogonaux, et

'SCN=?ASC{£HJ}.

3, 2. Exécution des calculs.

3,21. La résolution des équations normales peut évidemment
se faire par un procédé quelconque. On sait toutefois, depuis
Benoit et Banachiewicz, que les procédés « compacts » habituels
constituent tous des variations plus ou moins heureuses de la
méthode de « factorisation triangulaire », particuliérement simple
a appliquer dans le cas d’une matrice symétrique, comme 1’est &
(efr. [VI, VII]).

3,22. Il s’agit, en principe, de trouver une matrice &, trian-
gulaire supérieure, telle que |

G =6Te =6 x'c .
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Le calcul de © se fait ligne par ligne, suivant le schéma 13)

(S g) ><°((5ej) =8;T(§5e- ,
L=1,7 1

j
=12 .gi=9%7=23, ..; ¢le

Si on désigne par 4y la colonne des sommes des éléments des
lignes de ®, et par &5 la colonne des sommes des éléments des
lignes de &, on a

D D
~ N, T
(8e) X0 D) (S¢;) = _3_]‘1 el Ge;
7=
> 0 v__ T .
ou - (B X 8y, = € Oy ;

chaque ligne de © est ainsi vérifiée dés qu’elle est calculée.

3,23. © étant calculée, on a le choix, pour poursuivre, entre
deux méthodes; la premiére fournit SCN et &' (done, & un
facteur pres, € by); laseconde fournit une décomposition de SCN
en termes de la forme red [Uf | U}, ..., U], les U étant ortho-
gonaux et unidimensionnels.

3,231. Dans la premiére méthode, on calcule @ sans calculer
&™, a partir de la relation ¢! = ™ (7)™, qui donne

S X0 (6T = (gD ;

b

mais, d’une part, ()7 = & et, d’autre part, (§7)! est une
matrice triangulaire inférieure, de sorte que

el (8T) e,

s = 0 i<y, siT (@:‘T)“1 e, = el &1 g = [eT@si]_i .

1 (3

On part donc de

(siT 6) X0 (sz @5_1) = s,lT (5T)“1 €

et on prend successivement

j=rp, i4—~p, p—1, p—2, ..
j=p—1, i1=p—1, p—2, ..;
etc. :

On calcule ensuite aisément

hZ — (@—i wTHT — &7t s, (uT )7
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puis
SCN = b aTy = b5 x, (uTe) 7.

Une vérification des calculs est possible: comme ¢! ¢ = S
on a

yad 2

@j—* (‘SS E] — Ssp 83 == ” 1, ey 1. H y
1

done

ce qui veérifie chaque colonne de @™ dés qu’elle est calculée.

3,2321. Dans la seconde méthode, on pose (cfr. [VIII]), rap-
portant B & la base & au lieu de §: |

d’ou

@
o>

cTy ——eTesh _ T,

ou encore

formule qui se préte immédiatement au calcul numérique.
b est évidemment Pestimateur privilégié de b .. I1jouit de la
propriété suivante:
Chy=E[S(by—by)][S(by—1by)]T =c[Chy] T
=g (66T = 3,0 |

by est donc orthonormal, et I’on a
var (s-Tl;K) = g& ,

1

'cov(siTl;K,EjTﬁK) =0 (=7,
P

SCN = > sc{ e/ by } .
T

. . T A ‘ * . T A *
Mais, s1 Pon pose ¢ by = ("%, on a var (¢ by) = o2 [ [
ce qui montre que [ [; = 1; dés lors, puisque

sc{el by } = SC{ G p = ()2 () = (1 #)2,

19




MODELES LINEAIRES EN ANALYSE STATISTIQUE 223

on a.

p A
N = > (F by)?. (15)
1 -

3,2322. by s’obtient immédiatement & partir de H, par la
formule |
6 ><0 BH - bK 9

ou 'on utilise successivement les lignes de & en remontant de
la derniére & la premiére.

Ici aussi, des vérifications sont possibles. On doit en effet
avoir
(e-T @T) BK = eiT QITg
d’ou

~MV]

ce qui vérifie le calcul de . Si, ensuite, on appelle ¢Z la ligne
des sommes des termes des colonnes de &, on doit avoir

T'h

T o T —
€5, by = & "k

LR

ce qui vérifie le calcul de HJ.

3,2323. Considérons la matrice S, formée par les ¢ premiéres
lignes et colonnes de ©; le mode de calcul de © montre immédia-
tement que ©, ne dépend que de la matrice ®, formée des L pre-
mieres lignes et colonnes de ©. Par contre, (&,)™! ne dépend pas
seulement de © (le calcul de &' commence par le coin inférieur
droit). De meme el by s ef B ne dépendent que de S,, mais
el by ooy el by dependent de P'ensemble de & (le calcul de
commence par e} hy). Dés lors, supposons que le modeéle soit
réduit & ses ¢ premiers paramétres, el by, ..., €7 by, ce qui revient
& remplacer ¢ par @, et by par [el6y, ..., eT b4]7, ou encore
& supposer €/, by = ... = X by = 0; ce modele est donc carac-
térisé par le fait que

(Fefefy, ey })  implique Et*¥ =0, (16)

relation de la forme (11). Dans ce modele réduit, rien n’est changé
au calcul de el fg, ..., T b, et, si I'on note SCN, et SCE,_, res-
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pectivement la somme de carrés normale et la somme de carrés
de Perreur de ce modeéle, on a, en vertu de (15),

¢
SCN, = SC{ef, ..., ef } = Z(Z’ﬁ

done
t

SCE,_, = SCT — >\ (¢ by)?,
1

t+1
T )2
SCE 1y = SeT — 3 (e )?.
ce qui implique

ved [{ef} [ {ef, e }] = (cf, 6g)?

La notation du premier membre de cette formule est entiére-
ment comparable & celles du § 2, 4; elle est toutefois un peu
lourde, et on la remplace le plus souvent par

red{tHle Crpyenns etTf)H] Ered[{etii}l{ei*,..., ct*}] .

Dans ces conditions, la table d’analyse de variance s’écrit
ainsi:

Sommes de carrés Formules Degrés de liberté

SCT > a? n
1
.
SCN DV (el )2 p
S
red [ef 0] [ (e 0 )2 1
< red {sg 0, [ sip 0y ] o | J (] 0x)? < 1
ved [T 0y [ €l by oyl 0] | (€76 )2 1
SCE -~ SCT—SCN . n—p
SCint D 1
SCEM | SCE—SCint |n—p—u

3, 24. La disposition matérielle des calculs. a une certaine im-
portance; le cas p = 3 est décrit en détail ci-dessous.
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3,241. Premiére méthode.

a b ¢ k
G = b d e g = l
c e f m
x Yy 3z t
S = u oy 8y = r
w S
1 1 1
x u w
A B C k
61 = B D E gs = (| !
¢ E F m
@aT=1 » p g |
b =1 b by by |

On calcule successivement (les inconnues sont soulignées)
& = i xy = b xZ = € xt =k
v+ ut=d yz + uo =e oyt 4 ur =1
Azz,—}—vz—l—gz:f 3t 4+ or + ws = m

zF.—|~yE—[—x_C_'=O Ck+El+ Fm=1

=
|

sE+yD+aB=0 Bk+Di+Em—1
5C+yB+a2d=— Ak+Bl+ Cm =1

by=An+ Bp+ Cq, by=Bn+ Dp+ Eq, by=Cn-+ Ep+ Fyq,
SCN = byn + byp + byq .

3, 242. Seconde méthode.

a b ¢ k
G = b d e gy = )
c d f m
x Y 3 a, n t
w Qg . q S
AT _
bH— ” bl bz ba ”
S=1 ¢ e ocy | A T

L’Enseignement mathém., t. VI, fasc. 3. 5
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.On calcule et vérifie & comme ci-dessus, puis:

Xa, =n ya, + uay, = p za1+va2+wg3#q
A=gq +a,+ a T=n+4+p+gqg ta; + ra, + sa; = T
£y = & Ca =Y + u 3 =23+ ¢+ w

wby = a4 0bg + ub, = a, zb3+yb2—|—x§1=a,

bycy + byey + byey = A
SCN = af + a3 + a? .

4. EXEMPLES.

4,1. Les épreuves de Student.

4,11. Soit xy, ..., x, un échantillon simple et fortuit d’une
population normale de moyenne p. et écart-type o. La théorie
des modéles linéaires s’applique ici, avec

r=p=1, A=|[1,.,1] bg=]|ul,

n
wWa=rel, aTs=>Dx,
' 1

et le systeme normal se réduit a

On a alors
SCN = (D) x,)2/n , scT — >\ x;,

n n 2 n nz_;2i<gxi>
SCE=Ex§_<2xi>/n:2-(xi_m)2: — £
1 1

1

S1 p = a, expression

(m"—a)\/(n——i)l: T &
A/ (SCE/n) \/(- " 4/(nSCE)

est une aléatoire t, ; ; SCE/o? est une aléatoire y?2_, .
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