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LES MODELES LINEAIRES
EN ANALYSE STATISTIQUE

par H. BRENY

(suite)

3. Cas ou rg A = dim B.

3, 1. Remarques théoriques.

3,11. Lorsque r = p, & = AT A est une matrice symétrique
p X p, réguliére, dont on peut former linverse &', Alors, de
Gy =uTw

on tire
by = G Taly,

et on en déduit

Chy — E(Byy—by) (b —5)7

| —EG' AT (¢ —Ev) ¢ —Ex)T A,

Mais

Ex—E#)(+ —E#)" = Cx =, 02,
donc

Ciy =61 uT (3,00 A6 = (1 uTAG ) ot = G Lo2. (13)

Le calcul de ™! équivaut donc & celui de CﬁH .

3,12. Pour le calcul de SCN, il faut former les équations (7);
ici, les u; sont représentés par les lignes de 97, ¢7, de sorte que,
aux inconnues pres, le systéme (7) n’est autre que le systéme
normal (donc, ;= { ;); il résulte alors de (8) que

b
SCN = ; by, fe=bLuTe

= @* et @y . (14
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3,13. SCE acquiert ici une signification trés simple. En effet,
sl on pose
¥ = Uby + v

(de sorte que les composantes rg; de ry sont les «résidus»), on
a, d’une part,
Ay = aTowby,,
et, d’autre part,
We=aTupy + uTr ;

on a donc ATy = 0; dés lors
¥ = (b AT 4+ T (by + )
= b T wby + 2T + AT + «Tuky,
== GIEQIT%' -+ ¢y — SCN -+ vl ,

d’ou, puisque #* # = SCT,
n
T D

3,14. Si © est diagonale (ce qui arrive si et seulement si les
lignes de AT correspondent & des vecteurs deux a4 deux ortho-
gonaux de V), les by ; sont deux & deux orthogonaux, et

'SCN=?ASC{£HJ}.

3, 2. Exécution des calculs.

3,21. La résolution des équations normales peut évidemment
se faire par un procédé quelconque. On sait toutefois, depuis
Benoit et Banachiewicz, que les procédés « compacts » habituels
constituent tous des variations plus ou moins heureuses de la
méthode de « factorisation triangulaire », particuliérement simple
a appliquer dans le cas d’une matrice symétrique, comme 1’est &
(efr. [VI, VII]).

3,22. Il s’agit, en principe, de trouver une matrice &, trian-
gulaire supérieure, telle que |

G =6Te =6 x'c .
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Le calcul de © se fait ligne par ligne, suivant le schéma 13)

(S g) ><°((5ej) =8;T(§5e- ,
L=1,7 1

j
=12 .gi=9%7=23, ..; ¢le

Si on désigne par 4y la colonne des sommes des éléments des
lignes de ®, et par &5 la colonne des sommes des éléments des
lignes de &, on a

D D
~ N, T
(8e) X0 D) (S¢;) = _3_]‘1 el Ge;
7=
> 0 v__ T .
ou - (B X 8y, = € Oy ;

chaque ligne de © est ainsi vérifiée dés qu’elle est calculée.

3,23. © étant calculée, on a le choix, pour poursuivre, entre
deux méthodes; la premiére fournit SCN et &' (done, & un
facteur pres, € by); laseconde fournit une décomposition de SCN
en termes de la forme red [Uf | U}, ..., U], les U étant ortho-
gonaux et unidimensionnels.

3,231. Dans la premiére méthode, on calcule @ sans calculer
&™, a partir de la relation ¢! = ™ (7)™, qui donne

S X0 (6T = (gD ;

b

mais, d’une part, ()7 = & et, d’autre part, (§7)! est une
matrice triangulaire inférieure, de sorte que

el (8T) e,

s = 0 i<y, siT (@:‘T)“1 e, = el &1 g = [eT@si]_i .

1 (3

On part donc de

(siT 6) X0 (sz @5_1) = s,lT (5T)“1 €

et on prend successivement

j=rp, i4—~p, p—1, p—2, ..
j=p—1, i1=p—1, p—2, ..;
etc. :

On calcule ensuite aisément

hZ — (@—i wTHT — &7t s, (uT )7
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puis
SCN = b aTy = b5 x, (uTe) 7.

Une vérification des calculs est possible: comme ¢! ¢ = S
on a

yad 2

@j—* (‘SS E] — Ssp 83 == ” 1, ey 1. H y
1

done

ce qui veérifie chaque colonne de @™ dés qu’elle est calculée.

3,2321. Dans la seconde méthode, on pose (cfr. [VIII]), rap-
portant B & la base & au lieu de §: |

d’ou

@
o>

cTy ——eTesh _ T,

ou encore

formule qui se préte immédiatement au calcul numérique.
b est évidemment Pestimateur privilégié de b .. I1jouit de la
propriété suivante:
Chy=E[S(by—by)][S(by—1by)]T =c[Chy] T
=g (66T = 3,0 |

by est donc orthonormal, et I’on a
var (s-Tl;K) = g& ,

1

'cov(siTl;K,EjTﬁK) =0 (=7,
P

SCN = > sc{ e/ by } .
T

. . T A ‘ * . T A *
Mais, s1 Pon pose ¢ by = ("%, on a var (¢ by) = o2 [ [
ce qui montre que [ [; = 1; dés lors, puisque

sc{el by } = SC{ G p = ()2 () = (1 #)2,

19
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on a.

p A
N = > (F by)?. (15)
1 -

3,2322. by s’obtient immédiatement & partir de H, par la
formule |
6 ><0 BH - bK 9

ou 'on utilise successivement les lignes de & en remontant de
la derniére & la premiére.

Ici aussi, des vérifications sont possibles. On doit en effet
avoir
(e-T @T) BK = eiT QITg
d’ou

~MV]

ce qui vérifie le calcul de . Si, ensuite, on appelle ¢Z la ligne
des sommes des termes des colonnes de &, on doit avoir

T'h

T o T —
€5, by = & "k

LR

ce qui vérifie le calcul de HJ.

3,2323. Considérons la matrice S, formée par les ¢ premiéres
lignes et colonnes de ©; le mode de calcul de © montre immédia-
tement que ©, ne dépend que de la matrice ®, formée des L pre-
mieres lignes et colonnes de ©. Par contre, (&,)™! ne dépend pas
seulement de © (le calcul de &' commence par le coin inférieur
droit). De meme el by s ef B ne dépendent que de S,, mais
el by ooy el by dependent de P'ensemble de & (le calcul de
commence par e} hy). Dés lors, supposons que le modeéle soit
réduit & ses ¢ premiers paramétres, el by, ..., €7 by, ce qui revient
& remplacer ¢ par @, et by par [el6y, ..., eT b4]7, ou encore
& supposer €/, by = ... = X by = 0; ce modele est donc carac-
térisé par le fait que

(Fefefy, ey })  implique Et*¥ =0, (16)

relation de la forme (11). Dans ce modele réduit, rien n’est changé
au calcul de el fg, ..., T b, et, si I'on note SCN, et SCE,_, res-
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pectivement la somme de carrés normale et la somme de carrés
de Perreur de ce modeéle, on a, en vertu de (15),

¢
SCN, = SC{ef, ..., ef } = Z(Z’ﬁ

done
t

SCE,_, = SCT — >\ (¢ by)?,
1

t+1
T )2
SCE 1y = SeT — 3 (e )?.
ce qui implique

ved [{ef} [ {ef, e }] = (cf, 6g)?

La notation du premier membre de cette formule est entiére-
ment comparable & celles du § 2, 4; elle est toutefois un peu
lourde, et on la remplace le plus souvent par

red{tHle Crpyenns etTf)H] Ered[{etii}l{ei*,..., ct*}] .

Dans ces conditions, la table d’analyse de variance s’écrit
ainsi:

Sommes de carrés Formules Degrés de liberté

SCT > a? n
1
.
SCN DV (el )2 p
S
red [ef 0] [ (e 0 )2 1
< red {sg 0, [ sip 0y ] o | J (] 0x)? < 1
ved [T 0y [ €l by oyl 0] | (€76 )2 1
SCE -~ SCT—SCN . n—p
SCint D 1
SCEM | SCE—SCint |n—p—u

3, 24. La disposition matérielle des calculs. a une certaine im-
portance; le cas p = 3 est décrit en détail ci-dessous.
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3,241. Premiére méthode.

a b ¢ k
G = b d e g = l
c e f m
x Yy 3z t
S = u oy 8y = r
w S
1 1 1
x u w
A B C k
61 = B D E gs = (| !
¢ E F m
@aT=1 » p g |
b =1 b by by |

On calcule successivement (les inconnues sont soulignées)
& = i xy = b xZ = € xt =k
v+ ut=d yz + uo =e oyt 4 ur =1
Azz,—}—vz—l—gz:f 3t 4+ or + ws = m

zF.—|~yE—[—x_C_'=O Ck+El+ Fm=1

=
|

sE+yD+aB=0 Bk+Di+Em—1
5C+yB+a2d=— Ak+Bl+ Cm =1

by=An+ Bp+ Cq, by=Bn+ Dp+ Eq, by=Cn-+ Ep+ Fyq,
SCN = byn + byp + byq .

3, 242. Seconde méthode.

a b ¢ k
G = b d e gy = )
c d f m
x Y 3 a, n t
w Qg . q S
AT _
bH— ” bl bz ba ”
S=1 ¢ e ocy | A T

L’Enseignement mathém., t. VI, fasc. 3. 5
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.On calcule et vérifie & comme ci-dessus, puis:

Xa, =n ya, + uay, = p za1+va2+wg3#q
A=gq +a,+ a T=n+4+p+gqg ta; + ra, + sa; = T
£y = & Ca =Y + u 3 =23+ ¢+ w

wby = a4 0bg + ub, = a, zb3+yb2—|—x§1=a,

bycy + byey + byey = A
SCN = af + a3 + a? .

4. EXEMPLES.

4,1. Les épreuves de Student.

4,11. Soit xy, ..., x, un échantillon simple et fortuit d’une
population normale de moyenne p. et écart-type o. La théorie
des modéles linéaires s’applique ici, avec

r=p=1, A=|[1,.,1] bg=]|ul,

n
wWa=rel, aTs=>Dx,
' 1

et le systeme normal se réduit a

On a alors
SCN = (D) x,)2/n , scT — >\ x;,

n n 2 n nz_;2i<gxi>
SCE=Ex§_<2xi>/n:2-(xi_m)2: — £
1 1

1

S1 p = a, expression

(m"—a)\/(n——i)l: T &
A/ (SCE/n) \/(- " 4/(nSCE)

est une aléatoire t, ; ; SCE/o? est une aléatoire y?2_, .
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4,12." Soit (xy, ..., x,) un échantillon simple et fortuit d’une

population normale de moyenne u, et écart-type o, (%44, -

o Xp)

un échantillon simple et fortuit d’une population normale de
moyenne p., et écart-type o, les deux échantillons étant mutuelle-
ment indépendants. La théorie des modeles linéaires s’applique

encore:
Xy 1 0
xq'+1 01 o )
x, 0 1
r=p=2, th=lmuwl, Tu=| 17
2 H 1 2 ) 0 " — q
Si on pose
q n
X "
Z X‘?i == Si,S ’ 2_] X,Si = SQ,S ,
1 q+1
on a
fr=Si4/a. o= Syllh—aq),
SCE — 981,0 — 151,0)° + (n—q) 8y 9 — .89 4)?
q n q b

de sorte que, sous ’hypothése w, — w, = A, I'expression
(B — g —8) V{n—2)
VIG5 ses]
q n—gq

, * . 9 7 i 2
est une aléatoire t, o; SCE/c? est une aléatoire vy, o .

4, 2. Problémes de régression.

4, 211. Supposons que, u, ..., u, étant des constantes certaines

deux & deux distinctes, on ait » = X{k, variables aléatoires x. .

3

(t=1, ..,8;,7] =1, .., k), normales, de variance commune o2,

indépendantes, avec
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Ce cas rentre dans le cadre général des modeles linéaires moyen-
nant

1 ...1 1 .1 ... 1..1
Up oo Uy Uy oo Uy ... U u

b=« 8|7, wu= '

S e (]

(% composée de s groupes ayant respectivement %, k,, ..., k,
lignes identiques entre elles); ici, r — p = 2. Si Pon procéde
comme au § 3, 232, en posant

ki

1

q bt . — . _ q .

2. 1uixi,,-~5q,t, So0 =n; Sgo= D kul;
i= 1

1=

—

2
nSyo— S1 0 ) nSyy — S1,0 So,1 )

uu n ) u,x 7 )
on a, successivement,
8 — n Si,()
S0 Sa
S — Vin Sie/Vn Ty — S0,1 f So./V/n
0o VI, 1,1 s
BT — S’(‘)L,i . S:l,o zux L,
u,u w,u
d’ou la table d’analyse de variance: |
SCT = 8y, nd.l.
{red [a] = (Sg,1)%/n . {1 d.l.
red [B | ] = (Lo )2 1d.1.
SCN = red [a] + red [@ | a] 2d.1.
SCE = SCT — SCN | (n —2)d.L.

4,212. On peut traiter ce méme probléme d’une maniére un
peu différente, en posant

/
Uy = Uy — Sy /n ,

0wt Buy=o +Fu; (B =B, o= @+ B8y of/n) ;

ceci revient & changer de base dans B, et nous écrirons

by = Il o B 1] -
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On a alors, en marquant de ’apostrophe les expressions
propres & la forme actuelle du modele considéré,

( .11 .01 0 1. ||T
2[’ = 7 7 V4 ’ ’ V4 ’
u1 ui u2 u2 us us
/ / /7
51,0 =0, 52,0 = Lu,u J S1,1 - Lu,x’

& = S0,1/n B, = Lu,x/Lu,u (: @) )

La table d’analyse de la variance ne change évidemment pas.

La méthode du § 3,232 constitue, en quelque sorte, une
- orthogonalisation a posteriori: on part de by, les vecteurs
el by (6V*) ne sont pas orthogonaux, mais les calculs intro-
duisent d’eux-méme une base & telle que les vecteurs ! §,, soient
orthogonaux. Ici, nous venons de procéder & une orthogonalisa-
tion a priori: nous avons d’emblée introduit une base ' telle
que la matrice ©' relative a cette base soit diagonale, ce qui
garantit l'orthogonalité des vecteurs ¢ll,,. Cette seconde
méthode est souvent préférable a la premiére. C’est sur elle que
reposent, notamment, les procédés de « codage linéaire » utilisés,
dans les manuels d’analyse statistique, pour I’étude des plans
factoriels & facteurs quantitatifs (plans factoriels « de régression »).

4,213. Il arrive que I’on désire controler, par les observations
elles-mémes, la validité de la relation (17). Le modéle basé sur
(17) est alors considéré comme un cas particulier du modéle
défini par '

Ex,. = M, ;

(2%

dans ce modele plus général, Pespace des erreurs, V., est engendré
par les fonctionnelles de ¢ qui sont de la forme (z;; — x;,); il
admet donc la base suivante:

i,
x,i’1 h— xi’2, --.‘, xi’1 — xi,hi s i == 1, 2, cees S

laquelle s’orthogonalise en
{bifzg =Ty T F g — = 1),

I:=/1,...,S; t:2,..., k’l.
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On a alors
) S Ri
SCint = SCV* _ Z 2 SC{ bz*t}
=1 i=2
S ki
5,
= > > bk E)2e—1)e

~
I
[
o~
I
o

(18)

I
[\Am
N

=~

-~
I

avec ; (k; — 1) = n — s degrés de liberté. Le controle envisagé
n’est donc possible que si 'un au moins des entiers-k; est > 1,
et il ne présente, en pratique, quelque intérét que si n — s est,
au moins, de ordre de s. On le fait alors en comparant SCEM
& §Cint au moyen des tables de F. Si 'on proceéde ainsi, il sied
d’utiliser SCint, et non SCE, comme dénominateur des divers F
calculés.

Remarque. — Le calcul qui a conduit & Pexpression (18) de
SCint est valide dans des conditions extrémement générales.

4,214. On peut évidemment éprouver des hypothéses trés
diverses relativement & « et 3 (ou, ce qui revient au méme, a o’
et 8') 1). Ainsi, I’on pourrait éprouver I’hypothése 8 = q, @ étant
un nombre donné; il suffit d’appliquer la formule du § 2, 23, en
remplagant, au besoin, SCE et (n — r) par SCint et (n — s). Le
seul point un peu délicat est le calcul de (*[; or, on a

é = ” li,i’ ceny li,kl’ ceny ls,ks H g = I* &‘

moyennant

li,j = (nu; — Sl,O)/nLu,u 5

=0 Dby = ULy s |
par consequent, sous I’hypothése § = a, ’expression

f—avi—d 5, V/(n — Ly
vV (1* 1. SC int) in

on a donce

est une valeur observée d’une aléatoire t, . .




MODELES LINEAIRES EN ANALYSE STATISTIQUE 231

On éprouverait de méme, par exemple, I’hypothése que, pour
des valeurs données u, et z,, on a « + Pu, = z, (on considé-
rerait lexpression o + Bu, qui, sous cette hypothése, a
comme moyenne ).

4, 22. | Supposons que, u et ¢ étant deux variables certaines,

on ait A
Exu,v:BO‘l‘Blu“{“Bz‘)a (19)

et que les observations aient été faites aux « points » (0, 0), (2, 0),
(2,1), (1,2), (0,2) et (1,1); les observations sont, ici encore,
censées étre des valeurs observées d’aléatoires normales, indé-
‘pendantes, de méme variance o2. La théorie générale s’applique
alors, avec

BH = ” n807 Bl: BZ ”T ’ g[H' =

T

111111 :
022101 |, n=6, p=r=3.
001221

Il est commode de traiter ce probléme par orthogonalisa-
tion & priori; on rapporte donc B & une base & telle que les
oolonnes de Ay soient deux & deux orthogonales; si 'on pose

by = H Yor Y15 Y2 HT cela revient & chercher deux polynémes du
premier degré, o (u) et (u, ¢), tels que

Y0+Y1(P()+Y2¢(u’0)560+61u+829,
i s
D)@ lw) =10, Z‘P(“i’”i):‘), Do () §(ug 05) = 0.
1 1 -

On peut prendre

o) =u—1, $(u,0)=—5+u-+ 4o,
ce qui correspond &
1 —1. —5
Ber = 0 1 1 b, .
H
0 0 s || K
On a alors
X 1 1 —3
E X3 = 1 1 1 Yo
Xy 1 0 4 Y1
X5 1 —1 3 Y2
A X1+X2+X+X+X+x
A, —-5x1-—3x2—!—x3+4x4+x5
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d’ou
6 0 0 Yo = A,/6
Spe=1 0 & o0 |, 1= Ak
0 0 60 Y2 = Ay/60
SC{ %} = A4j/6 , SC{ % }= Ay, SC{ ¥, } = A;/60 .

SC{ %} = red[B,], SC{%,} = red [P, | B,], SC{%:} = red[B, By, B:]

SCN =8C{ %o} +8C{ 9, }+5¢{3,},
SCE = SCT — SCN .

4, 3. Problémes de classification.

4,31. Supposons que I'on dispose des valeurs observées de
douze aléatoires normales, indépendantes, de méme variance o2,
classées suivant deux critéres: « lignes », de « valeurs» L, et L,,
et « colonnes », de « valeurs » C;, C,, C,, suivant le schema

Cy - G C,
Ll xla x2 x3a Xy .’L’5, Zg
Lz Zq, Xg Ty, 10 Zy1, Z1g -

On suppose a priori qu’il y a additivité, c’est-a-dire qu’il
existe cing nombres Ay, Ay, Y1, Yo, Ys tels que la valeur moyenne
d’une observation de la ligne L, et de la colonne C, soit A; + v,
(t=1,2; k=1,2,3). On a done, par hypothese,

X, 1 1

X, 1 1

Xg 1 1

X, 1 1 A

X; 1 1 Ay
E Xg == 1 1 Y1

X7 11 Y2

Xg 11 T3

Xg 1 1

X10 1 1

X1 1 1

X9 1 1

Si on appelle §; _, la somme des observations de la ligne L;, et
S_; celle des observatlons de la colonne C,, les équations nor-

males s’écrivent:
6 A +2«}1+2§/2+2«?3=51_ (a)

6)\2‘{‘24‘\’14‘2’?2‘*‘2?3:82_ (b)
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20 + 2% + 4% =5 (¢)
2j\\l == .25\2 + 4"};2 = S_,Q ()
2’7\\1 + 25\\2 —I— 44‘\,3 = S—’3 (6’)

Ici, manifestement, p = 5, r = 4 [en effet, (a) .—}— ()
= (¢) + (d) + (e)]. On est donc amené & mettre en évidence
quatre combinaisons estimables fondamentales; on peut prendre

=060+ %)+ &(vi+ Y2+ vs)
Ay=v1—172, Ay = v — Y3 -

On constate immédiatement que les estimateurs privilégiés de
ces quatre combinaisons sont deux & deux orthogonaux, &
Pexception prés de la derniére paire; I'orthogonalité compléte
est atteinte en remplacant A’ y par

Agy = (A 4+ 2 —205)/2 = (M + 25)/2 — 2 .
Alors:
=S8 _+8 (=85 ,+8,+8,,
AN = (s, _—s; )6
Aoy = (8. —S_ )/
A;Y = (S, +8_,—25_,)/8 .
Ici, on peut calculer |
SCint = (1/2) [(x; — x5)% + ... + (x; — X15)?] ,
avec six degrés de liberté, puis, avec deux degrés de liberté,
SCEM = SCE — SCint . |

On notera que, ici, on a

SC{ (L } = red [u] = red [p]| A%] = ... = red [y | A, Ary, Ay,
et des relations analogues pour les autres parameétres; ceci en
vertu de I'orthogonalité de leurs estimateurs privilégiés.

SCEM peut servir a éprouver I’hypothese d’additivité, mais
on ne le voit clairement qu’en étudiant le modéle non additif.
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4, 32.. Ne supposons donc plus a priori qu’il y ait additivité;
admettons que :

Exgiq = Exyy = M;
de sorte que p = 6, b, = ” M, My My My, Mz M, HT On voit
aisément que

& = diag (2, ..., 2)

d’ou

M; = (x5 4 + xp,)/2 )

SC{M,; } = (%oiq + x)22

6
scN = > sc{m; },
1

12 6
SCE = ; x; — SCN = (1/2) “12 (xg; — Xo;_4)? .

Donc, pour le modele général actuel, SCE vaut 1’expression
SCint du modéle additif.

L’hypothése d’additivité (c’est-a-dire, répétons-le, I’hypo-
theése qu’il existe cinqg nombres A, A, vy, Yo, Y3 tels que

M, =M+ v, My =27+ Y55 .or) M6:7\2+Y3)
est satisfaite si et seulement si
=M —M,— M, + M;=0, =M —M—M,+ My=0.

On doit donc former, pour éprouver cette hypothese,

A

A A A A A A A A A
01:M1——M2—‘M4+M5, 62:M1_M3—M4‘|‘Me,

puis SC{ 61, 62 }, et éprouver si SC { 61, 62 } est, ou non, signifi-
cativement plus grande que SCE (SCint du modéle additif).

f, n’est pas orthogonal a (), , mais bien

05 =20, — 0, = Ml‘lf M, —2M; + M, + M; —2M,;

or,

sc{f,} =08, sc{f,}= 022,
Sc{ 0y, 0.} =5c{0,. 0.} =sc{l,}+sc{l,},

ce qui permet d’éprouver I'additivité.
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On montre aisément que SC{ 6, 0, } n’est autre que SCEM
du modéle additif. Chacune de ces deux sommes de carres est en
effet due 4 un sous-espace de V* ayant deux dimensions et

orthogonal tant & ., AN Ay, A,y qu’aux différences « internes »
Tai —— Taicg et un tel espace est unique.

01 et 6 (et leurs combinaisons linéaires, notamment 0,)
portent le nom de «contrastes de non-additivité » (le terme
« contrastes d’interaction » n’est guére heureux). On remarquera
que, si les M; déterminent entiérement les parameétres « ortho-
gonalement estimables» w, AA, A; v, A, v, 0;, 0,, ceux-ci &
_leur tour déterminent entierement les M;. C’est en le posant au
moyen des parameétres y, ..., 0, que le probléme de la classifica-
tion (2 X 3) (avec un nombre quelconque d’observations par
cellule) se traite le plus aisément. Toutefois, ces paramétres ne
restent orthogonalement estimables que si toutes les cellules
renferment un méme nombre d’observations.

Ces considérations s’étendent immédiatement
aux autres problémes de classification.

Remarque.

4, 4. Covariance 15),

4,41. Supposons que l'on dispose d’une observation de cha-
cune de n variables aléatoires indépendantes, normales, de méme
variance o?, réparties en s groupes, le ©™ groupe étant formé
de n; elements avec

Exij=Ti+ By
1’:17'73; ]:1"'°:ni; n1+°'-+nS:n;

les 0;; étant des nombres certains 16). On a ici
by = Il Tyy oo, T, 8117

et, en supposant que dans chaque groupe il y a au moins deux
- valeurs ¢, ; distinctes,

=r=s+4+1.
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On se convainc aisément que la matrice & n’est pas dia-
gonale. Toutefois, il est aisé d’orthogonaliser le probléme; il
suffit de poser

0 = (1/n;) 23

u".' — () — ‘) )
ce qui entraine
[Ex” = A; + By ;

11:: 7...,3; ]:1,...,ni; Ejul,:’:()

- En fait, cela revient & référer B & une base § telle que

1 0 s O — ()1 _
0 1 ‘
b = : T b
K : -~ 11
0 1 —py
0 0 1
On a alors
1 Uy
1 u1,n1
1 Uy 4
g = 1 .. ty
1 u,,
1 ugy,

(Ies termes non écrits étant nuls).

4,42, 1l est alors utile de poser

t
Si;t,q :2] ( 13) (xi:’)q ’
Sitg = Z Sistg -
i5t,q 2 ,3) ,9) ’

ce qui conduit &

. o
Ug t =11 Sy5000 0 Ssy000 S Il
@K = diag (nl, ceey ns, S;z,o) ’
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d’ou

SCT = S;O,Q :
SC{ A, } = red [4;] = (8,0,)%m;
SC{ B } = red‘[m = (5;1,1)2/‘9;2,0

sev = S, sc{A,} +sc{ B}

(avec n degrés de liberté),

(avec 1 degré de liberté),
(avec 1 degré de liberté),

(avec s 4+ 1 degrés de liberté),

SCE = SCT — SCN

’

i i S0 — Bia)* i [ S0 — S0 Siso,]
.l 21: [ni Sii00 — (51;1,0)2}

(avec n — s — 1 degrés de liberté).

i1=1

o2 est estimé par SCE/(n — s — 1).

4,43. En fait, I'intérét se porte généralement sur I’estimation
des différences T; — T, les paramétres A, n’ayant pas d’intérét
propre. On a, en posant ¢; . — ¢, _ = d;,, |

A

(T —1)" = [(A; + Bo; ) — (R + Bop )]

:I*f—“l11, .,ls’ns f
moyennant
by = & p ut,q/S;2,0 sit#u,t#k,
li,(l = d’i,k ui,q/S;Q,O + 1/ni ’
lk,q = di,k u’k,q/‘g;g,o — 1/nk 3
d’ou

0= (d; p)?*S .00 + 1/n; + 1/ny, .

Il résulte de 1a que ’expression

A'k: [(%i_—'i‘k)‘—‘(T@_Tk)]
b \I[SCE/(n —s —1) .

purem—"

VU RS g0 + 1/n; + 1]

est une aléatoire t,___,.
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On voit que l'erreur-type de A, , produit de o par

d; 1
Ei’h:[( A, k]/z

520 ty

varie, en général, avec la paire (i, k), méme si les n, sont égaux
entre eux (n, = ... = ny = v). Toutefois, dans ce dernier cas,
on utilise d’ordinaire une expression approchée de ¢;,, obtenue
en considérant les ¢; ; comme n observations indépendantes d’une
méme aléatoire, de moyenne ¢ et écart-type 6 17). En désignant
par M la valeur moyenne prise par rapport & la distribution de
cette aléatoire (fictive), on a |

1,—

| M(o;  —op )%= Mo, —0) — (0, — 0)]2

=2M (o, _—0)? = 262 ;
O_MZ,L_” 0; 5 — 9; )2 Ei(v——1)6=k(v~—1)92;

M, —o ) 11]% (2 1 NY%
{ M S0 +nink} —l7[1+k(v—1)]f ’

c’est cette derniére expression que lon utilise comme Valeur
approchée de ¢;

4,44, 11 est utile aussi de calculer la somme de carrés due au
sous-espace U* engendré par les estimateurs des contrastes
T, — T,, afin de pouvoir construire une épreuve globale de la
nullité de ceux-ci. On pourrait évidemment construire une base
orthogonale de U™, mais les calculs nécessaires sont d’une grande
complication. Il est beaucoup plus simple d’appliquer le théo-
reme du § 2,31, en procedant comme suit: on considére le

modeéle
Exiy =T+ Boy

et on calcule la somme de carrés de 'erreur qui lui est associée,
c’est-a-dire (voir § 4, 211)

(S;0,1)2 . (S;j,']_)z
n S0

(SCE) g1 = S99 —

b

or ce modele s’obtient & partir du modele initial en supposant




MODELES LINEAIRES EN ANALYSE STATISTIQUE‘ 239
que; pour tout vecteur [* de U*, on a §(* = 0; par conséquent
SCU* = (SCE)p,_ o — SCE

_ o Bioal® - Bial® (19)
- 2 = o G
i=1 t

Si on pose

L _ =3 () x
xi,_ - ]—?,— 23 x?"'j ’ X'_f—' o —]’7 21 29 X,L,,’ T 4—-]1 n. 1"7— ’

la formule (19) peut s’écrire

2 n 2
SCU* = "sﬂ (2% %) _%( M xm->

L’expression (20), moins aisée & mettre en nombres que I'expres-
sion (19), est plus parlante qu’elle.
L’hypothése T, = Ty = ... = T, s’éprouve en comparant

SCU*/(s — 1)
SCE/(n — s — 1)

a la distﬁbution de Fa(s—1)et (n —s— 1) degrés de liberté.

La table d’analyse de variance se présente ainsi:

SCT = S, n d.l.

red [T] = (8,5,4)%/n ‘ 1d.l.
SCNqred [B] = (S, 1)%/S .90 | (s +1)91d.lL
red [Ty — Ty, ..., T, — T, | T, 8] = SCU* (s —1) d.l.

SCE = SCT — SCN  (n—s—1) d.1.

Si plusieurs paires (i, j) correspondent & une méme valeur de

¢; i, on peut introduire, en outre, la décomposition habituelle de
SCE en SCint et SCEM.
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NOTES

13) Dans ce paragraphe, les notations g; et eiT désignent des vecteurs 4 p (et non n)
composantes, toutes nulles, sauf la ifme, qui vaut 1.

14) Rappelons qu’il convient que ces hypothéses soient formulées indépendam-
ment des observations.

15) On trouvera dans [IX], chap. 4, un exposé non technique particuliérement
lucide des principes statistiques de I’analyse de la covariance.

16) Si les v;; sont des valeurs observées de certaines aléatoires, les résultats sub-

sistent inchangés, sous la condition nécessaire et suffisante que la distribution conjointe
de ces aléatoires ne dépende pas des valeurs des paramétres Ti, ..., Ty, B. Cela résulte

immédiatement du théoréme des probabilités composées (cfr. [X], §§ I.7 ss.).

17) Cette hypotheése apparemment farfelue est, en fait, assez souvent justifice par
les techniques d’attributions fortuites («randomization ») mises en jeu; en tout état
de cause, on peut la considérer comme un procédé d’approximation numérique basé
sur le sentiment qu’«il n’existe pas de différence systématique entre les v;; cOrres-
pondant a diverses valeurs de i ».
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