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On distingue les nombres premiers qui sont normes d'idéaux

principaux premiers (congruence fondamentale impossible) et les

nombres premiers qui sont normes d'idéaux canoniques. On en

déduit la décomposition:

[n(#i]xn[(?i) Q-Ci)hiX(Pi, 0 '-c/1].
Pour un idéal fractionnaire, mis sous forme canonique:

1 — qX (m, 0—c) {q) X (m, 0—c) ;

on décompose les deux facteurs, comme il vient d'être dit, on forme

le produit des deux décompositions, on associe éventuellement les

puissances d'un même idéal, dont on additionne les exposants;

on supprime ceux dont l'exposant devient ainsi nul.

L'existence de cette décomposition peut aussi être établie directement

comme conséquence de la définition des idéaux premiers et de

la constitution du groupe Gj des idéaux non nuls (14). Le raisonnement

est analogue à celui qui est fait ordinairement pour les nombres

rationnels et entiers.

La démonstration de la détermination de la décomposition faite

pour les nombres rationnels, par comparaison de deux décompositions
et par récurrence sur le nombre de facteurs (de l'une d'elles) s'étend

de même à la décomposition des idéaux.

18. Divisibilité des idéaux.

On peut étendre aux idéaux (d'un corps quadratique) les

propriétés usuelles de la divisibilité des nombres fractionnaires
et entiers, de l'arithmétique élémentaire.

Pour comparer plusieurs idéaux fractionnaires A, B, on
peut utiliser un système de h idéaux premiers Pir comprenant
tous ceux qui figurent dans une décomposition (17) de (au moins)
un des idéaux considérés. On peut alors introduire dans ces

décompositions, les puissances d'exposant nul (donc égales à

l'idéal unité) de ceux des qui n'y figuraient pas. Chacun des

idéaux considérés est ainsi égal à un produit de puissances
des h idéaux P^:

A IIP^; B IIP^; nombres entiers;
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et ils sont ainsi caractérisés par les systèmes de h exposants
an h;-

Leurs produits,ou leurs quotients, sont obtenus en
nant,ou en retranchant, les exposants, de même indice:

(npf)x(npf') npfi+fti; (npf) .• (IIP}*)

Pour qu'un idéal, ainsi représenté, soit entier, il faut et il
suffit <\\Taucun des exposants ne soit négatif:

{ITPf idéal entier} <s> {ai>0, tout i}.
Définition. Un idéal (fractionnaire) M est divisible par un

idéal D, non nul, —ou est multiple de D— lorsqu'il est égal au
produit de D par un idéal entier —ou lorsque le quotient MxD-1
est un idéal entier— :

(M D x Q, Qc(l)} ou MxD-'c(l).
Deux idéaux fractionnaires M et D étant représentés par

leurs décompositions avec un même système d'idéaux premiers Pi(
pour que M soit divisible par D, il faut et il suffit que ses exposants
soient au moins égaux à ceux de D, de même indice :

{(nPf<) divisible par (nPf)} <=> {m^dp, tout i}
En particulier un idéal premier est diviseur d'un idéal entier

lorsqu'il figure dans sa décomposition (avec un exposant non nul).
Il est diviseur d'un produit d'idéaux entiers, si et seulement si il est
diviseur de l'un d'eux (au moins).

De la condition de divisibilité, on déduit (comme pour la
divisibilité des nombres fractionnaires) la formation du plus
grand commun diviseur et du plus petit multiple commun,
d'un système d'idéaux fractionnaires, décomposés en produits
de puissances d'un même système d'idéaux premiers:

U IIP"1; V IIP?1; ...; entiers;
p.g.c.d. (U,V,...) nPjmin'mum èa>»t....)

;

p.p.c.m. [U,V,...] nPaximum<"^«--->.

On peut en déduire des relations mutuelles; en particulier
leur corrélation peut être exprimée par la construction :
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l'inverse du p.g.c.d. (ou du p.p.c.m.) est égal au p.p.c.m.
(ou au p.g.c.d.) des inverses.

On peut aussi énoncer des propriétés caractéristiques,
corrélatives, en utilisant une définition préalable.

Définition. — Des idéaux (fractionnaires) sont premiers
entre eux (dans leur ensemble) lorsque leur p.g.c.d. est égal à Vidéal
unité.

Il est équivalent de dire qu'ils sont entiers et qu'il n'y a

aucun facteur premier commun à leurs décompositions, avec un
exposant non nul.

On vérifie immédiatement, en utilisant les systèmes d'exposants

que: pour qu'un idéal fractionnaire:

D soit p.g.c.d. ou M soit p.p.c.m.

d'un système d'idéaux fractionnaires F^, il faut et il suffit que les

quotients :

FjXD-1 ou MxFr1,
soient premiers entre eux (dans leur ensemble).

18 bis. Utilisation du plus grand commun diviseur.

On peut définir et établir les notions de divisibilité en suivant le
même ordre que celui qui est couramment employé en Arithmétique
élémentaire et qui a été étendu par Dedekind aux idéaux des corps
de nombres algébriques.

On peut définir d'abord et directement la divisibilité des idéaux
fractionnaires par l'une des propriétés caractéristiques suivantes,
dont l'équivalence résulte de l'existence de l'inverse d'un idéal
non nul.

L'idéal M est divisible par l'idéal D, si le MxD-1 est un
idéal entier (inclus dans l'idéal unité (1)) ;

ou si M (ensemble d'éléments du corps) est inclus dans D (10. 3)

MxD"1 c (1) o M cD.
On passe d une inclusion a l'autre en multipliant les deux membres
par D (inclusion de gauche), ou par D-1 (inclusion de droite).
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