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Cette détermination reste. valable pour chaque facteur d’une
décomposition de M en un produit d’idéaux dont les normes sont
des puissances d’idéaux premiers différents (facteurs de la norme m).
Ces facteurs sont par suite des puissances déterminées des P;, donc
sont respectivement égaux aux idéaux M, construits & priori.

Dans la décomposition maximum d’un idéal canonique M,
on peut associer des systémes de facteurs, de fagon que les
normes de leurs produits soient égales & des facteurs m;, d’une
décomposition, en produit, arbitrairement choisie, de la norme
de M. Ceci est exprimé par la propriété complémentaire de
décomposition ¢’un idéal canonique.

A toute décomposition de la norme m, d’un idéal canonique
M = (m, 6—c), en un produit de nombres entiers m;, correspond
une décomposition de I'idéal M, en un produit d’idéaux canoniques,
de normes m; et de racines égales —ou respectivement congrues,
mod. m;,— & la racine ¢, de M:

m = Im; = (m, 6—c) = Il(m;, 0—c).

16. Idéaux canoniques associés.

DEriniTioN. — Deux idéaux canoniques sont qualifiés
associés, relativement d une racine c, lorsque cette racine c leur est

commune et que le produit de leurs normes est égal a (la valeur

absolue) [F(c)|:
M = (m, 0—c), N=(n, 6—c); mxn = |F(c)|.
Il est équivalent de dire que le produit de ces deux idéaux
canontques, est égal a U'idéal principal (6—c):
MxN = (6—c).
Le nombre entier positif |F(c)| étant divisible par lui-méme,
1l existe un idéal, de racine égale & ¢, qui ’a pour norme. Mais il est

égal a l'idéal principal (6—c), car d’aprés les propriétés des bases
algébriques (multiplication, 12. 2; simplification, 10. 1): |

[F(e)| = [(8—¢) X (0'—¢)| = (0—c) X[1(6'—c)]; [n signe de F(c)],
= (|F(c)], B—c) = (6—c) X[n(6"—¢), 1] = (6—c) X (1) = (6—c).




176 _ A. CHATELET

(Cette égalité a déja été signalée comme une application particuliére
de la construction d’une base canonique d’un idéal principal
canonique; 11. 3).

Ceci acquis, d’aprés-la propriété de décomposition (15.3), la
premiere définition, donc |F(c)| = m X n, entraine:

(0—c) = (|F(c)], b—c) = (mXn, 6—c)
= (m, 6—c)Xx(n, 6—c) = MXN.

Réciproquement la décomposition de (6—c) en un produit de
deux idéaux canoniques MxN entraine la décomposition de sa
norme |F(c)| en le produit mxn, de leurs normes (13).

Si deux idéaux canoniques M et N sont associés, relativement
& une racine ¢, les idéaux conjugués M’ et N’ sont associés, suivant
la ractne (conjuguée pour chacune des normes), ¢’ = S—c; car:

F(e)] = |F(S—c)| = |F(e)] = mxn
= (m, b—c')x(n, 6—c') = (6—¢').

Pour un idéal canonique M = (m, 6—c), il y a une infinité
d'1déaux associés, relativement & chaque entier c¢4am, racine
de M.

Relativement a une racine ¢, il y a un nombre fini de couples
d’idéaux associés, donnés par les diverses décompositions de
|[F(c)| en un produit de deux nombres entiers positifs m X n.
Si |F(c)| est un nombre premier, il n’y a qu’un seul couple trivial,
formé des idéaux (1) et (6—c). '

16. 2. Idéaux réfléchis.

DEriNiTION. — Un tdéal canonique est réfléchi, relativement
a une racine c, lorsqu’il est associé a un idéal égal, relativement
a cette racine —ou lorsque son carré est égal a I'idéal prin-
cipal (6—c)— :

M = (m, 06—c), m?= |F(c)|} < M= (0—c).

L’idéal conjugué M’ est alors réfléchi relativement a la racine
(conjuguée) ¢’ = S—c [puisque F(c") = F(c)].

Il y a équivalence entre |'existence d’un couple d’idéaux
canoniques, conjugués, réfléchis et une décomposition —ou
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expression— du discriminant D, du corps. Elle est exprimée par
les énoncés suivants qui sont réciproques et se distinguent
suivant que la valeur F(c) est positive (+m?), ou négative (—m?).

TukorEME d’existence d’idéaux réfléchis. — Dans un corps
quadratique, de discriminant D:

1. Si D est impair, ou si d = D: 4 est un entier impair, a
toute décomposition de D en produit de deux nombres entiers,
dont la différence est un multiple de 4, non nul:

D = uxv; u,0 nombres entiers; ¢—u = 4m, m entier -~ O;

" correspond biunivoquement un couple d’idéaux réfléchis con-
jugués: * |

M =(m, 0—c), ¢ =(ut-8):24m; | |, o oo oo
M’ = (m, 6—c'), c'=(—~o+5):2+m}c+c =5 ) =H()=~+m"
2. S1 D est positif et impair; S = —1; a toute expression

de D, comme somme de deux carrés (un pair et un impair)
D = a®+4m?; a entier impair;

correspond biunivoquement un couple d’idéaux réfléchis conju-
gueés:

M =(m, 0—c), c= (a—1):2]

W =(m, ), '=—(at1):2] T =1 FO=F()=—m?.

2bts. S1 D est positif et D:4 = d entile\r pair; § = 0; a
toute expression de D en somme de carrés pairs:
D = a®+b% a:2=a', b:2 = b entiers impairs;

correspondent biunivoquement deux couples d’idéaux réfléchis
conjugueés:

|

(v, 0+a); F(a)
(@, 0+b); F(b)

Fl—a') = —b
F(—b) = —a

|
|

|
|

M, = (¥, 6—a); M,
M, = (a/, 6—b'); M,

Pour vérifier ces propriétés, il est commode d’utiliser I'expression
de 4F'(c), qui donne une expression du discriminant D:

(20—S2—D = + &m?® <« D = (2c—S)*F hm?.

L’Enseignement mathém., t. VI, fasc. 2. 2
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Pour ehaque cas, on établit d’abord la condition nécessaire: 'existence
d’idéaux entraine la décomposition et la nature de D; puis la condition
suffisante: on calcule les expressions des idéaux réfléchis qui résultent
de ces expressions de D.

1. F(c) étant égal a +m2, la valeur de D est:
D = (2¢—8)>—4m? = (2c—S8—2m) X (2¢—S+2m);

c¢’est un produit de deux nombres entiers, dont la différence est égale
a dm. S1 § = —1, D est impair. Si § = 0 les deux facteurs sont
simultanément doubles de nombres impairs, ou quadruples de nom-
bres entiers. La deuxiéme circonstance est impossible, puisque D
ne peut étre multiple de 16; il est donc quadruple d’un nombre
impair. |

Réciproquement si D vérifie ces conditions nécessaires:

D =ux¢=(—)xX(—u); v—u = (—u)—(—v) = bm;
les systéemes d’équations en x:

20—S8—2m
20—S-+2m

u, ou —
¢, ou —u

|

sont compatibles et ont pour solutions les valeurs ¢ et ¢’ indiquées.

2. F(c) étant égal & —m?2, et S = —1, la valeur de D est:
D — (2c41)24-hm?;

c’est bien une somme de carrés de deux nombres entiers, I'un pair
Pautre impair; D est positif et congru & 41, mod. 4.
Réciproquement si D vérifie ces conditions nécessaires:

D = a%+4-4m?;  a impair;
les équations en z:

2¢+1 =a, ou —a
ont bien pour solutions les valeurs indiquées de c et ¢’.
2 bis. La valeur de F(c) étant —m2, et S = 0, la valeur de D est:

D = (2¢)’44m?, ou d = D:4 = c*4+m?;
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d-= D: 4 ne pouvant étre congru, mod. 4, ni & +1, ni 4 0, ¢ et m
sont impairs et D: 4 est double d’un nombre impair [D multiple
de 8].

Réciproquement si D remplit ces conditions il existe bien les
deux couples d’idéaux indiqués.

En particulier, les décompositions triviales D = 1 X D, si d = 1,
(mod. 4), et D = 2x2d, si d = 3, (mod. 4), correspondent & des
couples d’idéaux conjugués réfléchis:

D = 1—4N; F(z) = 224+2+N;

| F(—N) = F(N—1) = N?;
D = 4d (d impair); F(z) = 2>—d;
FL£(d+1):2)] = [(d—1): 2]~

Un idéal, de norme m peut étre réfléchi relativement a deux
racines ¢ et ¢’, donnant & F(x) des valeurs égales et par conséquent
conjuguées. Cet idéal est alors égal & son conjugué —ou est
double— et: _

c—c¢ = am; 2¢—S = m;
D = 2®m? £4m? = (A2 +4) X m2; () entier)

comme D ne peut pas avoir de facteur carré, cette circonstance ne se
produit que pour I'idéal unité, de norme 1 et pour des corps quadra-
tiques, de discriminant D = 3%?4-4. Pour les premieéres valeurs des
discriminants, ce sont:

D F(x) c=(S+N:2) | ¢ =(S—n):2 F(c) = F(¢’) |
—4 2241 0 0 +1
—3 22421 0 —1 +1
+5 22+ ax—1 0 —1 —
id. id 1 —2 +1
+8 x22—2 1 —] i),
12 x*—3 2 —2 +1
13 2%+ x—3 1 —2 —1

On pourrait aussi rechercher des' idéaux réfléchis relativement
a deux racines, qui donnent & F(z) des valeurs opposées +m?2 et —m?2;
c’est le cas pour F(z) = 22+2—1, pour lequel I'idéal (1) est- réfléchi
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relativement aux racines 0 et —1, +1 et —2. Cette circonstance
semble présenter moins d’intérét pour les études faites ci-dessous.

17. Idéaux premiers.

Les propriétés de décomposition des idéaux canoniques
peuvent étre comprises dans une théorie plus générale (au moins
en apparence) de la décomposition des idéaux fractionnaires,
analogue a la théorie de la décomposition des nombres frac-
tionnaires, en arithmétique ordinaire. On utilise & cet effet
la notion d’idéaux premiers.

DEriNITION. — Par extension du vocabulaire arithmétique
usuel, un idéal entier P est appelé premier, lorsque sa seule décom-
posttion en un produit de deux idéaux entiers est sa multiplication
par Uidéal unité:

{P =1IxJ, IetJentiers} <« {I=(1) ou J= (1)}

TutorEME des idéaux premiers. — Dans un corps quadra-
tique R(0), de polyndome fondamental F(z), les idéaux premiers
sont: |

1. Les idéaux principaux rationnels (q), de norme ¢2, dont
la base ¢: est un nombre premier, pour lequel la congruence
fondamentale est impossible —ou qui n’est diviseur d’aucune
valeur F(c), pour ¢ entier—. Ils sont appelés idéaux premiers,
du second degré.

2. Les idéaux canoniques (p, 9—c), dont la norme-p est un
nombre premier et dont la racine ¢ est un zéro de F(x), mod. p.
Ils sont appelés idéaux premiers, du premier degré.

Tout idéal entier, mis sous forme canonique ¢ XM, est un produit
de deux idéaux entiers, I'un canonique M, lautre principal
rationnel (¢). Il ne peut étre premier que si I'un des deux facteurs est
égal a l'idéal unité (1), soit qu’il soit principal rationnel, égal &
(q) X (1); soit qu’il soit canonique, égal & (1) XM. On va examiner
successivement ces deux cas.
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