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LES CORPS QUADRATIQUES 163

une base arithmétique, les produits des générateurs pt X cq, forment
une base arithmétique, du produit IX J :

(...,pir..) arithmétique => (...^Xcr,-,...) arithmétique.

Il suffit d'utiliser le théorème caractéristique (9.5) des bases

arithmétiques. En prenant une hase 1 t, de (1), l'hypothèse est

exprimée par l'existence de nombres entiers zir1 tels que:

x t 2zir X pr; tout i de 1 à h; r de 1 à h.

Cette même condition est alors remplie par les produits, car:

(pi x (jj) Xt (Pi X t) X Gj — Ezir X (pr X Gf) ; r de 1 à A; tous ij.
On a déjà utilisé, en fait, un cas particulier de cette construction,

en formant une base arithmétique d'un idéal défini par une base

algébrique (10.4) (notamment d'un idéal principal, 11.2) ; il est

égal à son produit par l'idéal (1), qui peut être défini par une base

arithmétique de deux termes yj y2, de sorte que :

(...,pir..) (yj., Y2)x(...,pir..) (•••sYlXpi.YaXpi,...).

C'est la base, qui a été justifiée par un raisonnement direct.

Un autre cas particulier d'une telle multiplication est donnée

par la forme canonique d'un idéal (8.1), ce qu'expriment les
égalités :

qx(m, 6—c) (q)X(m,0—c)(qxm, qx(Q-c)).

L'idéal est égal au produit de l'idéal principal (q), de base q,
par l'idéal canonique, de base arithmétique m, 0—c, d'où la base
arithmétique qxm, qx(Q—c).

13. Propriétés des normes.

On va étudier, plus spécialement, la multiplication d'idéaux,
mis sous leur forme canonique, et èn déduire des propriétés des
normes, qui justifient leur définition, donnée ci-dessus, à priori
(8.1).



164 A. CHATEL

Théorème des normes. — Lproduit de deux idéaux conjugués

est égal à V idéalprincipal dont une base est leur
norme commune (nombre rationnel positif,, défini 8.1) :

IxF (norme de I) ou (iV(I)).

La norme d'un produit d'idéaux est égal au produit de leurs
normes

norme (I X J) norme de I x norme de J.

On peut établir d'abord la première propriété, pour un idéal
canonique :

M (m, 0—c), M' (m, 0'—c) ;

une base (arithmétique) du produit M x M' est formée du produit des

générateurs :

MxM'= (m2, mx(0—c), mx(0'—c), (0—c) x (0'—c)).

Le dernier terme est égal à l'entier rationnel F(c) ±m zn, de sorte
que m peut être mis en facteur commun:

MxM' roxEj (m)xEi; Ex (m, 0—c, 0'—c,

L'idéal Ex contient les éléments suivants qui sont des entiers
rationnels :

m, n, 0—c+0'—c S—2c c'—c, (mod. m),

où c' est zéro conjugué de c, de la congruence fondamentale, mod. m.
On vérifie qu'ils sont premiers entre eux, en constatant qu'un nombre
premier p ne peut les diviser simultanément. Il suffît de se borner
à un diviseur p, de m, il divise les entiers F(c), et F(c') qui sont
divisibles par m. Alors, ou bien p ne divise pas le discriminant du
corps, les zéros c et c' de la congruence fondamentale sont distincts
et p ne divise pas c'—c. Ou bien,il y a une racine double c et c' étant
congrus, mod. p; mais alors p2 ne divise pas |F(c)| et ne
divise pas n (propriétés de la congruence fondamentalé 4 et 5).

L'idéal Ex engendré par des entiers algébriques est entier, comme
il contient trois entiers rationnels premiers entre eux, il contient leur
p.g.c.d., qui est 1; il contient donc tous les entiers du corps et il
est égal à E(0), ou à (1). Donc:

MxM' (m)X(1) (m).
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Le cas général en résulte immédiatement, par application de la

commutativité et de Y associativité de la multiplication:

I := (q)x(m, 0—c), F (q)x(m, 0'—c);
IxF (q)x(q)x(m, 0—c)x(ra, 0—c) «= (q2)x(m) (q2m).

La seconde propriété se déduit immédiatement de la première:

Norme delxJ (IxJ)X(rxF) - (IxF)x(JxF)
[N(1)]X[N(J)].

Le carré (Tun idéal double G —égal à son conjugué, (7)—- est

égal à Vidéal principal rationnel, dont une base est la norme de G:

G q X (g, 0—c) qx(g, 0'—c) G' => G2 GXG' (?2Xg).

Les cas particuliers indiqués pour la multiplication entraînent
des cas particuliers et des conséquences du théorème des normes.

La norme dé un idéal principal (p) est égale à la valeur absolue

|iV(p)[, de la norme de p [égale pour les diverses bases possibles,
(11.1)], [ceci a déjà été établi par un raisonnement direct pour
un idéal canonique, (11. 3)]

(P) X(p') — (norme de p) => norme de (p) |norme de p|.

En particulier la norme d'un idéal principal rationnel (q) est
égale à q2.

Un idéal entier F contient sa norme, puisque son idéal conjugué
F' étant aussi entier, chacun d'eux contient Fx F'.

Il n'y a qu ''un idéal entier, de norme 1, qui est Y idéal unité.
Car un tel idéal étant contenu dans (1) et contenant (1), lui
est égal.

14. Division des idéaux fractionnaires.

Définition. — Deux idéaux, non nuls, sont inverses —ou
chacun d'eux est l'inverse de l'autre— lorsque leur produit est
égal à Vidéal unité (1).

Les normes d'idéaux inverses sont des nombres inverses,
puisque leur produit est égal à la norme de l'idéal (1). Cette
remarque, jointe à l'expression du produit de deux idéaux
conjugués (13), conduit à la construction d'idéaux inverses.
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