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LES CORPS QUADRATIQUES 163

une base arithmétique, les produits des generateurs o; X 6j, forment
une base arlthmeuque du produit IxJ:

(e esPigees) arithmétique = (+s93 X Gj,...) arithmétique.

Il suffit d’utiliser le théoréme caractéristique (9.5) des bases
arithmétiques. En prenant une base 1 1, de (1), I'hypothese est

exprimée par l'existence de nombres entiers z,., tels que:

i

o;X T = Xz,Xp,; toutidelahr; rdelad.
Cette méme condition est alors remplie par les produits, car:
(e X o) Xt = (p; X 1) Xo; = 2z;, X (p, X 0;); rdeld h; tous i,].

On a déja utilisé, en fait, un cas particulier de cette construction,
en formant une base arithmétique d’un idéal défini par une base
algébrique (10.4) (notamment d’un idéal principal, 11.2); il est
égal & son produit par I'idéal (1), qui peut étre défini par une base
arithmétique de deux termes v, v,, de sorte que:

(sPiees) = (Y1, Y2) X (osines) = (o v1 X 00 Y2 X Piev2)-

(Cest la base, qui a été justifiée par un raisonnement direct.

Un autre cas particulier d’une telle multiplication est donnée
par la forme canonique d’un idéal (8.1), ce qu’expriment les
égalités: |

g (m, B—c) = (q) X (m, 0—c) = (gXm, gx (6—c)).
- L’idéal est égal au produit de Iidéal principal (g), de base ¢,

par I'idéal canonique, de base arithmétique m, 6—c, d’ou la base
arithmétique gxm, gx(6—c).

13. Propriétés des normes.

On va étudier, plus spécialement, la multiplication d’idéaux,
mis sous leur forme canonique, et en déduire des propriétés des

normes, qui justifient leur définition, donnée ci-dessus, & priori
(8. 1).
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THEOREME des normes. — Le produit de deux idéaux conju-
gués est égal a Didéal principal rationnel, dont une base est leur
norme commune (nombre rationnel positif, défini 8. 1):

IXI' = (norme de I) ou (N(I)).

La norme d’un produit d’idéaux est égal au produit de leurs
normes
norme (IXJ) = norme de I X norme de J.

On peut établir d’abord la premiére propriété, pour un idéal
canonique:

M = (m, 6—c), M = (m, 6'—c):

une base (arithmétique) du produit MxM’ est formée du produit des
générateurs:

MxM = (m2, mx(0—c), mx(0'—c), (6—c)x (6'—c)).

Le dernier terme est égal a ’entier rationnel F(c) = +m X n, de sorte
que m peut étre mis en facteur commun:

MXM' = mXxE, = (m)xE;; E;, = (m, 6—c, 6'—¥c, n).

L’idéal E; contient les éléments suivants qui sont des entiers
rationnels:

m, n, O—ct+b0—c =38—-2c=c—c, (mod. m),

ou ¢’ est zéro conjugué de c, de la congruence fondamentale, mod. m.
On vérifie quils sont premiers entre eux, en constatant qu’un nombre
premier p ne peut les diviser simultanément. Il suffit de se borner
& un diviseur p, de m, il divise les entiers F(c), et F(c’) qui sont
divisibles par m. Alors, ou bien p ne divise pas le discriminant du
corps, les zéros ¢ et ¢’ de la congruence fondamentale sont distincts
et p ne divise pas ¢'—c. Ou bien, il y a une racine double ¢ et ¢’ étant
congrus, mod. p; mais alors p? ne divise pas |F(c)| = mXn et p ne
divise pas n (propriétés de la congruence fondamentalé 4 et 5).

I’idéal E; engendré par des entiers algébriques est entier, comme
1l contient trois entiers rationnels premiers entre eux, il contient leur
p-g.c.d., qui est 1; il contient donc tous les entiers du corps et il
est égal a E(0), ou & (1). Done: o

MXxXM = (m)x(1) = (m).
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Le cas généfal en résulte immédiatement, par application de la
commutativité et de V'assoctativité de la multiplication:

I=(9)x(m, 6—c), T = (q)x(m, 0'—c);
IXI' = (q) X (q) X (m, 6—c) X (m, 6'—c) = (¢?) X (m) = (¢?m).

- La seconde propriété se déduit immédiatement de la premiere:

Norme de IxJ = (IxJ)x (I'x)’) = IxT)x (IxJ')
= [NIDIX[NJ)].

Le carré d’un idéal double G —égal a son conjugué, (7)— est
égal a U'tdéal principal rationnel, dont une base est la norme de G:

G =gX(g,0—c)=gX(g,0—c) =6 = G?=GXG = (¢>Xy).

Les cas particuliers indiqués pour la multiplication entrainent
des cas particuliers et des conséquences du théoréme des normes.

La norme d’un idéal principal (p) est égale a la valeur absolue
|V ()|, de la norme de p [égale pour les diverses bases possibles,
(11. 1)], [ceci a déja été établi par un raisonnement direct pour
un idéal canonique, (11. 3)]

(p) X (') = (norme de p) = norme de (p) = |norme de p|.

En particulier la norme d’un idéal principal rationnel (q) est
égale a ¢ |
Un idéal entier F contient sa norme, puisque son idéal conjugué
F’ étant aussi entier, chacun d’eux contient F xF’.
11 n’y a qu’un idéal entier, de norme 1, qui est 'idéal unité.
Car un tel idéal étant contenu dans (1) et contenant (1), lui
est égal. |

14. Division des idéaux fractionnaires.

DEFINITION. — Deux idéaux, non nuls, sont inverses —ou
chacun d’eux est I'inverse de 'autre— lorsque leur produit est
égal a U'idéal unité (1).

Les normes d’idéaux inverses sont des nombres inverses,
puisque leur produit est égal a la norme de I'idéal (1). Cette
remarque, jointe & l'expression du produit de deux idéaux
conjugués (13), conduit a la construction d’idéaux inverses.
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