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LES CORPS QUADRATIQUES

par A. CHATELET

(suite)

CHAPITRE II

DIVISIBILITE DES IDEAUX

12. Multiplication des idéaux fractionnaires.

Entre les idéaux fractionnaires, d’un corps quadratique, on
définit une opération, appelée multiplication, dont on vérifie
quelle est déterminée, commutative et associative, et que
Popération inverse, appelée division est possible et déterminée,
a lexception de la division par un idéal nul.

DEFINITION. — Le produit (résultat de la multiplication) de
deux tdéauz:

I = (..,0-), tdetlah; J= (-s05-0), j de 1 & k;
(définis par des bases algébriques (10.1) de 4 et % générateurs)

?

est Uidéal, désigné par I J, dont une base algébrique est constituée -

par les produits mutuels des générateurs, des idéaux multipliés:
IxX]J = (+5 @455e4) 3 w;; = p;X6;, en nombre AXE.

Ce produit, qui est ainsi défini, est déterminé, c’est-a-dire
indépendant des bases adoptées pour définir les idéaux multipliés.

C’est en effet ’ensemble des éléments du corps, de la forme:
2E; X 0y = XE;X (piXo;); &y € E(0);

(les &;; étant des entiers arbitraires du corps). Cet ensemble est,
par suite égal & ensemble des différences (et des sommes) mutuelles
des produits de chaque élément de I par chaque élément de J; ce qui
est bien une construction indépendante des bases choisies.

L’Enseignement mathém., t. VI, fasc, 3. 1
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La multiplication est manifestement commutative, comme celle
des eléments du corps; elle s’étend & un nombre quelconque d’idéaux;
elle est associative; car les générateurs d’un produit de trois idéaux
peuvent s’écrire indifféremment:

Oy = »(PiXGj) X T, = p; X (0 X 7).

La conjugaison conserve la multiplication: le conjugué d’un
produit (d’1déaux) est égal au produit des conjugués (de ces idéaux)

IxI)) =TIx]J.

Il suffit en effet de définir I' et J' par les générateurs conjugués
de ceux de I et J; leurs produits mutuels seront les conjugués des
générateurs de définition de Ix]J.

12. 2. Cas particuliers.

Le produit, d’un idéal I, par un idéal principal (p) est égal
au produit, de I, par (I’élément de) la base o (8. 4)

(p) XI = o XI;
notamment:

(O)xI=(0); (WxI=1xI=1I; (p)X(0)=px(0) = (pXo).

L’idéal unité (1), ou E(0), est un élément neutre pour la multi-
plication, d’ou son nom, on montre ci-dessous (14) que c’est
le seul. | ,

Le produit IXF, par un idéal entier ¥, est inclus dans I, car
les produits des générateurs de I par ceux de F, qui sont des
entiers du corps, appartiennent a I (3 de la condition caractéris-
tique; 8. 2). : ‘

Le produit de deux, ou plusieurs, tdéaux entiers est un idéal
entier, qui est inclus dans chacun d’eux.

12. 3. Base arithmétique.

On peut distinguer le cas d’idéaux définis par une base
arithmétique (9. 1), c’est ce que précise 1’énoncé:

Si, dans la multiplication de deux idéaux I et J, dont les
termes des bases sont p; et ;, 'un d’eux, au moins, est défini par
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une base arithmétique, les produits des generateurs o; X 6j, forment
une base arlthmeuque du produit IxJ:

(e esPigees) arithmétique = (+s93 X Gj,...) arithmétique.

Il suffit d’utiliser le théoréme caractéristique (9.5) des bases
arithmétiques. En prenant une base 1 1, de (1), I'hypothese est

exprimée par l'existence de nombres entiers z,., tels que:

i

o;X T = Xz,Xp,; toutidelahr; rdelad.
Cette méme condition est alors remplie par les produits, car:
(e X o) Xt = (p; X 1) Xo; = 2z;, X (p, X 0;); rdeld h; tous i,].

On a déja utilisé, en fait, un cas particulier de cette construction,
en formant une base arithmétique d’un idéal défini par une base
algébrique (10.4) (notamment d’un idéal principal, 11.2); il est
égal & son produit par I'idéal (1), qui peut étre défini par une base
arithmétique de deux termes v, v,, de sorte que:

(sPiees) = (Y1, Y2) X (osines) = (o v1 X 00 Y2 X Piev2)-

(Cest la base, qui a été justifiée par un raisonnement direct.

Un autre cas particulier d’une telle multiplication est donnée
par la forme canonique d’un idéal (8.1), ce qu’expriment les
égalités: |

g (m, B—c) = (q) X (m, 0—c) = (gXm, gx (6—c)).
- L’idéal est égal au produit de Iidéal principal (g), de base ¢,

par I'idéal canonique, de base arithmétique m, 6—c, d’ou la base
arithmétique gxm, gx(6—c).

13. Propriétés des normes.

On va étudier, plus spécialement, la multiplication d’idéaux,
mis sous leur forme canonique, et en déduire des propriétés des

normes, qui justifient leur définition, donnée ci-dessus, & priori
(8. 1).
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THEOREME des normes. — Le produit de deux idéaux conju-
gués est égal a Didéal principal rationnel, dont une base est leur
norme commune (nombre rationnel positif, défini 8. 1):

IXI' = (norme de I) ou (N(I)).

La norme d’un produit d’idéaux est égal au produit de leurs
normes
norme (IXJ) = norme de I X norme de J.

On peut établir d’abord la premiére propriété, pour un idéal
canonique:

M = (m, 6—c), M = (m, 6'—c):

une base (arithmétique) du produit MxM’ est formée du produit des
générateurs:

MxM = (m2, mx(0—c), mx(0'—c), (6—c)x (6'—c)).

Le dernier terme est égal a ’entier rationnel F(c) = +m X n, de sorte
que m peut étre mis en facteur commun:

MXM' = mXxE, = (m)xE;; E;, = (m, 6—c, 6'—¥c, n).

L’idéal E; contient les éléments suivants qui sont des entiers
rationnels:

m, n, O—ct+b0—c =38—-2c=c—c, (mod. m),

ou ¢’ est zéro conjugué de c, de la congruence fondamentale, mod. m.
On vérifie quils sont premiers entre eux, en constatant qu’un nombre
premier p ne peut les diviser simultanément. Il suffit de se borner
& un diviseur p, de m, il divise les entiers F(c), et F(c’) qui sont
divisibles par m. Alors, ou bien p ne divise pas le discriminant du
corps, les zéros ¢ et ¢’ de la congruence fondamentale sont distincts
et p ne divise pas ¢'—c. Ou bien, il y a une racine double ¢ et ¢’ étant
congrus, mod. p; mais alors p? ne divise pas |F(c)| = mXn et p ne
divise pas n (propriétés de la congruence fondamentalé 4 et 5).

I’idéal E; engendré par des entiers algébriques est entier, comme
1l contient trois entiers rationnels premiers entre eux, il contient leur
p-g.c.d., qui est 1; il contient donc tous les entiers du corps et il
est égal a E(0), ou & (1). Done: o

MXxXM = (m)x(1) = (m).
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Le cas généfal en résulte immédiatement, par application de la
commutativité et de V'assoctativité de la multiplication:

I=(9)x(m, 6—c), T = (q)x(m, 0'—c);
IXI' = (q) X (q) X (m, 6—c) X (m, 6'—c) = (¢?) X (m) = (¢?m).

- La seconde propriété se déduit immédiatement de la premiere:

Norme de IxJ = (IxJ)x (I'x)’) = IxT)x (IxJ')
= [NIDIX[NJ)].

Le carré d’un idéal double G —égal a son conjugué, (7)— est
égal a U'tdéal principal rationnel, dont une base est la norme de G:

G =gX(g,0—c)=gX(g,0—c) =6 = G?=GXG = (¢>Xy).

Les cas particuliers indiqués pour la multiplication entrainent
des cas particuliers et des conséquences du théoréme des normes.

La norme d’un idéal principal (p) est égale a la valeur absolue
|V ()|, de la norme de p [égale pour les diverses bases possibles,
(11. 1)], [ceci a déja été établi par un raisonnement direct pour
un idéal canonique, (11. 3)]

(p) X (') = (norme de p) = norme de (p) = |norme de p|.

En particulier la norme d’un idéal principal rationnel (q) est
égale a ¢ |
Un idéal entier F contient sa norme, puisque son idéal conjugué
F’ étant aussi entier, chacun d’eux contient F xF’.
11 n’y a qu’un idéal entier, de norme 1, qui est 'idéal unité.
Car un tel idéal étant contenu dans (1) et contenant (1), lui
est égal. |

14. Division des idéaux fractionnaires.

DEFINITION. — Deux idéaux, non nuls, sont inverses —ou
chacun d’eux est I'inverse de 'autre— lorsque leur produit est
égal a U'idéal unité (1).

Les normes d’idéaux inverses sont des nombres inverses,
puisque leur produit est égal a la norme de I'idéal (1). Cette
remarque, jointe & l'expression du produit de deux idéaux
conjugués (13), conduit a la construction d’idéaux inverses.
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TueoriME des idéaux inverses. — Deux idéaux dont les
normes sont des nombres inverses et dont les facteurs canoniques
sont des idéaux conjugués:

I = ¢ixX(m, 0—c), I, = g,x(m, 0'—c); (g2m)X (¢2m) = 1

sont des idéaux inverses.

La vérification est immédiate. D’aprés cette propriété, tout
idéal I, non nul, a (au moins) un inverse, qui, suivant une notation
usuelle est désigné par une puissance d’exposant —1:

I =gx(m, 0—c) = I'!'=(gxm)™x(m, 6'—c).

Un raisonnement, dont le caractére général a déja été rappelé (1. 2),
permet de déduire de cette existence la possibilité et la détermination
de la division (opération inverse de la multiplication) des idéaux,
ce qui comprend notamment la détermination —ou l'unicité— de
Iidéal unité et de Uinverse d’un idéal.

TueEoREME de la division des idéaux. — Etant donnés: un
idéal D, appelé dividende et un idéal I, non nul, appelé diviseur;
il existe un et un seul idéal J, appelé quotient de D par I, dont le
produit par le diviseur I est égal au dividende D.

Le quotient d’un idéal, non nul, par lui-méme, est égal &
I'idéal unité (1), qui est, par suite le seul idéal neutre (12.2)
pour la multiplication.

Le quotient de I'idéal (1), par un idéal I, non nul, est 1'idéal I*
(construit par le théoréme précédent), qui est, par suite, le seul
idéal inverse de I. '

Le quotient, d’un idéal D par un idéal I, non nul, est égal au
produit de D par I"! —inverse de I— : -

IXJ=1 < J=1);
IXI' =) {IxJ=(1) & J=I";
IXJ=D <« J=DxI

La derniére équivalence est obtenue en multipliant les deux -mem-
bres de I’égalité de gauche par I! ou les-deux membres de I’égalité
de droite par I. La premiére et la seconde équivalence sont de
conséquences de la derniére. |
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La construction de I'inverse (déterminé) d’un idéal I, non nul,
est équivalente & la multiplication de son conjugué I' par Uinverse
de leur norme commune.

Cette régle est applicable & un idéal défini par une base (algébrique
ou arithmétique), son inverse est défini par la base obtenu en multi-
pliant les conjugués des éléments de la base de I par I'inverse de la
norme de I. Pour un idéal principal, ceci donne une expression
évidente par elle-méme:

(0)' = (p": N(p)) = o' X (' xp" ") = (o)

L’existence et les propriétés de la multiplication et de la
division des idéaux, non nuls, peuvent étre (partiellement)
exprimées en disant que:

Les idéaux (fractionnaires) non nuls, d’un corps quadra-

tique R(0), constituent un groupe multiplicatif abélien —ou
commutatif— . Tl sera, en général, désigné par ¢(6), ou simple-
ment g.

.Ce groupe contient notamment les puissances d’exposants entiers
(quelconques) de chacun de ses éléments, définies ($uivant les nota-
tions usuelles) par les formules:

h entier positif: I" = Ix..xI  (h facteurs égaux);
I =@ =@" =)

Ces puissances vérifient manifestement les régles usuelles de calcul:
I"<XI* = I"*%;,  (IM* = I"**;  h kentiers quelconques.

Le groupe contient, par suite, les mondmes, ou produits de puis-
sances, I" xI"%x .., dont les régles de calcul sont également usuelles

14 bis. Sous groupe des idéaux principaux rationnels.

Dans le groupe ¢(6), la famille des idéaux principaux ration-
nels (¢) (11) constitue un sous-groupe, qui sera noté 2, isomorphe
au groupe multiplicatif des nombres rationnels positifs ¢.

14
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Par isomorphisme, il faut entendre que la multiplication et la
division des idéaux (g) sont obtenues par les opérations, de méme nom,
sur les nombres positifs ¢ (ce qui est évident): ‘

(7)) X(q2) = (1 Xgq5); (9! = (¢~).

Une classe 01, mod. 2, est I'ensemble des (idéaux) produits
d’un méme idéal canonique M, par tous les idéaux du sous-groupe 2
—ou Pensemble de tous les idéaux, dont le facteur canonique
est M— :

AN (99 XM = ¢gxM; ¢ nombres rationnels non nuls.

Les classes J1U constituent une répartition du groupe (7 ; tout idéal,
non nul, appartient & une classe et une seule: celle qui est définie
par son facteur canonique.

Une classe J1U peut aussi étre engendrée en multipliant un de ses
idéaux (quelconque) par tous les idéaux de @ —ou par tous les
éléments rationnels— :

(@) X(qoXM) = (¢ X qo) XM;  gxXM = (gxg;7) X (g, x M).

L’idéal M est le seul idéal de la classe qui soit canonique; ¢’est donc
un élément remarquable de cette classe, d’ott son nom.

Les classes se multiplient (et se divisent) entre elles.

Le produit de deux classes J1(; et I1,, d’éléments canoniques M,
et M, est I'ensemble des produits de chaque élément de 'une par
chaque élémrent de I’autre. Cet ensemble est encore une classe, notée
N XMy, constituée par les produits d’un de ses éléments (idéal)
partous les nombres rationnels, non nuls —ou tous les idéaux
de 2— :

MG XN (g X M) X (g X M,) = (41X ¢2) X (M; X M,);

Les nombres ¢, X ¢, peuvent prendre, comme ¢, et g, toutes les valeurs
rationnelles, non nulles. L’idéal M, xM, n’est pas nécessairement
canonique, mais son facteur canonique est I'élément canonique de

N XN
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La multiplication est manifestement assoctative et commu-
tative comme celle des idéaux (12).

La classe unité est le sous-groupe 2, ensemble des idéaux (g)
principaux rationnels. Cet ensemble est manifestement une classe
dont 1’élément canonique est I'idéal unité (1); c’est un élément
neutre dans la multiplication des classes; N X2 = L.

Deux classes 1 et O1U' sont conjuguées, —ou chacune est
conjuguée de I'autre— lorsqu’elles sont engendrées par deux
¢léments canoniques conjuguées M et M'. Chacune est constituée
par I’ensemble des idéaux respectivement conjugués des 1déaux
de Pautre. '

Deux classes oonjuguées sont aussi inverses (au sens général
de ce qualificatif), car leur produit est égal a la classe unité 2,
son élément canonique étant MXxM’ = (1). Chacune des
classes J1U et O’ est auss iconstituée par ’ensemble des idéaux
inverses des idéaux de 'autre [gxM et (gm)~' x M'].

De D'existence de P'inverse de toute classe, on peut déduire
(raisonnement général 1. 2), la possibilité et la détermination de
la division des classes, ce qui comprend la détermination de la
classe neutre et de I'inverse d’une classe. Le quotient de deux classes
est d’ailleurs constitué par ensemble des quotients des idéaux
de la classe dividende par ceux de la classe diviseur.:

L’ensemble des classes d’idéaux, du groupe ¢j ;, relativement au
sous-groupe 2, est, par conséquent aussi un groupe multiplicatif
abélien. 11 est appelé groupe quotient de ¢, par 2
Son existence, établie ici directement, est une propriété generale
d’un groupe abélien, relativement & un sous-groupe.

15. Multiplication et décomposition des idéaux canoniques.

Les propriétés des congruences et notamment celles de la
congruence fondamentale (5 et 6) permettent de donner des
regles du calcul de la multiplication des idéaux canoniques (donc
des classes, mod. Q) et, par suite, d’établir une décomposition
déterminée, en un produit —ou sous forme d’un mondme—
d’un idéal canonique.
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15. 1. Calcul pratique dune multiplication d’idéaux canoniques.

Il peut se ramener aux trois cas suivants.

1. Le carré d’un idéal canonigue —double—, dont la norme
est un nombre premier q, diviseur du discriminant D, est I'idéal
principal rationnel, de base q:

Q= (g, 6—c); g diviseurde |D|; Q2= QxQ = (g).

C’est une conséquence d’un cas particulier du théoréme de la
norme (13). Un idéal Q, dont la norme ¢ est diviseur de |D|, est égal
a son conjugué —ou est double— (7.3). Son carré étant ainsi égal
au produit par son conjugué est égal a (g). Cette propriété, déja
signalée lorsque la norme est un entier quelconque, diviseur de |D)|,
est plus spécialement intéressante, pour le cas d’un nombre premier.

2. Toute puissance, d’exposant entier positif %, d’un idéal
canonique, dont la norme est un nombre premier p, non diviseur
de |D|, est égale & un idéal canonique, de norme p":

P=(p, 6—¢); PX..xXP=P"'=(p" 0—cp);

sa racine c, est le zéro (défini mod. p"), de la congruence fonda-
mentale , mod. p", qui est congru a ¢;, mod. p, et dont I’existence
et le calcul effectif ont été établis par la résolution de congruences
récurrentes du premier degré, mod. p (6).

L’égalité est triviale pour A = 1 et il suffit de la vérifier par
récurrence sur cet exposant. En la supposant vraie pour ~—1, ’entier
¢, est, d’aprés sa détermination, congru a ¢, ,, mod. p"~! et & ¢,
mod. p; c’est donc aussi une racine des idéaux P"~! et P, qui peuvent
étre définis par les bases (canoniques):

Pt = (ph~17 e*ch) P = (pa e_ch)'

On forme une base (arithmétique) de leur produit en multipliant les
termes de ces deux bases:

P! = PxP! = (", px(B—c), p"Ix(6—c), (6—cy)?).

[’élément (6—c;,)? peut étre exprimé (par la formule de TAYLOR):

(0—c)? = —F(c;) X (6—c,)—F(cy,).
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En transportant cette expression dans la base obtenue, on peut

supprimer F(c;) qui est multiple de p" (10.1) d’ou:

P" = (p", p(b—cy), p"7'(0—c;), —F(c) X (6—cy)).

Mais ¢, étant zéro simple, de F(z), mod. p, la dérivée ].7(0) est un
nombre entier, premier avec p, et il existe des nombres entiers u et ¢
tels que: :
uXp+oxXF(e) =1

= uX[p(B—cy)1+o[F(cy) X (8—cy)] = (6—y).

I1 en résulte que P", ainsi défini, contient p" et (6—c,) done I'idsal
canonique (p", 6-—c;); mais inversement cet idéal contient les
quatre termes de la base définissant P" et il lui est égal.

Cette propriété et ce calcul, comme les précédents, sont encore
valables pour la puissance d’un idéal canonique, dont la norme
est un entier quelconque, non diviseur du discriminant.

3. Le produit de deux idéaux canoniques:
M, = (my, 0—c¢,), M, = (my 0—c,),

dont les normes m, et m2 sont des nombres entiers (positifs)

premiers entre eux, est égal & un idéal canonique, de norme
My X My

M, XM, = (myxXmy, 0—c); {c=c (my) et c¢="c, (my)} |

sa racine c est ’entier, déterminé, mod. (m, X m,), qui est congru,
a la fois, & ¢;, mod. m, et & ¢,, mod. m,; il est ainsi zéro de la
congruence fondamentale, mod. (m, X m,), ainsi qu’il a été établi
et calculé par la résolution d’une congruence du premier degré (6).

D’apres sa détermination ¢ est aussi racine de M; et de M,, qui
peuvent étre mis sous les formes canoniques:

M, = (my, 6—c), M, = (m,, 0—c).

On peut encore former une base arithmétique de leur produit en
multipliant les termes de ces deux bases: |

M, XM, = (myXmy, myX(0—c), myX(6—c), (6—c)2).
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Mais m; et m, étant premiers entre eux, on peut trouver des
entiers u; et u, tels que: '

Uy XMmytuy Xmy = 1
= Uy X[my(0—c)]4uy X[my(6—c)] = (6—c).

On peut alors raisonner comme précédemment: le produit M; x M,
ainsi défini, contient m; X m, et (6—c), donc I'idéal canonique indiqué
dans I’énoncé; mais cet idéal contient’'les quatre termes de la base
définissant le produit, & qui il est donc égal.

Cette troisiéme propriété s’étend a un produit, d’'un nombre
fini £ d’idéaux canoniques, dont les normes sont des nombres
entiers, premiers entre eux, deux a deux. Ceci est évident par
récurrence sur h; la propriété étant vraie pour un produit
de h—1 idéaux, le reste, avec adjonction d’un idéal supplé-
mentaire, dont la norme qui était premiére avec la norme de
chacun des idéaux précédents est premiére avec le produit de
ces normes quil est égale & la norme du produit des ~—1 premiers
idéaux.

15. 2. Composition d’idéaux canoniques.

On peut rassembler les propriétés précédentes en un premier
énoncé.

TurtoriEME de composition. — Pour qu’'un produit d’idéaux
canoniques dont les normes sont des nombres premiers, soit égal
d un tdéal canonique, 1l faut et il suffit que st plusieurs de ces
idéaux ont une méme norme p (supérieure a 1) ils aient ausst pour
racine un méme zéro simple de la congruence fondamentale, mod. p.
En particulier, pour tout nombre premier p, diviseur du discri-
minant, 1l ne peut exister, dans le produit qu'un 1déal, au plus,
dont la norme soit égale a ce diviseur.

La condition est suffisante: dans un produit d’idéaux qui la
vérifie, on peut associer chaque systéme de £; idéaux, de méme
norme p;, qui, ayant une méme racine, mod. p, sont égaux; leur
produit (partiel) est une puissance, qui, d’aprés la construction 2
est égale a un idéal canonique, dont la norme m; est égale a la puis-
sance pli; cette construction est triviale si b, = 1, notamment si p;
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est diviseur du discriminant. On forme ainsi un produit d’idéaux
canoniques, dont les normes m;, puissances de nombres premiers p;,
différents, sont des nombres premiers entre eux deux a deux. La
construction 3 permet alors de former un idéal canonique, égal a ce
produit, dont la norme est le produit des normes m; et dont la racine c
est respectivement congrue & chacune des racines ¢;, mod. p;.

* La condition est nécessaire: un produit de % idéaux canoniques,
dont les normes sont des nombres premiers, ne peut étre égal & un
idéal canonique, s'il contient au moins un couple de facteurs, de
méme norme p, et dont les racines sont des zéros différents e’
ou un zéro double (¢ congru a ¢’) de la congruence fondamentale,
‘mod. p. |

Car le produit peut alors étre mis sous la forme:

I=1,x(p, 0—c)x(p, 0—C¢);

le premier terme I, §’il n’est pas égal & (1), [pour h = 2], est égal
au produit des A—2 facteurs différents du couple; c’est en tous cas
un idéal entier (produit d’idéaux entiers), donc de la forme axM,
produit d’un facteur rationnel entier ¢ >>1, par un idéal canonique M,
peut étre égal & (1). Les deux derniers facteurs étant conjugués
(6ventuellement égaux, si ¢ est racine double, congru a ¢), leur produit
est égal & I'idéal principal (p). Le produit I est ainsi égal a:

I =axMx(p) = (axXp)xXM;
ce ne peut étre un idéal canonique puisqu’il a un facteur rationnel

a X p entier, supérieur a 1 (p>1).

15. 3. Décomposition des idéaux canoniques.

De la propriété précédente, résulte une propriété, en quelque
sorte inverse.

TutorEME de décomposition. — Un idéal canonique
M = (m, 6—c) est, d’une seule facon, décomposable en —ou
égal a— :

1° un produit d’idéaux canoniques P,, dont les normes sont
des nombres premiers p;; qui peuvent étre répartis en produits
partiels, respectivement de A; idéaux égaux:

M = II[P;x...xP,] = [IP¥; P, = (p, 6—c);
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I est -équivalent de dire que M est égal a un mondme (14) des
1déaux P,. Cette décomposition est, en quelque sorte, mazimum.

20 un produit d’idéaux canoniques M;, dont les normes m;
sont des puissances, d’exposant entier positif A, de nombres
premiers p, différents:

M=1IM;; M = (m, 0—c); m, = ph

1 1
Les nombres premiers p,, en valeur et en nombre —ou
leurs puissances m;— sont les facteurs de la décomposition
(déterminée) du nombre entier m, norme de idéal M.

Les racines c;, de P;; ou ¢;, de M;; sont respectivement
congrus & la racine ¢, de M, mod. p;, ou module m,.

La racine c, de I'idéal M étant zéro de la congruence fondamentale,
mod. m, ce module m ne peut contenir de facteur premier ¢, du
discriminant D, & une puissance supérieure a 1 (premiére condition de
possibilité de la congruence, pour un module composé; 6).

Cette racine c est alors, & fortiori, zéro de la congruence, pour
tout diviseur de m, notamment pour les facteurs p;; elle définit donc
des idéaux canoniques:

P, = (pi, 0—c); ¢, =¢, (mod. p).

1

Le théoréme précédent montre alors que le produit des P, ainsi cons-
truits, est égal & M; ou en constitue une décomposition, qui peut
étre qualifiée maximum. En groupant les facteurs égaux, on en
constitue un monéme de puissances qui peut étre remplacé par le
produit des facteurs M;, de norme m; = pl', égaux a ces puissances.

La décomposition (maximum) est déterminée —ou unique— .
~S1 un 1déal canonique M est égal & un produit d’idéaux canoniques
dont les normes sont des nombres premiers p;, d’'une part sa norme m
etant égale au produit des normes, les p, sont, en valeur et en nombre,
les facteurs premiers de la décomposition (déterminée) du nombre
entier m.

D’autre part, en raison de la condition nécessaire du théoréme
de composition, dans ce produit, les idéaux d’une méme norme p
doivent étre réduits & un seul si p est diviseur du discriminant, sinon
ils doivent avoir une méme racine, congrue, mod. p;, 4 la racine ¢, de M ;
ils sont donc respectivement égaux aux idéaux P;, construits & priori.
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Cette détermination reste. valable pour chaque facteur d’une
décomposition de M en un produit d’idéaux dont les normes sont
des puissances d’idéaux premiers différents (facteurs de la norme m).
Ces facteurs sont par suite des puissances déterminées des P;, donc
sont respectivement égaux aux idéaux M, construits & priori.

Dans la décomposition maximum d’un idéal canonique M,
on peut associer des systémes de facteurs, de fagon que les
normes de leurs produits soient égales & des facteurs m;, d’une
décomposition, en produit, arbitrairement choisie, de la norme
de M. Ceci est exprimé par la propriété complémentaire de
décomposition ¢’un idéal canonique.

A toute décomposition de la norme m, d’un idéal canonique
M = (m, 6—c), en un produit de nombres entiers m;, correspond
une décomposition de I'idéal M, en un produit d’idéaux canoniques,
de normes m; et de racines égales —ou respectivement congrues,
mod. m;,— & la racine ¢, de M:

m = Im; = (m, 6—c) = Il(m;, 0—c).

16. Idéaux canoniques associés.

DEriniTioN. — Deux idéaux canoniques sont qualifiés
associés, relativement d une racine c, lorsque cette racine c leur est

commune et que le produit de leurs normes est égal a (la valeur

absolue) [F(c)|:
M = (m, 0—c), N=(n, 6—c); mxn = |F(c)|.
Il est équivalent de dire que le produit de ces deux idéaux
canontques, est égal a U'idéal principal (6—c):
MxN = (6—c).
Le nombre entier positif |F(c)| étant divisible par lui-méme,
1l existe un idéal, de racine égale & ¢, qui ’a pour norme. Mais il est

égal a l'idéal principal (6—c), car d’aprés les propriétés des bases
algébriques (multiplication, 12. 2; simplification, 10. 1): |

[F(e)| = [(8—¢) X (0'—¢)| = (0—c) X[1(6'—c)]; [n signe de F(c)],
= (|F(c)], B—c) = (6—c) X[n(6"—¢), 1] = (6—c) X (1) = (6—c).
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(Cette égalité a déja été signalée comme une application particuliére
de la construction d’une base canonique d’un idéal principal
canonique; 11. 3).

Ceci acquis, d’aprés-la propriété de décomposition (15.3), la
premiere définition, donc |F(c)| = m X n, entraine:

(0—c) = (|F(c)], b—c) = (mXn, 6—c)
= (m, 6—c)Xx(n, 6—c) = MXN.

Réciproquement la décomposition de (6—c) en un produit de
deux idéaux canoniques MxN entraine la décomposition de sa
norme |F(c)| en le produit mxn, de leurs normes (13).

Si deux idéaux canoniques M et N sont associés, relativement
& une racine ¢, les idéaux conjugués M’ et N’ sont associés, suivant
la ractne (conjuguée pour chacune des normes), ¢’ = S—c; car:

F(e)] = |F(S—c)| = |F(e)] = mxn
= (m, b—c')x(n, 6—c') = (6—¢').

Pour un idéal canonique M = (m, 6—c), il y a une infinité
d'1déaux associés, relativement & chaque entier c¢4am, racine
de M.

Relativement a une racine ¢, il y a un nombre fini de couples
d’idéaux associés, donnés par les diverses décompositions de
|[F(c)| en un produit de deux nombres entiers positifs m X n.
Si |F(c)| est un nombre premier, il n’y a qu’un seul couple trivial,
formé des idéaux (1) et (6—c). '

16. 2. Idéaux réfléchis.

DEriNiTION. — Un tdéal canonique est réfléchi, relativement
a une racine c, lorsqu’il est associé a un idéal égal, relativement
a cette racine —ou lorsque son carré est égal a I'idéal prin-
cipal (6—c)— :

M = (m, 06—c), m?= |F(c)|} < M= (0—c).

L’idéal conjugué M’ est alors réfléchi relativement a la racine
(conjuguée) ¢’ = S—c [puisque F(c") = F(c)].

Il y a équivalence entre |'existence d’un couple d’idéaux
canoniques, conjugués, réfléchis et une décomposition —ou




LES CORPS QUADRATIQUES 177-

expression— du discriminant D, du corps. Elle est exprimée par
les énoncés suivants qui sont réciproques et se distinguent
suivant que la valeur F(c) est positive (+m?), ou négative (—m?).

TukorEME d’existence d’idéaux réfléchis. — Dans un corps
quadratique, de discriminant D:

1. Si D est impair, ou si d = D: 4 est un entier impair, a
toute décomposition de D en produit de deux nombres entiers,
dont la différence est un multiple de 4, non nul:

D = uxv; u,0 nombres entiers; ¢—u = 4m, m entier -~ O;

" correspond biunivoquement un couple d’idéaux réfléchis con-
jugués: * |

M =(m, 0—c), ¢ =(ut-8):24m; | |, o oo oo
M’ = (m, 6—c'), c'=(—~o+5):2+m}c+c =5 ) =H()=~+m"
2. S1 D est positif et impair; S = —1; a toute expression

de D, comme somme de deux carrés (un pair et un impair)
D = a®+4m?; a entier impair;

correspond biunivoquement un couple d’idéaux réfléchis conju-
gueés:

M =(m, 0—c), c= (a—1):2]

W =(m, ), '=—(at1):2] T =1 FO=F()=—m?.

2bts. S1 D est positif et D:4 = d entile\r pair; § = 0; a
toute expression de D en somme de carrés pairs:
D = a®+b% a:2=a', b:2 = b entiers impairs;

correspondent biunivoquement deux couples d’idéaux réfléchis
conjugueés:

|

(v, 0+a); F(a)
(@, 0+b); F(b)

Fl—a') = —b
F(—b) = —a

|
|

|
|

M, = (¥, 6—a); M,
M, = (a/, 6—b'); M,

Pour vérifier ces propriétés, il est commode d’utiliser I'expression
de 4F'(c), qui donne une expression du discriminant D:

(20—S2—D = + &m?® <« D = (2c—S)*F hm?.

L’Enseignement mathém., t. VI, fasc. 2. 2
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Pour ehaque cas, on établit d’abord la condition nécessaire: 'existence
d’idéaux entraine la décomposition et la nature de D; puis la condition
suffisante: on calcule les expressions des idéaux réfléchis qui résultent
de ces expressions de D.

1. F(c) étant égal a +m2, la valeur de D est:
D = (2¢—8)>—4m? = (2c—S8—2m) X (2¢—S+2m);

c¢’est un produit de deux nombres entiers, dont la différence est égale
a dm. S1 § = —1, D est impair. Si § = 0 les deux facteurs sont
simultanément doubles de nombres impairs, ou quadruples de nom-
bres entiers. La deuxiéme circonstance est impossible, puisque D
ne peut étre multiple de 16; il est donc quadruple d’un nombre
impair. |

Réciproquement si D vérifie ces conditions nécessaires:

D =ux¢=(—)xX(—u); v—u = (—u)—(—v) = bm;
les systéemes d’équations en x:

20—S8—2m
20—S-+2m

u, ou —
¢, ou —u

|

sont compatibles et ont pour solutions les valeurs ¢ et ¢’ indiquées.

2. F(c) étant égal & —m?2, et S = —1, la valeur de D est:
D — (2c41)24-hm?;

c’est bien une somme de carrés de deux nombres entiers, I'un pair
Pautre impair; D est positif et congru & 41, mod. 4.
Réciproquement si D vérifie ces conditions nécessaires:

D = a%+4-4m?;  a impair;
les équations en z:

2¢+1 =a, ou —a
ont bien pour solutions les valeurs indiquées de c et ¢’.
2 bis. La valeur de F(c) étant —m2, et S = 0, la valeur de D est:

D = (2¢)’44m?, ou d = D:4 = c*4+m?;
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d-= D: 4 ne pouvant étre congru, mod. 4, ni & +1, ni 4 0, ¢ et m
sont impairs et D: 4 est double d’un nombre impair [D multiple
de 8].

Réciproquement si D remplit ces conditions il existe bien les
deux couples d’idéaux indiqués.

En particulier, les décompositions triviales D = 1 X D, si d = 1,
(mod. 4), et D = 2x2d, si d = 3, (mod. 4), correspondent & des
couples d’idéaux conjugués réfléchis:

D = 1—4N; F(z) = 224+2+N;

| F(—N) = F(N—1) = N?;
D = 4d (d impair); F(z) = 2>—d;
FL£(d+1):2)] = [(d—1): 2]~

Un idéal, de norme m peut étre réfléchi relativement a deux
racines ¢ et ¢’, donnant & F(x) des valeurs égales et par conséquent
conjuguées. Cet idéal est alors égal & son conjugué —ou est
double— et: _

c—c¢ = am; 2¢—S = m;
D = 2®m? £4m? = (A2 +4) X m2; () entier)

comme D ne peut pas avoir de facteur carré, cette circonstance ne se
produit que pour I'idéal unité, de norme 1 et pour des corps quadra-
tiques, de discriminant D = 3%?4-4. Pour les premieéres valeurs des
discriminants, ce sont:

D F(x) c=(S+N:2) | ¢ =(S—n):2 F(c) = F(¢’) |
—4 2241 0 0 +1
—3 22421 0 —1 +1
+5 22+ ax—1 0 —1 —
id. id 1 —2 +1
+8 x22—2 1 —] i),
12 x*—3 2 —2 +1
13 2%+ x—3 1 —2 —1

On pourrait aussi rechercher des' idéaux réfléchis relativement
a deux racines, qui donnent & F(z) des valeurs opposées +m?2 et —m?2;
c’est le cas pour F(z) = 22+2—1, pour lequel I'idéal (1) est- réfléchi
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relativement aux racines 0 et —1, +1 et —2. Cette circonstance
semble présenter moins d’intérét pour les études faites ci-dessous.

17. Idéaux premiers.

Les propriétés de décomposition des idéaux canoniques
peuvent étre comprises dans une théorie plus générale (au moins
en apparence) de la décomposition des idéaux fractionnaires,
analogue a la théorie de la décomposition des nombres frac-
tionnaires, en arithmétique ordinaire. On utilise & cet effet
la notion d’idéaux premiers.

DEriNITION. — Par extension du vocabulaire arithmétique
usuel, un idéal entier P est appelé premier, lorsque sa seule décom-
posttion en un produit de deux idéaux entiers est sa multiplication
par Uidéal unité:

{P =1IxJ, IetJentiers} <« {I=(1) ou J= (1)}

TutorEME des idéaux premiers. — Dans un corps quadra-
tique R(0), de polyndome fondamental F(z), les idéaux premiers
sont: |

1. Les idéaux principaux rationnels (q), de norme ¢2, dont
la base ¢: est un nombre premier, pour lequel la congruence
fondamentale est impossible —ou qui n’est diviseur d’aucune
valeur F(c), pour ¢ entier—. Ils sont appelés idéaux premiers,
du second degré.

2. Les idéaux canoniques (p, 9—c), dont la norme-p est un
nombre premier et dont la racine ¢ est un zéro de F(x), mod. p.
Ils sont appelés idéaux premiers, du premier degré.

Tout idéal entier, mis sous forme canonique ¢ XM, est un produit
de deux idéaux entiers, I'un canonique M, lautre principal
rationnel (¢). Il ne peut étre premier que si I'un des deux facteurs est
égal a l'idéal unité (1), soit qu’il soit principal rationnel, égal &
(q) X (1); soit qu’il soit canonique, égal & (1) XM. On va examiner
successivement ces deux cas.
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1. Pour que I'idéal principal rationnel (q) soit premier, il faut
que sa base ¢ soit un nombre premier; si non la décomposition de ¢
en un produit ¢; X¢,, de deux entiers différents de 1, entrainerait
‘celle de I'idéal (g) en un produit (¢,) X (¢,) de deux idéaux principaux,
entiers, différents de (1).

D’aprés la propriété de la norme d’un produit (13 et 15.3),
I'idéal principal (¢), de norme ¢ ne peut étre décomposé, comme le
nombre entier ¢2, qu’en un produit de deux idéaux entiers, soit de
normes 1 et ¢2, soit de normes g et g. Pour que cette seconde cir-
constance soit impossible, il faut et il suffit qu’il n’y ait pas d’idéal,
de norme g, c’est-a-dire que la congruence fondamentale sott imposstble,
“mod. gq. '

2. Pour qu’un idéal canonique (m, 6—c) soit premier, il faut que
sa norme soit un nombre premier, sinon la décomposition de m
en plusieurs facteurs premiers, entrainerait la décomposition de M
en un produit d’idéaux canoniques, donc entiers, différents de (1);
en raison du théoreme de décomposition (15. 3).
 Cette condition est suffisante, car d’apres la propriété de la norme
d’un produit, I'idéal M ne peut alors &tre que le produit de deux idéaux
entiers, de normes égales & 1 et p, c’est-a-dire de 1'idéal unité et de
lui-méme.

On peut compléter la construction des idéaux premiers, du
premier degré, par des propriétés de décomposition de leur
norme m, ou, plus exactement de I'idéal principal rationnel (m)
qui I’a pour base. o

Si, pour un nombre premier p, qui n’est pas diviseur du
discriminant D, la congruence fondamentale est possible, le poly-
noéme F(z) a deux zéros ¢, ¢/, conjugués, incongrus, mod. p-
Il'y a deux idéaux premiers, de norme p, différents; ils sont
conjugués (13) et leur produit est égal a I’idéal principal (p), qui
est ainsi décomposable, dans R(0):

(p) = (p, 0—c) X (p, 6—¢') = (p, 0—¢) X (p, 8'—¢)
- (p7 Ol_C')X(Pa 6_—0’)'

Pour un nombre premier p qui est diviseur de D, la congruence
fondamentale est possible, mais F(z) n’a qu’un zéro double c.
Iln’y a qu'un idéal premier; de norme p; il est double —ou égal
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a son conjugué— et son carré est égal & I'idéal principal (p), qui
est, encore, décomposable dans R(0):

(p) = (p, 6—C)X(p, O—c) = (p, O—c)2.

- Les puissances (14) d’exposant entier positif %, des idéaux pre-
miers, qui, dans le langage de 1'algébre moderne, sont appelés idéaux
primaires, ont, suivant les cas, les formes canoniques suivantes:

@" = (¢"); F@) =0, (mod.q); impossible;
(p, 0—c)* = (p", 6—¢,); p premier avec D; ¢, = ¢, (mad. p).

(p, 0—0)** = (p ) .
(p, B—c)?*! = phx (p, 6—c) p diviseur de D.

Les inverses de ces idéaux, ou les puissances d’exposant négatif (14)
sont:

@ =" (p, =0 = p "X (", 0'—0,);

(p, 6—0)7*" = (p™"); |
(p, O—c)~21 = p~h—1x (p, 6'—e¢) j p diviseur de D.
La propriété de décomposition, unique —ou déterminée—,

d’un nombre rationnel en un produit de puissances (d’exposants
entiers, non nuls, positifs ou négatifs) de nombres premiers,
s’étend, mutatis mutandis, aux idéaux fractionnaires et premiers
d’un corps quadratique.

THEOREME de décomposition des idéaux fractionnaires. —
Dans un corps quadratique R(0); un idéal fractionnaire, non nul,
est égal a un produit déterminé, & Vordre prés des facteurs, de
puissances, d’exposants entiers non nuls (positifs ou négatifs),
d’idéaux premiers différents.

Pour un wdéal canonique M —ou entier et de facteur rationnel
égal & 1— on a établi ci-dessus (15. 3) sa décomposition en un produit
de puissances d’idéaux canoniques, dont les normes sont des nombres
premiers différents, et qui sont par conséquent premiers.

Pour un idéal principal (g), on peut d’abord décomposer le
nombre rationnel ¢, mis éventuellement sous sa forme irréductible,
en un produit de puissances de nombres premiers différents:

g = (p}¥) X (g);  hy, k; entiers non nuls.

:
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On distingue les nombres premiers ¢;, qui sont normes d’idéaux
principaux premiers (congruence fondamentale impossible) et les
nombres premiers p; qui sont normes d’idéaux canoniques. On en
déduit la décomposition:

(q) = [H(Qj)hj]x [ (p;, 6—c)" X (pss 0'—c,)"].
Pour un idéal fractionnaire, mis sous forme canonique:
I = gX(m, 0—c) = (q)X(m, 8—0);

on décompose les deux facteurs, comme il vient d’étre dit, on forme
le produit des deux décompositions, on associe éventuellement les
puissances d’un méme idéal, dont on additionne les exposants;
on supprime ceux dont ’exposant devient ainsi nul.

L’existence de cette décomposition peut aussi étre établie directe-
ment comme conséquence de la définition des idéaux premiers et de
la constitution du groupe G; des idéaux non nuls (14). Le raisonnement
est analogue & celui qui est fait ordinairement pour les nombres
rationnels et entiers.

La démonstration de la détermination de la décomposition faite
pour les nombres rationnels, par comparaison de deux décompositions
et par récurrence sur le nombre de facteurs (de I'une d’elles) s’étend
de méme a la décomposition des idéaux.

18. Divisibilité des idéaux.

On peut étendre aux idéaux (d'un corps quadratique) les
propriétés usuelles de la divisibilité des nombres fractionnaires
et entiers, de 'arithmétique élémentaire. |

Pour comparer plusieurs idéaux fractionnaires A, B, ..., on
peut utiliser un systéme de % idéaux premiers P,, comprenant
tous ceux qui figurent dans une décomposition (17) de (au moins)
un des idéaux considérés. On peut alors introduire dans ces
décompositions, les puissances d’exposant nul (donc égales &
I'idéal unité) de ceux des P, qui n’y figuraient pas. Chacun des
1déaux considérés est ainsi égal & un produit de puissances
des h idéaux P;: ‘

A = [IP¥; B = IIPY%; ... aq,b,,.. nombres entiers;
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et ils sont ainsi caractérisés par les systéemes de % exposants
a;; b;;.

Leurs produits, ou leurs quotients, sont obtenus en addition-
nant, ou en retranchant, les exposants, de méme indice:

(ITP7) X (ITPY) = TIP%+%i;  (TTP%): (IIPb) = [IP%—,

Pour qu’un idéal, ainsi représenté, soit entier, il faut et il
suffit qu’aucun des exposanis ne soit négatif:

{IIP{i idéal entier} < {2,>0, tout }.

DEFINITION. — Un idéal (fractionnaire) M est divisible par un
idéal D, non nul, —ou est multiple de D— lorsqu’il est égal au
produit de D par un idéal entier —ou lorsque le quotient M x D!
est un idéal entier— :

M=DxQ, Qc(1)} ou MxD! c (1)

Deux idéaux fractionnaires M et D étant représentés par
leurs décompositions avec un méme systeme d’idéaux premiers P,
pour que M soit divisible par D, il faut et il suffit que ses exposants
sotent au moins égaux a ceux de D, de méme indice:

{(ITP7) divisible par (ITPf)} < {m;>d;; tout i}

En particulier un idéal premier est diviseur d’un idéal entier
lorsqu’il figure dans sa décomposition (avec un exposant non nul).
Il est diviseur d’un produit d’idéaux entiers, si et seulement si il est
diviseur de I'un d’eux (au moins).

De la condition de divisibilité, on déduit (comme pour la
divisibilité des nombres fractionnaires) la formation du plus
grand commun diviseur et du plus petit multiple: commun,
d’un systéme d’idéaux fractionnaires, décomposés en produits
de puissances d’un méme systéme d’idéaux premiers:

U = 1IP¥; V= [P} ...;  u,0,,... entiers;
ngd (U,V,) — HPiminimum(ui,vi,...);
p.p.cm. [UV,...] = HPimaXimum (U§,0i-1.)

On peut en déduire des relations mutuelles; en particulier
leur corrélation peut étre exprimée par la construction:
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Uinverse du p.g.c.d. (ou du p.p.c.m.) est égal‘ au p.p.c.m.
(ou au p.g.c.d:) des inverses.

On peut aussi énoncer des propriétés caractéristiques, corré-
latives, en utilisant une définition préalable.

DEriNITION. — Des idéaux (fractionnaires) sont premiers
entre eux (dans leur ensemble) lorsque leur p.g.c.d. est égal a I'idéal
untte.

Il est équivalent de dire qu’ils sont entiers et qu’il n’y a
aucun facteur premier commun a leurs décompositions, avec un
exposant non nul.

On vérifie immédiatement, en utilisant les systémes d’expo-
sants que: pour qu’un idéal fractionnaire:

D soit p.g.c.d.  ou M soit p.p.c.m.

d’un systeme d'idéaux fractionnaires ¥, il faut et il suffit que les
quotients:
F,xD™!  ou MxF!

sotent premiers enire eux (dans leur ensemble).

18 bis. Utilisation du plus grand commun diviseur.

On peut définir et établir les notions de divisibilité en suivant le
méme ordre que celui qui est couramment employé en Arithmétique
élémentaire et qui a été étendu par DEDEKIND aux idéaux des corps
de nombres algébriques.

On peut définir d’abord et directement la divisibilité des idéaux
fractionnaires par l'une des propriétés caractéristiques suivantes,
dont I'équivalence résulte de l'existence de l'inverse d’un idéal
non nul.

L’idéal M est divisible par I'idéal D, si le quotient M xD~! est un
tdéal entier (inclus dans I'idéal unité (1));

ou st M (ensemble d’éléments du corps) est inclus dans D (10. 3)
MxD~! =) < M cD.

On passe d’une inclusion a l’autre en multipliant les deux membres
par D (inclusion de gauche), ou par D! (inclusion de droite).
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I en résulte immédiatement la réciprocité de la divisibilité des
inverses:

M divisible par D < D~! divisible par M”1; |

car ces deux propriétés sont équivalentes (d’apres la premiére défini-
tion de la divisibilité) & MxD~! = D~ x M1~ idéal entier.

On déduit de la deuxiéme définition, que le plus grand commun
diviseur, qui est par suite le plus petit ensemble contenant commun
(10. 3), d’idéaux définis par des bases algébriques, a une base formée
par la réunion de ces bases:

P-g.Cd. ((-5pip-)s(-sGj50)5 o) = (+)Rireee,Tjy -2)-

Les idéaux (..,p;,..), (--,0}5--), -.. sont inclus dans P'idéal construit qui
en est donc un diviseur commun. En outre tout diviseur commun de
ces 1déaux contient les éléments de leurs bases, donc I'idéal qui a pour -
base leur réunion et qui est bien le plus petit idéal contenant commun.

On peut alors définir le p.p.c.m. en passant par I'intermédiaire des

inverses, en application de la réciprocité de leur divisibilité:
M = p.p.em. [F, Fy, ..] <« M!=pged (F/ F1 ...

On peut envisager le p.g.c.d. (donc aussi le p.p.c.m.) comme une
opération sur les idéaux; elle est interne, associative et commutative.
La multiplication est distributive relativement a cette opération:

Hx[p.g.cd. (..F,..)] = p.g.c.d. (.., HXF,,..).

La définition d’un systéme d’idéaux premiers entre eux, reste
la méme et la relation entre p.g.c.d. et multiplication peut se faire
par l'intermédiaire de la propriété fondamentale de Uarithmétique, qui
reste valable pour des idéaux entiers:

on ne change pas le p.g.c.d. de deux idéaux entiers, quand on multiplie
par un idéal premier avec l'autre.

Ceci résulte de la suite d’égalités, ou I est un idéal entier et A et B
des idéaux (entiers) premiers entre eux; les parentheses désignant
les p.g.c.d.: |

(A, BXI) = (A, AxI, BxI) = (4, (4, B)xT) — (A, I).
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On établit ensuite les propriétés des idéaux conjugués et des
normes, sans utiliser & nouveau les idéaux canoniques, mais seulement
la construction desidéaux inverses; puis 'existence des idéaux premuers,
¢’est-a-dire les idéaux entiers dont les seuls diviseurs sont triviaux.

Enfin on en déduit.’existence et la détermination de la décompo-
sition d’un idéal entier en produit d’idéaux premiers, puis I’existence
et la détermination de la décomposition d’un idéal fractionnaire en
un produit de puissances (d’exposants non nuls) d’idéaux premiers
différents.

19. Corps (et domaine) principal.

Le qualificatif principal a déja été utilisé pour désigner un
idéal (11), lorsqu’il peut étre engendré par une base algébrique
d’un seul élément, défini au produit prés par un diviseur de
unité. On Putilise aussi pour qualifier ceux des corps qui ne
contiennent pas d’autres i1déaux.

DEriNiTiON.: — Un corps R(0) [ainst que son domaine des
entiers E(0)], est appelé principal, lorsque tous ses idéaux, frac-
tionnaires, sont principaux.

Au moins dans un corps principal, il peut &tre commode
d’appeler facteur, un élément p, défint au produit prés par un
digiseur de l'unité; [dans les corps imaginaires, a l’exception
de R(i) et de R(j), un diviseur est ainsi un élément, défini,
au produit prés par 1 ou —1, ou, en abrégé, au signe prés].

Dans un corps principal, un idéal fractionnaire est ainsi
caractérisé par, ou est associé a un facteur, qui en constitue une
base. La multiplication, et la division par un idéal non nul, sont
équivalentes aux opérations de méme nom sur les facteurs
associés (12 et 14): |

(p) X (o) = (pX0a); (p): (o) = (p: o).

On peut vérifier que les éléments de base des idéaux étant des
facteurs, c’est-a-dire étant définis au produit prés par des diviseurs
de I'unité ¢, il en est de méme des résultats des opérations:

9120'1><81 et p2262><€2
= 1 Xy = (07X 0,) X (&1 X &); P1: P2 = (071 05) X (&1: &),
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g, et ¢, étant des diviseurs de I'unité, c’est-a-dire étant des entiers
algébriques, en méme temps que leurs inverses, il en est de méme de
leur produit et de leur quotient (3).

Pour qu’un corps soit principal, il suffit que ses idéaux premiers
du premier degré [canoniques] soient principaux; il en est toujours
ainsi des idéaux premiers du second degré (p), qui sont en outre
rationnels. I1 en est par suite de méme de tous les idéaux fractionnaires
qui sont des produits des idéaux premiers et de leurs inverses.

Dans un corps principal, la théorie de la divisibilité est ana-
logue & celle du corps des nombres fractionnaires (définis au
signe pres). Les définitions et les propriétés peuvent étre énonceées
indifféremment pour les idéaux, ou pour les facteurs associés.

Un facteur «, ou I'idéal («) est entier, si « est un entier du
corps [appartenant a E(0)].

Un facteur w est divisible par un facteur 3, ou 'idéal (u) est
divisible par lidéal (8), si ux3~! est un entier du corps.

Un facteur eniier m, est premier, lorsqu’il est la base d’un
idéal (r) qui est premier; il est équivalent de dire que le facteur =
n’a que des diviseurs entiers triviaux: le facteur 1 (ensemble des
diviseurs de 'unité) et le facteur wm lui-méme (produits d’une
de ses valeurs par les diviseurs de 'unité).

On peut alors prendre comme propriété essentielle de la divisi-
bilité, le théoréme de la décomposition d’un idéal (17), en rem-
placant idéal par facteur (associé).

Dans un corps principal, un facteur non nul, non présumé
entier, est égal d un produit déterminé (& I'ordre preés des facteurs)
de puissances de facteurs premiers différents, avec des exposants
non nuls (positifs et négatifs).

On indique ci-dessous la construction des corps quadratiques
principaux, au moins pour des valeurs limitées du discriminant.
On donne sommairement ici quelques propriétés arithmétiques de
I'un d’entre eux, particuliérement remarquable R(z), (ensemble des
nombres imaginaires a coefficients rationnels). Ces propriétés peuvent
étre exprimées dans le langage général de la divisibilité mais elles
peuvent aussi étre interprétées comme des propriétés des nombres
entiers rationnels et de leurs expressions possibles en sommes de
deux carrés.
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20. Corps R(i) et domaine des entiers de Gauss.

Le corps quadratique R(i), caractérisé par le polyndme

fondamental: »
F(x) = 22+1; D = —4;

peut étre obtenu, par adjonction au corps des nombres rationnels,
‘du symbole 7, qui se comporte comme un élément dont le carré
est égal & —1; (1). Cest I'ensemble des expressions, ou des
éléments: |

o =r+s, ou p=qXa, o= 2+Yl;

r,s nombres rationnels, coeffictents de p; ¢, p.g.c.d. positif de r,s,
facteur rationnel de p; z,y nombres entiers premiers entre eux,
coefficients de o, entier canonique du corps (3).

Deux éléments conjugués se déduisent I'un de l’autre en
changeant 7 en —i (2):

o =r+s1 < o = r—si,

(ce sont, au sens général de la théorie des nombres complexes,
des imaginaires conjuguées).

Les entiers (algébriques) du corps (3) sont donnés par des
coefficients entiers rationnels (ou ont un diviseur rationnel
entier); ils sont appelés entiers de Gauss (qui a étudié leur
arithmétique); ils sont engendrés par la base arithmétique libre 11
(canonique).

Les diviseurs de I'unité (déja indiqués; 3) sont quatre élé-
ments d’'un groupe (cyclique d’ordre 4):

i, 2=, 3= = 41.

On peut représenter géométriquement les éléments r+4si, du
corps R(i), par les points d’un plan, de coordonnées, r,s, relativement
a deux axes fectangulaires. Des éléments conjugués sont représentés
par des points symétriques relativement a I’axe réel (dont le vecteur
unité représente le « symbole » 1). |

Les points représentatifs des entiers sont les sommets d’un qua-
drillage de cotés paralléles aux axes et dont les cotés sont de longueur 1.
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Les produits d’un élément par les quatre diviseurs de 'unité sont
représentés par les sommets d’un carré, dont le centre est l’origine
(représentant 0) et dont les solmets sont déduits de 'un d’eux par
des rotations autour de cette origine, d’angles:

w:2, 2X(m:2)=m; 3X(w:2), 4X(m:2) = 2m.

Pour étudier la congruence fondamentale (5), relativement a
un module premier impair p, on peut considérer le corps des
entiers, définis mod. p, ou, plus exactement le groupe des p—1-
entiers non nuls ). Ce groupe est cyclique, c¢’est-a-dire engendré
par les puissances d’un entier générateur convenable g, dont la
puissance d’exposant p—1 est congrue a -1 et dont celle
d’exposant (p—1): 2 est égale & —1. [On sait qu’il y a ainsi
o(p—1) générateurs possible, appelés racines primitives.]

- Si p—1 n’est pas divisible par 4; —1 n’est pas congru & un
carré; la congruence n’a pas de solution.

Sinon, ¢’est-a-dire si p est congru a -+1, mod. 4, la congruence
a deux solutions simples, qui sont congrues aux puissances de g,
d’exposants (p—1): 4 et [3(p—1)]: 4; ce sont d’ailleurs des
nombres opposés, mod. p.

Pour le module 2, la congruence a une solution double qui
est 1, ce nombre annule en effet 2241 et 2z, mod. p ).

Pour un module composé m (6), la congruence a des solutions
si, et seulement si, le module m est le produit ou le double d’un
produit de s puissances de nombres premiers, dont chacun est
congru & +1, mod. 4; il y a alors 2°~! couples de solutions
conjuguées.

Ces considérations permettent de construire les idéaux cano-
niques du corps (7) qui sont: |

(m, i—c); c2+1 =0, (mod. m).

On en déduit les expressions des idéaux ou des facteurs pre-
miers du corps, ou du domaine E(7):

1. Le nombre 2 est égal au produit de deux éléments conjugués
1+ et 1—i; qui sont égaux, au produit prés par un diviseur de

1) L’étude de ce groupe est faite dans tous les Traités de Theéorie €lementaire des
Nombres.
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'unité donc sont deux bases possibles d’'un méme idéal principal,
qui est premier; le facteur 2 est le carré d’un facteur premier.

2. Un nombre premier q¢ impair, congru d —1, mod. 4, est la
base d’un idéal principal; qui est premier; q est un facteur premier.

3. Un nombre premier p impair, congru ¢ +1, mod. 4, est
égal au produit de deux idéaux principaux, conjugués, qui sont
premiers; p est produit de deux facteurs premiers.

La vérification de la propriété de 2 est immédiate:
2 = (14X (1—1) = —ex(1+7)2

Un nombre premier ¢, congru a —1, mod. 4, ne peut étre la norme
d’un idéal canonique; Iidéal principal (¢) n’a donc pas de diviseur
(entier) sauf lui-méme et I'idéal unité.

Un nombre premier p, congru & 41, mod. 4, est la norme commune
de deux idéaux canoniques, dont les racines sont deux zéros conju-
gués ¢,c’, du polynéme 2241, considéré mod. p. L’idéal principal (p)
en est le produit et chacun d’eux est premier:

(p) = (p, i—¢)X(p, i—c); et =0, (mod.p).

Reste & montrer que ces deux idéaux sont principaux, ceci résulte
des propriétés générales, exposées ci-dessous sur les idéaux réduits.
On peut en donner une démonstration directe par des considérations
géométriques sur le quadrillage des points représentant les entiers
du corps.
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Les éléments de lidéal (p, i—c) sont les entiers algébriques
exprimés par: |

.

X p+yX(i—c) = (xp—yc)+yi;  x,y entiers rationnels.

Les points représentatifs sont dans le quadrillage (de tous les
entiers) 'ensemble P des sommets du réseau de parallélogrammes
engendré par les vecteurs joignant 1’origine 0 aux points de coordon-
nées (p,0) et (—-c,1). Parmi les points de P, on peut distinguer ceux qui
sont les plus proches de I'origine (de distance au moins égale a 1).
Il en existe au moins 4 (AI,A2,A3,A4), a une méme distance r, repré-
sentant des entiers: |

a+bi, —b+4ai = (a+bi) X1,
—a—bi = (a+bi) X2, b—ai = (a+bi)x3;

ils forment un carré de centre 0. A I'intérieur du cercle circonscrit
a ce carré (circonférence exclue) il n’y a pas de point de P. (La figure
represente les entiers de I'idéal (13, i—5); le point A, représente
342t = 1342 X% (i—5).)

- On peut alors vérifier que le réseau de parallélogrammes peut étre
engendré par deux vecteurs successifs OA; et OA,, en constatant que
le parallélogramme OA,BA, construit avec ces deux vecteurs ne
renferme pas de point de P. Effectivement un tel point M, étant
a Pextérieur du cercle de centre O et de rayon r, ne pourrait étre que
dans le triangle BA;A,, et il serait & une distance de B inférieure & r,
ce qui est impossible pour une raison évidente de translation, car le
point M’ extrémité du vecteur OM’ équipolent & BM serait a une
distance de O inférieure & r, tout en appartenant & P.

Les points A4; et A, représentent donc des éléments d’une base
arithmétique libre de 'idéal et 'élément p est égal & une expression
linéaire, & coefficients entiers rationnels z, y:

p = zX(a+bi))+yX(—b+ai) < 0= 2xb+tyaet p=za—yb.

Mais p étant premier, la derniére relation exige que a, b d’une part,
x, y d’autre part sont premiers entre eux.. De plus, ni @, ni b ne sont
nuls; car les idéaux (bi, —b) et (a, ai) sont des idéaux principaux

rationnels. I’avant-derniére relation exige donc que:

x=aou-—a y=—boub; p=a2lbh2
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La derniére relation exprime que p est décomposable en un produit
de deux entiers du corps; définis au produit pres par des diviseurs
de I'unité:

p = (a+bi)(a—bi) = (—b+ai)(—b—a1)
= (—a—bi)(—a-+bi) = (b—ai)(b+ar).

Ces entiers sont les générateurs d’idéaux conjugués; les propriétés
des produits d’idéaux montrent que ces idéaux principaux ont pour
norme p et pour racines ¢ et ¢/, solutions de la congruence fonda-
mentale, avec la correspondance:

at+bc =0, a—bc’ =0, (mod. p). |

Les propriétés générales de la congruence fondamentale per-
mettent alors d’affirmer la propriété générale suivante:

un facteur rationnel m, est décomposable dans R(i) en un
produit de deux facteurs algébriques conjugués, ou I'entier positif m
est égal @ une somme de deux carrés (de nombres entiers) si et
seulement si il est égal au produit ou au double du produit de s
puissances de nombres congrus & -1, mod. 4; il y a alors 257!
décompositions en somme de deux carrés, différentes (sans distine-
toin d’ordre). '

(A suivre)

I’Enscignement mathém., {. VI, fasc. 3. 3




	CHAPITRE II  DIVISIBILITÉ DES IDÉAUX
	12. Multiplication des idéaux fractionnaires.
	13. Propriétés des normes.
	14. Division des idéaux fractionnaires.
	14 bis. Sous groupe des idéaux principaux rationnels.
	15. Multiplication et décomposition des idéaux canoniques.
	16. Idéaux canoniques associés.
	17. Idéaux premiers.
	18. Divisibilité des idéaux.
	18 bis. Utilisation du plus grand commun diviseur.
	19. Corps (et domaine) principal.
	20. Corps R(i) et domaine des entiers de Gauss.


