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inopportunément la recherche. Mais beaucoup, loin de se résigner,
restent animés par ’amour de la science et par le feu de la recherche,
si modestes et désagréables que soient leurs conditions de travail.
Puisse cette ardeur s’épanouir encore au sein de la S.M.S.

Le président donna ensuite la parole & M. le professeur M. PLAN-
cHEREL. Le texte de la conférence de ce dernier figurera dans 1’ Enser-
gnement mathématique: « Mathématiques et mathématiciens en Suisse
(1850-1950) ».

Finalement, et aux acclamations de I’Assemblée, furent élus
membres d’honneur de la Société mathématique suisse les professeurs
Jean LEeraY, de Paris, membre de I'Institut; Hassler WaiTNEY, de
Princeton, et Georges pE Ruam, de Lausanne.

Le Jubilé prit fin par un banquet au Kongresshaus au cours duquel
de nombreux orateurs se firent entendre, les délégués des sociétés
scientifiques notamment.

Les participants et la Société doivent une gratitude toute spéciale
aux organisateurs, notamment MM. H. Horr, H. JEckLIN, B. Eck-
MANN, H.KuENzi, grace auxquels aucun point ne fut négligé pour la
réussite tant du Colloque que du Jubilé.

49¢ assemblée annuelle de la Société mathématique suisse a Aarau,
le 24 septembre 1960, dans le cadre de la 140¢ assemblée annuelle
de la Société helvétique suisse.

Président: Prof. DT H. Jeckvrin, Université de Zurich.
Vice-président : Prof. DT B. EckmaNN, E.P.F., Zurich.
Secrétaire : Prof. J. pe SiesENTHAL, EPUL, Lausanne.

M. H. Jeckrin, président, salue les participants, relativement
nombreux, et donne la parole a M. le D* H. RAMSER, recteur de
I’Ecole cantonale d’Aarau, qui prononce quelques mots de bienvenue.

1. Séance administrative.

M. le président renseigne ’assemblée sur la marche de la S.M.S,

Membres admis en 1960: Chr. BratTeEr, Basel; H. BUHLMANN,
Zurich; F. W. Genring, Ann Arbor, U.S.A.;"W. HoLENWEG, Lu-
zern; P. JEANQUARTIER, Lausanne; J.-P. Rosert, Neuchatel;
Th. A. Scuoen, Dayton, Ohio, U.S.A.

Membres décédés: MM. W. Gavurscui, E. GuiLraume, H. RucH,
G. VALIRON.

M. B. EckmMANN, vice-président, donne connaissance des comptes
de la Société pour I’année 1959, qui sont approuvés. Décharge est
donnée au caissier et aux vérificateurs pour 1959. Le vice-président
donne ensuite divers renseignements sur 'activité mathématique
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dans le monde; le Congrés international aura lieu a Stockholm du
15 au 22 aolt 1962.

M. le professeur DT J. J. BurckHARDT rapporte sur la marche des
Commentaric Mathematici Helpetici, qui est satisfaisante.

2. La partie scientifigue a été consacrée aux communications sui-
vantes:

1. H. Bieri (Bern): Beitrag zum Reinhardschen Problem.

Das genannte Problem besteht darin, unter allen (konvexen)
Polygonen der euklidischen Ebene mit vorgegebener Eckenzahl und
ebensolchem Durchmesser (d — 1) dasjenige mit dem grdssen
flachensinhalt F aufzufinden.

Das Problem ist gelést fiir ungerade Eckenzahl, wo das regulire
n - Eck extremal ist, ungelost fiir gerade Eckenzahl, falls n > 4.
Es konnte nun fiir den néchsthohern fall mit n = 6 wenigstens eine
Teillosung aufgefunden werden, némlich fiir die abgeschlossene Teil-
klasse der achsensymmetrischen Sechsecke. Das Polygon mit grosstem
flachensichalt, Mitglied einer einparametrigen Schar mit einer auf
einem Durchmesser senkrecht stehenden Diagonalen a als Parameter,
besitzt folgende Kigenschaften:

1. Es hat 6 Durchmesser, also die Maximalzahl‘. Bezeichnet man die

ausser 14 die Diagonalen 24, 25, 36, 46, 35 Durchmesser.

2. Die Diagonale 26 = a, das Intervall 0 = ¢ = 1 durchlaufend,
hat den Wert a* ~ 0,687543...

Es gibt: ; , , :
F(a)—7[20+(1—a) Vi—a® +-a v/ E—(1Fa)?],

und im zuléssigen Intervall 0 = a = 1 erreicht F genau einmal
das Maximum F* ~ 0,67498144..., welcher Wert -die bisher

bekannte obere Schranke F ~ 0,696264... recht erkeblich unter-
bietet.

Das gefundene Sechseck bleibt. jedenfalls auch in der vollen
Klasse aller Sechsecke extremal !

.CJJ

2. W. Horenwec, Wolhusen: Uber die Ordnung der Burnside-
Gruppen mit zwei Erzeugenden.

Eine Gruppe mit dem Exponenten p und einer endlichen Anzahl q
von Erzeugenden heisst Burnside-Gruppe. Novikoff hat fiir p>172
gezeigt, dass jede solche Burnside-Gruppe unendlich ist. o

Wir gehen von der freien Gruppe G der Klasse o aus; d:h. G =1.

L’Enseignement mathém., t. VI, fasc. 2. A
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Die Faktorgruppe Gy/Gy.4 ist frei abelsch und hat nach Witt df
Erzeugende (Gyp: h-tes Glied der absteigenden Zentralreihe von G
q: Anzahl der freien Erzeugenden von G). Ist L freie Gruppe mlt
dem Exponenten p und der Klasse & (k£ = w), so ist L, homomorphes

Bild von Gy. /Ly 11 ist elementare abelsche Gruppe und besitzt dj ,

Erzeugende. Wir setzen mit Ph. Halld} , = d} — 8%. Dabei wird 5}
als Dimensionsdefekt bezeichnet. Lésst sich eine Methode entwickeln,
die gestattet sdmtliche Dimensionsdefekte zu berechnen, so kann
die Struktur der Burnside-Gruppen angegeben werden.

In der Vorliegenden Arbeit wird gezeigt, wie man sdmtliche

Dimensionsdefekte §; p+n fUr n = p — 2 bestimmen kann. Dabei
ergeben sich auch d1e von Lyndon im Gruppenring berechneten

Werte 87, 8511. Zur Bestimmung der Dimensionsdefekte fiihrt der
Hauptsatz:

« Fiir zwei Erzeugende, das Gewicht ¢ = p 4+ nundn =< p — 2
wird die Defektgruppe genau durch die verschiedenen Relationen
erzeugt, welche Basiskommutatoren vom Gewicht p in ihren
Erzeugenden enthalten. »

Der Beweis dieses Satzes stiitzt sich zur Hauptsache aut eine
Abbildung innerhalb der geordneten Reihe der Basiskommutatoren.

Die Arbeit erscheint demnéchst unter dem Titel: « Die Dimen-
sionsdefekte der BurRNsIDE-Gruppen mit zwei Erzeugenden» in
den Commentarti Mathematict Helostict.

3. J. O. FLeckEnsTEIN and B. MARzZETTA (Basel \/3 bei Archi-
medes.

Bekanntlich hat unter den vielen Rekonstruktionsversuchen des
von Archimedes in seiner Kixlov pérpnoic ohne Ableitung gegebenen
N#herungswertes | |

265 - 1351

53 < V3 < 55

bei der Exhaustion des Kreises vermittelst des regulidren-6"-Ecks den
meisten Anklang die Hypothese von Hultsch (1893/94) gefunden.
Aus der von Heron (Metrika, 1, Cap. 8) iibermittelten Nédherungs-
formel fiir quadratische Irrationalitdten

b —— b

sa 2 —_

EXy T < \a ib<ai~2a

erhdlt man némlich — ausgehend von ¢ = 2 und b = 1 — nach drei
« iterationsartigen » einfachen aber nicht trivialen Schritten die

Schranken des Archimedes. Selbst in dieser « Iteration» haben
C. Miiller und O. Toeplitz (1933) noch ein tieferliegendes Verfahren
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zu erkennen geglaubt, welches auf die pythagoreisch-platonische
Proportionenlehre zuriickweist. -

Inzwischen sind Keilschrifttexte bekanntgeworden, welche zeigen,
dass die Heronische Niherung schon Altbabylon bekanntgewesen ist;
die seleukidische Epoche kannte dann spéter sogar die Technik des
Radizierens vermittelst der Interpolation in Reziprokentafeln.
Bruins (1948/49) hat nun aus dem altbabylonischen Text VAT 6598
die Heronische Néherung in ihrer primordialen Form -

bZ

b2 o
2 2 _ 7
< \/a b <@ 2a

2a—0b

a__..

eruiert. und auf den antiken N&herungswert fiir v/9 angewendet.

Wendet man nun diese Form der Niherung fiir quadratische

Irrationalititen auf 4/ 3 an, so erhélt man die Archimedische Né&he-
rung direkt — ohne jegliche Iteration — wenn man nur 3 in sexa-
gesimalen Einheiten bis auf die Sekunden schreibt. Dann ist nédmlich

10800 104242

3 = 3600 — e und die Formel liefert fiir a = 104, b —= 4 sofort
1 5300 1  ,mann 1 1351 265 7 1351
— .=~ 4/10800 - — . " oder — 3« ——
50 51 <o V100 <5 g oder g < VO <

153 780

Obwohl Archimedes im {oppirye dekadisch rechnet, muss ihm die
sexagesimale Rechnung der zeitgendssischen Astronomen geldufig

gewesen sein. Da in diesem System der Naherungswert fiir 4/3 aus
der damals altbekannten babylonischen Rechenformel direkt ohne
jede Zwischenrechnung folgt, hat Archimedes eine Ableitung seines
Néherungswertes zu geben nicht fiir nétig gehalten. Sein Schweigen
scheint uns daher keineswegs ein besonderes Verfahren zu verdecken,

sondern nur eine Selbstverstédndlichkeit auszudriicken. |

4. P. Novr1 (Ziirich): Mathematische Analyse des Jass-Spieles.

Einleitung : In den nachstehenden Ausfilhrungen werden die
Grundregeln des Jass-Spieles als bekannt vorausgesetzt. Wer dieses
Spiel noch nicht kennen sollte, dem ist zu empfehlen, es zu erlernen.
Es handelt sich um ein schones aber auch instruktives Spiel. Man
lernt, wie man die Karten, die einem durch den Zufall zugeteilt wer-
den, am besten einsetzen kann. Das ist eine gute Uebung, denn im
tdglichen Leben kommt es auch darauf an, dass man seine Krafte
so gut wie moglich einsetzt. ‘ |

Wer fiir das Jass-Spiel Interesse hat, kaufe das Schweizerische
Jass-Reglement. Darin findet er die Grundregeln und die Verhaltungs-
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vorschriften. Da es mehrere Spielarten gibt, wie den Aucho, den
Hindersi usw. haben wir. unsere Ausfithrungen moglichst allgemein
gehalten; im speziellen beziehen sie sich auf den Schieber, der wohl
am bekanntesten sein diirfte. Das Spiel besteht — um es kurz in
Erinnerung zu rufen — aus 36 Karten, unterteilt in vier Sorten
(Farben genannt), némlich: Schaufel, Eckstein, Herz und Kreuz bzw.
Schilten, Schellen, Rose und Eichel beim deutschen Spiel. Die
9 Karten einer Farbe heissen nach ihrem Stichwert geordnet: As (11),
Konig (4), Dame (3), Bub (2), Trumpfbub (20), Zehner (10), Neuner (0),
Nell (14), Achter (0), Siebner (0), Sechser (0). Die in Klammern ange-
filhrten Ziffern geben die Punktzahl an bei der Auswertung des
Erloses. Die Summe aller Punktzahlen: 4.11 -+ 4.4 4+ 4.3 + 3.2
+ 20 + 4.10 + 14 = 152 ergibt zusammen mit den 5 Punkten fiir
den letzten Stich 157.

Der Weis: Die Karten werden gemischt und zu je dreimal drei’
verteilt. Jeder der vier Spieler erhidlt 9 thm vom Zufall zugeteilte
Karten. Dabei werden gewisse Zusammensetzungen, insgesamt 78
einschliesslich Stiocke, pramiert. Drei Karten gleicher Farbe und in
der Reihenfolge gelten 20, vier 50, fiinf 100, 4 Asse, 4 Konige oder
4 Damen oder 4 Zehner 100, vier Buben sogar 200, Kénig und Dame
der Trumpfkarten 20 Punkte.

Fir den Mathematiker entsteht zunéchst die interessante Auf-
gabe, die Haufigkeit zu berechnen, mit der diese besonderen Ereignisse
sich einstellen. Zunédchst ist es eintach, die Wahrscheinlichkeit fiir
4 Asse, 4 Konige, 4 Damen, 4 Buben oder 4 Zehner zu berechnen.
Bezeichnet man allgemein mit n die Zahl der Karten, mit r die Zahl
der einem Spieler zukommenden Karten, so gibt es fiir ihn insgesamt

(f) unterschiedliche Moglichkeiten der Zuteilung. Werden nun nur
diejenigen Austeilungen beriicksichtigt, die A bestimmte Karten
enthalten, so gibt es deren ("f:ﬁ) unterschiedliche Moglichkeiten.

Die gesuchte Wahrscheinlichkeit wird w, = (f:ﬁ) ("f)

Fir n = 36,7 = 9 und A = 4 erhilt man w, = 0,002 1.

Ein Spieler hat also auf 468 Kartenverteilungen die Chance,
einmal 4 Konige zu erhalten, irgendeiner der Spieler auf 117 Karten-
verteilungen. Da es insgesamt 5 solche Weise gibt (4 Asse, 4 Konige,
_ 4 Damen, 4 Buben, 4 Zehner), erscheint irgendeines dieser Ereignisse
im Durchschnitt auf rund 25 Verteilungen. Etwas schwieriger zu
berechnen ist die Héufigkeit der Weise aus Folgebliattern (z.B. As,
Ko6nig, Dame), also der Punktzahlen 20 bei 3 Karten, 50 bei 4 Karten
und 100 bei 5 Karten. Hier ist es so, dass auch bei gleicher Kartenzahl
nicht alle Weise gleich oft erscheinen. Das Dreiblatt As-Konig-Dame
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tritt hdufiger auf als z.B. Konig-Dame-Bub. Es erscheint paradox,
doch ist zu beachten, dass ein Dreiblatt nur dann entsteht, wenn
keine Anschlusskarte vorausgeht oder nachfolgt. Nun kann das
Dreiblatt As-Konig-Dame nur nach einer Seite hin, némlich durch
den Buben zu einem Vierblatt ergénzt werden, wihrend beim Drei-
blatt Konig-Dame-Bub diese Moglichkeit nach beiden Seiten hin
besteht. Im ersten Falle gilt die Formel:

wol = wly= ("7 ().

Im zweiten Fall dagegen w/,/ = (n_AA_ 2): (;2)

r—

- Firn = 36,7 = 9 und A = 3 erhédlt man wy/ = w/; = 0,001 8 bzw.
w/g/ = 0,001’5 Der Erwartungswert, mit der die Weisung von
20 Punkten auftritt, betragt (immer auf zwei Stellen genau) E; = 0,23
pro Spieler und 0,93 auf jede Kartenverteilung (Partie). Es konnen
somit im Durchschnitt fast nach jeder Verteilung 3 Blatt gewiesen
werden. — Nach dem gleichen Vorgehen kann die Hiufigkeit fiir
4 Folgekarten berechnet werden. Der Erwartungswert E, = 0,04.
Derjenige fiir das Auftreten von 5 Karten betrigt E;, = 0,005... Der
Erwartungswert fiir irgendeinen Weis stellt sich auf 0,34 pro Spieler.
Der durchschnittliche Wert eines Weises belduft sich auf 28 Punkte.
Er kann indessen nicht voll angerechnet werden, weil die Gegner
mitunter zu iiberbieten vermdogen. — Sehr selten tritt das Neunblatt
auf, d.h. der Fall, dass ein Spieler alle 9 Karten der gleichen Farbe
zugeteilt erhélt. Er kann beim Zuger mit 300 Punkten als der « Grosse

Weis » angerechnet werden. Seine Wahrscheinlichkeit betriagt pro
Partie 0,000000 17 oder 17 - 10-10,

Die Méglichkeiten eines Spielverlaufs: Den Spieler interessiert
insbesondere, zu wissen, ob Maiglichkeiten bestehen, gewisse Ver-
haltungsregeln anzugeben, wie man am vorteilhaftesten spielen soll.
Diese Frage kann grundsatzlich bejaht werden. Abgesehen von den
praktischen Schwierigkeiten besteht tatséchlich die Maglichkeit,
Richtlinien anzugeben, um im Einzelfall ein méglichst gutes Ergebnis
zu erzielen. Aber die Gewinnung dieser Richtlinien erfordert einen
unheimlichen Arbeitsaufwand und ist wohl nie zu bewéltigen.
Dagegen lassen sich bei derartigen Betrachtungen gewisse Einsichten
gewinnen, die sehr interessant sind. — Man denkt sich dazu am
besten einen Registrator, dem die Aufgabe zukommt, jedes Spiel zu
registrieren. Angenommen es wére ihm moglich, alle Flle einzutragen
und diejenigen zu streichen, die nicht gut sind, dann miissten von
jeder Kartenverteilung die bestmoglichen zuriickbleiben. — Be-
trachten wir den Verlauf aller Partien: Sie beginnen mit der Verteilung
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der Karten 36 Karten konnen auf 4 Spleler zu je 9 Karten, insgesamt
auf
36!

— 91919191

oder auf rund 21,5-1018, das sind 21,5 Trillionen unterschiedliche
Arten verteilt werden. Man kann sich nun alle diese Falle numeriert
denken, so dass der Registrator jedesmal bei jeder Verteilung angeben
kann, Welcher von den 21,5 Trillionen Fallen tatsdchlich eingetre-
ten 1st

Nach erfolgter Verteilung hélt jeder Spieler 9 Karten in der Hand.
In einer ersten Runde legt jeder Spieler eine Karte auf den Tisch.
Dazu bestehen — abgesehen vor den Vorschriften iiber das Ausspielen
der Karten — fiir jeden Partner 9 Moglichkeiten, insgesamt also
9. Zu Beginn der zweiten Runde hat jeder Spieler 8 Karten in
der Hand und damit bestehen 8 Méglichkeiten fiir die Abgabe einer
weiteren Karte. Insgesamt erhélt man nach dieser Rechnung 8 = (9!)4
oder rund 17.340 Trillionen (17,3 - 10%t) Moglichkeiten. Das Produkt
mit der Zahl der Verteilungen ergibt die obere Grenze fiir die Zahl
der Partien. Sie betrigt § = o * B = 36 (9!)® und erreicht rund
37,2.10%0 oder 3727000 Sextillionen. Diese Zahl ist zwar noch lange nicht
unendhch aber fiir irdische Verhé#ltnisse iiberaus gross. Zum Vergleich
sel angefuhrt dass der Durchmesser der Milchstrassenlinse «nur»
760.1018 d.h. 760 Trillionen Meter misst. Es kann mit Sicherheit
angenommen werden, dass noch lange nicht alle Moglichkeiten
durchgespielt wurden.

= 21 452 752 266 265 320 000

&

Die Entropie: Besondere Bedeutung kommt bei den Kartenspielen
der Information zu. Wiisste ein Spieler von Anfang an, wie die Karten
verteilt sind, konnte er sich viel besser verteidigen. Vor der Karten-
verteilung schwebt der Spieler vollstdndig im ungewissen, was er
selbst fiir Karten erhalten wird. Nach der Verteilung ist er zwar iiber
die eigenen Karten genau informiert, dagegen ist ihm unbekannt, was
fiir Karten seine Mitspieler erhalten haben; d.h. iiber die tatséchliche
Verteilung ist er nur teilweise orientiert. Insgesamt sind bei gleichen

moglich. (9')

Die Gesamtheit aller dieser Félle bildet den Informationsbereich
des Spielers. Nach der Kartenverteilung kann jeder Spieler somit
lediglich feststellen, in welchem Informationsbereich er sich befindet.
Der Durchschnitt aller 4 Informationsbereiche ergibt den tatséchli-
chen Ort, dieser ist aber den einzelnen Spielern bei Beginn des Aus-
spielens unbekannt. Wenn wir die Entropie des Spieles mit

o
H = ——Z ph“ lgp,,
1
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definieren, so ist diese anfanglich gleich eins: H = 1. Nach der Ver-
teilung geht die Unkenntnis iiber die Kartenverteilung stark zurtick,
die Entropie betrigt nur noche 0,59. Sie sinkt entsprechend der
Abnahme an Unkenntnis mit jeder Runde (Abgabe von 4 Karten) und
betrigt z.B. nach der zweiten Runde 0,44, nach der 5. Runde 0,23
und nach der 8. Runde 0,04. Nach der Abgabe der letzten Karte ist
die Entropie Null. Jeder Spieler ist genau orientiert, wie die Karten
verteilt waren, sofern er den Spielverlauf verfolgt hat. Man sieht
hieraus, dass die Information im Laufe einer Partie zunimmt und
erst am Ende derselben vollstindig ist, d.h. erst, wenn es zu spét
ist. Aus dieser Eigenart des Jass-Spieles entstehen viele Streitigkeiten.
Namentlich wenn Zuschauer anwesend sind. Diese sind dann von
Anfang an vollstindig orientiert, weil sie auch in die Karten der
Mitspieler blicken und darum auch besser wissen kénnen, wie der
~ einzelne Partner spielen sollte. Sie sind sich jedoch meistens ihrer
besseren Situation nicht bewusst und meinen ganz zu Unrecht, sie
hiatten es besser gemacht. Zuschauer sind deshalb unerwiinscht.

Die Strategie: Die Chancen bei einem Kartenspiel héngen aber
nicht nur von der Verteilung ab, also vom Zufall, sondern auch von
der Geschicklichkeit, mit der ein Spieler seine Karten ausspielt. Gute
Spieler wissen, dass es sehr darauf ankommt, und treffen schon bald
nach der Kartenverteilung den Entscheid iiber die Reihenfolge fiir
das Ablegen der Karten. Sie fassen eine bestimmte Strategie ins Auge
und erreichen damit meistens gute Resultate. Da jeder Partner zu
Beginn des Ausspielens 9 Karten in der Hand hé&lt, stehen ihm
insgesamt 9(!) Strategien zur Auswahl. Das Studium dieser Strategien

wirde zweifellos wertvolle Erkenntnisse zu Tage fordern. Das folgt

aus der Tatsache, dass der Registratcr (abgesehen von der praktischen
Durchfiihrbarkeit) grundsétzlich immer die Moglichkeit hat, jedem
Spieler zu sagen, welche Strategie fiir ihn die beste ist. Fir den
Registrator ist ndmlich die Information von Anfang an vollsténdig,
da er genau feststellen kann, welche Verteilung tatséchlich vorliegt.
Er steht also vor einem Spiele mit vollstdndiger Information und fiir
solche hat Neumann gezeigt, dass sie immer eine Losung d.h. fiir
jeden Spieler eine optimale Strategie besitzen.

*Bel einem Jass-Spiel mit aufgedeckten Karten hitte ndmlich jede
Spielpartel die Moglichkeit, ihre (9!)% eigenen sowie die ihr bekannten
(9 1)2 gegnerischen Strategien in einem Quadrat mitsamt den Ergebnis-
sen einzutragen und die Gleichgewichtspunkte aufzusuchen. Das géibe
allerdings ein sehr grosses Quadrat mit rund 5 Millionen Eingingen
auf beiden Seiten, und zwar fiir jede der 21,5 Trillionen Moglichkeiten.

Aus dieser wichtigen Vorarbeit liessen sich dann auch Anhalts-
punkte gewinnen fiir das eigentliche Spiel, indem man fiir alle
moglichen Kartenzuteilungen an einen Spieler aus denihm zustehenden
Strategien die wahrscheinlich beste herausliest. — Wegen der grossen
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Zahl der Falle erscheint ein solches Programm vollstindig undurch-
fuhrbar. Es ist .aber doch denkbar, dass durch Beschrinkung auf
reduzierte Spiele, z.B. mit nur 12 statt 36 Karten sich Anhaltspunkte
ergeben wiirden. Jedenfalls gibt es hier interessante Probleme.

5. Joseph Herscr (Institut Battelle, Genéve): Le principe de Thom-
son comme corollaire de celut de Dirichlet.

1. Considérons, paf exemple, un probléme de Poisson dans un
domaine G du plan, de frontiere I': Au = — o (z, y) dans G, u = 0

sur I'. On s’intéresse & 'intégrale de Dirichlet D (u) = _”G grad? u dA
= ff(} pudA,olu dA est I’élément d’aire. — Ce probléme est celui d’une
membrane (& contour fixé) en équilibre, sous 1’action d’une pression
e (%, y). Pour une déflexion quelconque ¢ (z, y), I’énergie potentielle
est —12— D (¢v) — ffpo dA; celle-ci est minimale pour ¢ = u(z,y),
satisfaisant & I’équation d’Euler Au = — p. Le principe de Dirichlet
D (u) = Max,—¢ sur I‘{ 2 ffpv dA — D (o)} n’est autre que le prin-
cipe du minimum de I’énergie potentielle.

2. La forme classique du principe de Thomson est la suivante:
(1) D (@) = Min giv = — [[oP dA

On a alors le contraste:

— Dirichlet : Les fonctions concurrentes ¢ satisfont aux conditions
aux limites, mais non pas & I’équation différentielle.

—>
— Thomson : Les champs vectoriels concurrents p satisfont a I’équa-
tion différentielle, mais non pas aux conditions aux limites.

3. Jinterpréte le principe de Thomson comme conséquence de celut
de Dirichlet pour 1 dimension. — Découpons un exemplaire G, de la
membrane en lanieres horizontales de largeur infinitésimale, un second
exemplaire G, en lanieres verticales; décomposons la pression p en
ea (agissant sur G,) et pp, (agissant sur Gy): p, + pp = p (2, y). Appe-
lons f (z, y) la solution dans Gy, g (z, y) la solution dans Gy; f et g
s’annulent sur I'; f est continue en z, deux fois dérivable par rapport
a z et satisfait f,,= — p, (2, ¥); g est continue en y, etc., et
gy = — @b (2, ¥); cette paire de solutions (f, g) realise le minimum
de I’énergie potentielle (principe de Dirichlet pour 1 dimension):

— 5 J 2+ g)dA =Min, |5 ] @2+ §2)dA— [[ (o, & +
| + 0, 1) dA]

¢ continue en z, etc., ¢ = 0 sur I'

avee {gp continue en vy, ete., ¢ = 0 sur "’
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or la paire de fonctions ¢ = = u (=, y) est concurrente, d’ou

(2) lDansszGq§+@ﬁ)dA.

On choisira souvent non pas p, et gy, mais bien f (z, y) continue
en z, etc. et g (z, y) continue en y, ete. (f = g = 0 sur I'), satisfaisant
a la condition '

(3) mm+&w=—pWﬂM

on aura alors la borne (2), avec I'égalité si f = g = u. |
C’est le principe de Thomson pour le champ vectoriel {fx: gy},

4. Démonstration directe: f = u + s; g =u +t; s =1t = 0 sur

'y Sux + tyy = 0 dans G fo 4 g§ — grad®u + s% + tz + 2 (usy)x
+ 2 (uty)y — 2u (Sxx + tyy); le dernier terme s’annule, et (2) s’ensuit
par intégration. '

D. Soit})> = {pl, pz} un champ vectoriel concurrent: p1, + Pe,
= — p; appelons f (z, y) et g (x, y) les solutions de {f =g =0sur T,
Jxx = D1y 8y = Ps,}; on vérifie aisément

2) D@ < [f 2+ ) dA < [[ F2dA .

La borne (2) est toujours préférable (ou égale) a celle (1) du prin-
cipe classique de Thomson: L’«effacement des conditions auzx limites »
(forme vectorielle du principe) est permis, mais n’est pas fructueux !
11 affaiblit I’évaluation. |

6. Application: Rigidité a la torston P d’une barre prismatique
de profil G simplement connexe. — on aicip (z,4) = 2et P = D (u)
= 2]’ f u dA. :

Appelons L> la longueur d’un segment Ha_; dans G, a extrémités

sur.I.‘; définissons M- = fG L3> dy et My = f(} L3§> dx; si nous
choisissons fyy = — ¢ et gy, = ¢ — 2, (3) est satisfaite et (2) donne

~~

P<D Mz + (2—¢)? M- | optimalisons ¢, nous obtenons

(4)  P< : le choix des axes z, ; reste libre.
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Cette borne est toujours préférable (ou égale) a la borne connue
41,1

4! P 1-2
=) = L+ 1,

fournie par (1) avec le champ _]; —={ —cx; (¢c — 2) y} lorsqu’on
optimalise c.

(I; et I, = moments d’inertie principaux),

7. Exemple: Rectangle de cotés a = b:

= <. .. p
Avec des axes x et y inclinés & 459, (4) donne — <

2\ —1
(4") donne P < 1 (1 L b—> .

ab® 3 a?
Rapport a/b |4 8 12 100 | oo
} Valeur exacte 0,2808 0,3071 0,3158 0,3312 %
(%3 { Borne supérieure (%) 0,2917 0,3125 0,319 0,3317 %
Borne «classique» (&) 0,3137 | 0,3282 | 0,3310 | 0,3333 —;—

Remarque : La borne classique (4') est insensible & toute « fissure y
dans le profil, tandis que la borne (4) en tient compte.

7a. S. Piccarp (Neuchéatel): Des problemes de la Théorie générale
des groupes.

Soit G un groupe multiplicatif libre et soit A un systéme de
générateurs libres a, AeA, de G. Chaque élément ¢ de G peut, comme

on sait, étre mis de facon unique sous forme d’une composition finie
réduite d’éléments de A. Soit @ = f (a,, @y, ..., @) @ posséde done

un degré fixe par rapport & tout élément de A, ce degré par rapport
a @y, é¢tant la somme des exposant de ay; dans f, t =1,2,...,k, et 0

par rapport & tout autre élément de A. a posséde également un degré
fixe par rapport & I’ensemble des éléments de A, ce degré étant la
somme des degrés de a par rapport aux divers éléments de A. En se
basant sur cette remarque, on peut décomposer d’une infinité de
facons les éléments de G en classes disjointes ayant un caracteére
intrinseque et qui constituent les éléments d’un treillis de groupes
abéliens associés & G. L’étude de ce treillis permet d’établir, de facon
nouvelle et trés simple, de nombreuses propriétés de structure des
groupes libres. Elle se préte tout particulierement & la recherche des
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sous-groupes invariants de G et a celle des éléments de G dits « libres ».
On peut aussi décomposer G en classes d’équivalence qui n’ont pas
un caractere intrinséque, indépendant du systéme A de générateurs
libres & partir desquels elles sont définies, classes qui a leur tour
forment les éléments de groupes abéliens associés & G. Si 4 est fini,
I'élément neutre de ces derniers groupes est un sous-groupe d’index
fini de G et on peut rapidement faire le tour des sous-groupes d’index
fini de tout groupe libre ayant un nombre fini de générateurs libre
par I'examen de ces classes et en utilisant des résultats classiques de
la théorie des nombres.

Les groupes libres ne sont pas les seuls & jouir de cette propriété
que chacun de leurs éléments posséde un degré fixe par rapport a
tout élément libre de G ainsi que par rapport a I’ensemble des élé-
- ments de tout systéme de générateurs libres. Ils font partie d’une
classe plus générale de groupes que nous avons appelés quasi libres
et dont on peut donner les deux définitions équivalentes suivantes:
Un groupe multiplicatif G est quasi libre §’il posséde un systéme A
de générateurs tel que tout élément a de G posséde un degré fixe par
rapport a tout élément de A, ce degré étant défini de la fagon sui-
vante. A étant un systéme générateur de G, tout élément ¢ de G
peut étre obtenu par composition finie d’éléments de A, plusieurs
compositions distinctes pouvant représenter le méme élément, mais
chacune de ces compositions ayant le méme degré par rapport a a,,
quel que soit I'¢lément a, de A. Ce degré est, par définition, le degré
de a par rapport & a,. Tout élément d’un groupe quasi libre a égale-
ment un degré fixe par rapport a I'ensemble des éléments de A, ce
degré étant par définition la somme des degrés de « par rapport a
tous les éléments de A. Si A est infini, @ peut étre de degré non nul
seulement par rapport & un nombre fini d’éléments de A. Les élé-
ments d’un tel systeme de générateur de G sont dits quasi libres et
le systéme de générateurs A est irréductible en ce sens que quel que
soit le sous-ensemble fini A* de A il n’existe pas de sous-ensemble
B* de G, de puissance inférieure & celle de 4* et tel que tout élément
de A* puisse étre obtenu par composition finie des éléments de
I'ensemble “B.

D’autre part, on peut définir un groupe quasilibre G par un
ensemble 4 d’¢léments générateurs liés par une famille F de relations
quast triviales. Une relation f(ayn, ag, -, @,) = 1 entre des élé-

ments de 4 est dite quasi triviale si son premier membre est de degré
nul par rapport a tout élément de A. .

Tout groupe libre est quasi libre mais la reciproque n’est pas
vraie et il existe une infinité de groupes quasi libres qui ne sont pas
libres.

On peut décomposer d’une infinité de facons les éléments d’un
groupe quasi libre en classes d’équivalence ayant un caractére




156 SOCIETE MATHEMA TIQUE SUISSE

intrinseque indépendant de la base A de G. A partir de ces décompo-
sitions, on définit un treillis de groupes abéliens associés a G et qui
permettent de résoudre de nombreux problemes de structure de G.
(’est ainsi qu’on peut démontrer que tout groupe quasi libre posséede
une infinité de sous-groupes invariants et si le groupe quasi libre G
est de puissance infinie m, ’ensemble de ses sous-groupes invariants
est de puissance supérieure a m. Tout sous-groupe d’un groupe
quasi libre n’est pas quasi libre. Il existe méme des groupes quasi
libres & un nombre fini de générateurs qui possedent des sous-groupes
a une infinité de générateurs et qui sont dépourvus de bases, c¢’est-a-
dire de systemes irréductibles de générateurs. Tout groupe quasi
libre engendré par un ensemble de puissance m de générateurs quasi
libres possede un ensemble de puissance > ui de sous-groupes quasi
libres. Tout sous-groupe quasi libre d’'un groupe quasi libre & un
nombre fini de générateurs est lui méme a un nombre fini de gé-
nerateurs.

Soit n un entier = 2, soit A un systéme donné de générateurs
quasi libres de G et soit ¢ un nombre quelconque de la suite 0,1,
..., n-1. Vous disons qu’un élément a de G est de classe C; (4) si a est
de degré congru & ¢ modulo n par rapport a ’ensemble des éléments
de A. On décompose ainsi les éléments de G en n classes d’équiva-
lence qui dépendent de la base A de G et qui, avec la loi de composi-
tion C;C; =Crou 0 =k =n—1, k=14 j (mod n), forment un
groupe abélien. La classe G, (4) est un sous-groupe d’index n de G.
Quel que soit I'entier n = 2, tout groupe quasi libre possede des
sous-groupes d’index n. Le nombre de ces sous-groupes, pour tout
n fini, est, comme on sait, fini, si G est engendré par un nombre
fini k d’¢léments. Soient By (byy, byg, - - -, b),) €t By (bay, b, - - -, by)
deux bases distinctes quelconques de G et soit A (ay, a5, ..., a,) la

base primitive & partir de laquelle le groupe G a été défini. n étant
un entier = 2 et j;, Jy, ..., J, ¢tant £ nombres non tous nuls et pas

nécessairement distincts de la suite 0,4, ..., n—1, tels que le
p.g.c.d. de ces &£ nombres et de n est égal & 1, il existe une base B
de G dans laquelle a; est de degré j, par rapport a I'ensemble des
éléments de B, quel que soit 1 = 1,2, ..., k. Soit j,. (j,,) le degré
de a; par rapport 4 Iensemble des éléments de la base B; (B,),
i = 1,2, ..., k. La condition nécessaire et suffisante pour que C, (B;)

soit différent de C, (B,) ¢’est que la matrice iz T ot de
: /21 ]22'°']2h

rang 2. Il s’ensuit que tout groupe quasi libre & un nombre fini %
de générateurs posséde en tout cas (n, —1— Npp)/e (n) de sous-
groupes d’index fini n, quel que soit n > 2, IV, ; désignant le nombre
de suites distinctes j; j,, ..., j, formées de nombres non tous nuls

de la suite 0,1, ..., n—1, tels que le p.g.c.d. des £ nombres d’une
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e

telle suite et de n soit > 1 et ¢ (n) étant le nombre d’éléments de la
suite 1,2, ..., n—1, premiers avec n.

Tout élément quasi libre d’un groupe quasi libre est d’ordre
infini. Tout groupe quasi libre est d’ordre infini et il possede aussi
bien une infinité d’éléments quasi libres qu’une infinité d’éléments
qui ne sont pas quasi libres, s’il n’est pas cyclique. Il posséde une
infinité de sous-groupes .invariants distincts composés uniquement
d’éléments qui ne sont pas quasi libres. Tout élément de G (que
nous appelons «nul») de degré nul par rapport a chaque élément
d’une base donnée de G jouit de la méme propriété par rapport &
tout élément de chaque base ‘de G et il n’est pas quasi libre. Quelle
que soit la base B d’un groupe quasi libre G et quel que soit le
sous-ensemble B* non vide de G, B* engendre un sous-groupe quasi
libre G* de G et tout élément quasi libre de G* est aussi un élément
quasi libre de G *).

Les groupes fondamentauz et la décomposition d’un groupe fondamental
en produit quast libre.

Nous appelons fondamental tout groupe qui posséde des systémes
irréductibles d’éléments générateurs appelés bases du groupe, 1'irré-
ductibilité s’étendant dans le sens défini ci-dessus. Tous les groupes
d’ordre fini, les groupes libres, les groupes quasi libres et beaucoup
d’autres groupes sont des groupes fondamentaux. Mais il existe
aussi une infinité de groupes d’ordre mﬁm qui ne sont pas fonda-
mentaux.

Nous disons qu'un groupe fondamental G est décomposé en pro-
duit quasi libre de ses sous- groupes fondamentaux Gx, A€/, et nous

écrivons
(1) G = II** Gy,
' ' AEA .

s1 ’ensemble des sous- gfoupes (), engendre G et si A, étant une base
quelconque de G, quel que soit I'indice AeA, l’ensemble A = U4,
constitue une base de G. , - AEA

Les facteurs G; qui ﬁgurent dans la formule (1) sont appelés
facteurs fondamentaux de G.

Le produit quasi libre présente de grandes analogies avec le
produit libre. Il est susceptible aussi blen de prolongement que de
Popération inverse.

*) Voir & ce sujet
1. S. PiccarDp: Structure des groupes libres. Annales sc. de ’Ecole. Normale superzeure
Paris, LXXVI, 1959, fasc. 1, pp. 1-58.

. S. PICCARD Les groupes quasi libres. Comptes rendus des séances de I’ Académie des
Sciences, Paris, t. 250, pp. 3260-3262. ‘

3. S. PIGCARD Les groupes quasi libres. Publications du Semmazre de Geometme de
UUniversité de Neuchdtel, fasc. 3, 1961.
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Un élément de G est appelé fondamental §’il appartient & une
base au moins de G.

Si G est décomposé en le produit quasi libre (1), aucun élément
fondamental d’un facteur G, de ce produit ne peut étre obtenu par
composition finie d’éléments des autres facteurs de cette décomposi-
tion.

Tout élément fondamental d’un facteur G, est aussi un élément
fondamental de G.

Deux facteurs différents G,, et G;, faisant partie d’une décompo-
sition d’un groupe fondamental en produit quasi libre peuvent
avoir des éléments = 1 en commun, ils peuvent méme en avoir une
infinité, mais aucun de ces éléments n’est fondamental ni dans G;,
ni dans G,.

70. S. Piccarp (Neuchétel): Sur les éléments libres des groupes libres.

Un élément d’un groupe libre est appelé libre §’il fait partie
d'un systéme de générateurs libres du groupe, c’est-a-dire d’un
systéme de générateurs qui ne sont liés que par des relations tri-
viales découlant des axiomes de groupe. Tous les éléments d’un
groupe libre ne sont pas libres. Soit L I’ensemble des éléments libres
et IV I'ensemble des éléments non libres d’un groupe libre G. Si G
est cyclique, engendré par le seul élément libre a, ’ensemble L se
compose, comme on sait, des deux éléments a et ¢! alors que 'en-
semble NV est infini. Si le groupe libre G n’est pas eyclique, les deux
ensembles L et [V sont infinis et de méme puissance. On peut répartir
les éléments de G en classes d’équivalence, telles que chacune de ces
classes soit ou bien composée uniquement d’éléments de N ou bien
qu’elle contienne aussi bien des éléments de L que des éléments de
N, chacune de ces classes contenant au plus un élément de tout
systeme irréductible de générateurs de G. Ces classes sont les élé-
ments des groupes abéliens dont le treillis est associé a G. Soit A
un systéme donné de générateurs libres a,, acA, du groupe libre G.
Soit @ un élément quelconque de G. Il existe comme on sait une
composition finie réduite unique d’éléments de A qui représente a.
Cette composition est de la forme

i1 l9 in

) at a2, ..., a,"
ou n est un entier > 1,4y, €4, =1,2,...,n, 0, # o, t = 1,2,
., n—1, et i;,..., i, sont des entiers dont aucun n’est nul si

a #% 1. Une composition finie réduite d’éléments de A étant donnée,
il s’agit de savoir si elle représente un élément libre de G ou non.
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Dans le cas ou l’ensemble A est fini, la solution de ce probléme
découle d’un théoréme du mathématicien russe Grouschko *. Cette
solution peut étre formulée comme suit: Soit A = 4 (a4, @y, - - ., A1)
(k fini > 2). On sait que tout systéme de générateurs libres appelé
base de G, est alors formé de % éléments. Soit B (b, by, . . ., by) une
base quelconque de G, soit 0, 'opération qui' consiste a remplacer
dans une base de G un élément par son inverse et soit 0, ’opération
qui consiste & remplacer dans une base de G un élément quelconque
par le produit & droite ou & gauche de cet élément par une compo-
sition finie quelconque des autres éléments de la base considérée.
Toute base B de G peut se déduire de la base A par un nombre fini
d’opérations 0, et 0,.. |

Supposons maintenant que I’ensemble :A est de puissance infinie.
On a alors les deux propositions suivantes:

Proposition 1. — Quel que soit le sous-groupe G* du groupe libre
G, tout élément libre de G qui fait partie de G* est aussi un élément
libre de G*.

Proposition 2. — Quelle que soit la base A d’un groupe libre G
et quel que soit le sous-ensemble non vide A* de A, tout élément
libre du groupe libre G* engendré par A* est aussi un élément libre
du groupe G.

Il ressort de ces deux propositions que pour savoir si un élément
quelconque ¢ d’un groupe libre & base infinie A est libre ou non, il
suffit de considérer la comopsition finie réduite d’éléments de A qui
le représente: soit f (a5, @, . . . , ) cette composition dans laquelle

figurent certains éléments a,,, @;,, ..., a,. de A, en nombre fini e
7

on envisagera ensuite le sous-groupe G* de G engendré par les
éléments a,,, ay,, ..., a,, et on g’appuiera sur le théoréme de
Grouschko pour décider si a est un élément libre de G* ou non. Si
a est libre dans G* il I'est également dans G d’aprés la proposition 2.

Il ressort de ces considérations que toute composition finie réduite
de la forme (1) d’éléments d’une base d’un groupe libre G, dans laquelle
tous les exposants i;, 7y, ..., i sont 3£ 1 ou — 1, représente un
élément non libre de G. D’autre part, quels que soient les entiers
ri, %, ..., 7, si le groupe libre G est engendré par les % éléments
ay, Qg ..., ap, le produit

1\ 2 g 1\ 3 =1 k-2 1\ k71 kR—1 k-2 1
[al(aza’"z)rz(a3a’"3 a’"g)’"3 e (ah ak ar L. a%)’“k]’l a,a’k a'r ... adk
1 2 1 k=1 k-2 1 k1 k=2 1

définit un élément libre de G.

* Voir par exemple, Kurosch: Théorie des groupes, 2e éd. russe, Moscou, p. 252 et ss
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Si-un élément @ d’un groupe libre G est de degré nul par rapport
a tout élément d’'une base A de G, il est également de degré nul
par rapport a chaque élément de toute autre base B de G. Un tel
élément de G n’est pas libre. ,

Quel que soit I'entier n = 2, si un élément a d’un groupe libre G
est de degré congru a zéro modulo n par rapport & chaque élément
d’une base A de G, cet élément est également de degré congru & zéro
modulo n par rapport a chaque élément de toute autre base de G
et un tel élément n’est également pas libre.

Tout groupe libre posseéde une infinité de sous-groupes invariants
distincts composés uniquement d’éléments non libres.

Les propositions 1 et 2 facilitent grandement la recherche des
éléments libres et permettent de ramener le cas des groupes libres
& base de puissance infinie quelconque & celui des groupes libres a
un nombre fini de générateurs libres.
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