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SOCIÉTÉ MATHÉMATIQUE SUISSE

Conférences et communications

Séance de printemps 1960 de la Société mathématique suisse
et Cinquantième anniversaire de la fondation de la Société

Le cinquantenaire de la fondation de la Société mathématique
suisse a été fêté avec une ampleur remarquable à Zurich du 20 au
26 juin 1960, par un Colloque international de géométrie différentielle
et de topologie, suivi du Jubilé proprement dit les 25 et 26 juin.

I. Colloque international de géométrie différentielle et de topologie.
Sous le patronage de l'Union mathématique internationale et sous

la présidence de M. le professeur H. Hopf, de l'E.P.F., plus d'une
centaine de mathématiciens venus de divers continents se réunirent
à Zurich dans les locaux de l'E.P.F. du 20 au 25 juin 1960, pour
présenter divers développements de la géométrie différentielle et de la
topologie et discuter des résultats les plus récents. Le premier objectif
était atteint par les grandes conférences d'une heure, faites à raison
de deux par jour, dont le texte paraîtra soit dans les Commentarii,
soit dans YEnseignement mathématique. En outre, une cinquantaine
d'exposés plus courts (20 minutes), dont certains paraîtront dans les
Commentarii, s'intercalaient dans la suite ci-dessus, animés par des
discussions et controverses très vivantes.

Impossible de citer toutes les personnalités présentes; en règle
générale, les auteurs des théorèmes cités par les conférenciers étaient
dans 1 auditoire. Le mercredi 22 juin vit honorer la mémoire de
J.H.C. Whitehead, décédé récemment, auteur de contributions
importantes qui nous furent rappelées par M. le professeur Hilton.
Le colloque proprement dit prenait fin le vendredi 24 juin.

II. Fête du Jubilé.

Le samedi 25 juin 1960, à 10 heures, commençait la fête du Jubilé
et voyait l'achèvement solennel du colloque. Dans un auditoire de
physique de l'E.P.F. et devant une assemblée imposante formée des
mathématiciens du colloque et de nombreux membres de la S.M.S.,
le président, M. le professeur H. Jecklin, après quelques mots de
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bienvenue, donnait la parole à deux de nos mathématiciens suisses,
choisis parmi les plus éminents.

M. le professeur Georges de Rham, de l'Université dë Lausanne,
présentait avec sa clarté coutumière les êtres mathématiques sis au
centre des préoccupations du colloque. Puis M. le professeur H. Hopf
étalait, en une fresque saisissante, une synthèse des résultats exposés
les jours précédents.

Ce même jour à 15 heures, un bateau mis à la disposition de la
Société par les autorités zurichoises emmenait les participants sur le
lac. Chacun sait à quel point de telles promenades sont favorables
aux conversations et échanges de propos scientifiques ou non.

Le dimanche 26 juin, à l'aula de l'Université de Zurich se déroulait
la fête du Jubilé, agrémentée par les productions d'un quatuor

de cors de l'Orchestre de la Tonhalle.
Dans son discours d'ouverture, M. le président H. Jecklin salue

les participants et particulièrement les membres d'honneur présents:
MM. Marchand, Plancherel, Speiser, Hopf et Saxer. Il rappelle
ensuite le souvenir des anciens présidents décédés, notamment
MM. Fueter, Fehr, Grossmann, Crellier, G. Dumas, S. Dumas, Juvet,
Wavre et Kollross. Un salut tout spécial est adressé à M. le professeur
Dr Frey, recteur de l'Ecole polytechnique fédérale, à M. le professeur

Dr Straumann, recteur de l'Université de Zurich, aux représentants
des autorités du canton et de la ville de Zurich, aux délégués

de la Société helvétique des Sciences naturelles, de l'Union
mathématique internationale, et de la maison d'éditions Orell-Füssli.

M. Jecklin mentionne les qualités de notre Jubilé,, plus
intérieures qu'extérieures, et remercie chaleureusement l'organisateur du
colloque, M. H. Hopf. Il convient de regretter l'attitude de beaucoup

de maisons suisses de l'industrie et du commerce qui n'ont
pas voulu s'associer à la réussite matérielle du colloque, ce qui
fait estimer d'autant plus l'apport de toutes celles qui ont malgré tout
rendu le colloque possible. Le président relève l'importance de la
S.M.S. pour la vie mathématique en Suisse, sur le plan des Commen-
tarii, sur celui des rencontres internationales, et auprès de la Confédération

par l'intermédiaire du Sénat de la S.H.S.N. où notre Société
est représentée. Il est nécessaire que l'apport financier de nos autorités
aux milieux scientifiques, indispensable aujourd'hui, n'altère en rien
la liberté de la recherche, la liberté de publication, et la liberté de la
discussion. La Suisse, qui pourrait être en tête du progrès scientifique,
ne l'est guère, à cause d'un certain défaitisme de nos autorités. En
outre, toute notre structure universitaire est vieillie, tant pour
l'enseignement que pour la recherche. Le nombre des professeurs, chargés
de cours, assistants, etc., n'a pas augmenté en proportion des nécessités.

Les mathématiciens de tout rang étouffent sous la contrainte
d activités administratives ou représentatives, ce qui paralyse bien
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inopportunément la recherche. Mais beaucoup, loin de se résigner,
restent animés par l'amour de la science et par le feu de la recherche,
si modestes et désagréables que soient leurs conditions de travail.
Puisse cette ardeur s'épanouir encore au sein de la S.M.S.

Le président donna ensuite la parole à M. le professeur M. Plan-
gherel. Le texte de la conférence de ce dernier figurera dans Y

Enseignement mathématique: «Mathématiques et mathématiciens en Suisse
(1850-1950) ».

Finalement, et aux acclamations de l'Assemblée, furent élus
membres d'honneur de la Société mathématique suisse les professeurs
Jean Leray, de Paris, membre de l'Institut; Hassler Whitney, de

Princeton, et Georges de Rham, de Lausanne.
Le Jubilé prit fin par un banquet au Kongresshaus au cours duquel

de nombreux orateurs se firent entendre, les délégués des sociétés
scientifiques notamment.

Les participants et la Société doivent une gratitude toute spéciale
aux organisateurs, notamment MM. H. Hopf, H. Jecklin, B. Eck-
mann, H.Kuenzi, grâce auxquels aucun point ne fut négligé pour la
réussite tant du Colloque que du Jubilé.

49e assemblée annuelle de la Société mathématique suisse à Aarau,
le 24 septembre 1960, dans le cadre de la 140e assemblée annuelle

de la Société helvétique suisse.

Président: Prof. Dr H. Jecklin, Université de Zurich.
Vice-président : Prof. Dr B. Eckmann, E.P.F., Zurich.
Secrétaire: Prof. J. de Siebenthal, EPUL, Lausanne.

M. H. Jecklin, président, salue les participants, relativement
nombreux, et donne la parole à M. le Dr H. Ramser, recteur de
l'Ecole cantonale d'Aarau, qui prononce quelques mots de bienvenue.

1. Séance administrative.

M. le président renseigne l'assemblée sur la marche de la S.M.S,
Membres admis en 1960: Chr. Blatter, Basel; H. Bühlmann,

Zurich; F. W. Gehring, Ann Arbor, U.S.A.; W. Holenweg, Lu-
zern; P. Jeanquartier, Lausanne; J.-P. Robert, Neuchâtel;
Th. A. Schoen, Dayton, Ohio, U.S.A.

Membres décédés: MM. W. Gautschi, E. Guillaume, H. Ruch,
G. Valiron.

M. B. Eckmann, vice-président, donne connaissance des comptes
de la Société pour l'année 1959, qui sont approuvés. Décharge est
donnée au caissier et aux vérificateurs pour 1959. Le vice-président
donne ensuite divers renseignements sur l'activité mathématique
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dans le monde; le Congrès international aura lieu à Stockholm du
15 au 22 août 1962.

M. le professeur Dr J. J. Burckhardt rapporte sur la marche des
Commentarii Mathematici Helvetici, qui est satisfaisante.

2. La partie scientifique a été consacrée aux communications sui¬
vantes :

1. H. Bieri (Bern): Beitrag zum Reinhardschen Problem.

Das genannte Problem besteht darin, unter allen (konvexen)
Polygonen der euklidischen Ebene mit vorgegebener Eckenzahl und
ebensolchem Durchmesser (d — 1) dasjenige mit dem grossen
flächensinhalt F aufzufinden.

Das Problem ist gelöst für ungerade Eckenzahl, wo das reguläre
n - Eck extremal ist, ungelöst für gerade Eckenzahl, falls n > 4.
Es konnte nun für den nächsthöhern fall mit n 6 wenigstens eine
Teillösung aufgefunden werden, nämlich für die abgeschlossene
Teilklasse der achsensymmetrischen Sechsecke. Das Polygon mit grösstem
flächensichalt, Mitglied einer einparametrigen Schar mit einer auf
einem Durchmesser senkrecht stehenden Diagonalen a als Parameter,
besitzt folgende Eigenschaften:
1. Es hat 6 Durchmesser, also die Maximalzahl. Bezeichnet man die

auf derJSymmetrieachse liegenden Ecken mit 1 und 4, so sind
ausser 14 die Diagonalen 24, 25, 36, 46, 35 Durchmesser.

2. Die Diagonale 26 a, das Intervall 0 a ^ 1 durchlaufend,
hat den Wert a* ^ 0,687543...

3. Es gibt:
F(a)=-i[2a-f (1—a) y'4—a2 +«v'4-(l+«)2],

und im zulässigen Intervall 0 erreicht F genau einmal
das Maximum F* ~ 0,67498144..., welcher Wert die bisher
bekannte obere Schranke F ~ 0,696264... recht erkeblich
unterbietet.

Das gefundene Sechseck bleibt jedenfalls auch in der vollen
Klasse aller Sechsecke extremal

2. W. Holenweg, Wolhusen: Über die Ordnung der Burnside-
Gruppen mit zwei Erzeugenden.

Eine Gruppe mit dem Exponenten p und einer endlichen Anzahl q
von Erzeugenden heisst Burnside-Gruppe. Novikoff hat für >72
gezeigt, dass jede solche Burnside-Gruppe unendlich ist.

Wir gehen von der freien Gruppe G der Klasse w aus ; d.h. GW+1 1.

L'Enseignement m athé m., t. VI, fasc. 2. k
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Die .Faktorgruppe Gh/Gh+i ist frei abelsch und hat nach Witt dl
Erzeugende (G^: &-tes Glied der absteigenden Zentralreihe von G;
q: Anzahl der freien Erzeugenden von G). Ist L freie Gruppe mit
dem Exponenten p und der Klasse k {k ^w), so ist homomorphes
Bild von Gh. Lh/Lh+i ist elementare abelsche Gruppe und besitzt d^v
Erzeugende. Wir setzen mit Ph. Halld^p dl — 8%. Dabei wird 8\
als Dimensionsdefekt bezeichnet. Lässt sich eine Methode entwickeln,
die gestattet sämtliche Dimensionsdefekte zu berechnen, so kann
die Struktur der Burnside-Gruppen angegeben werden.

In der vorliegenden Arbeit wird gezeigt, wie man sämtliche
Dimensionsdefekte Sp+n für n ^ p — 2 bestimmen kann. Dabei
ergeben sich auch die von Lyndon im Gruppenring berechneten
Werte 8p, 8p+i. Zur Bestimmung der Dimensionsdefekte führt der
Hauptsatz:

« Für zwei Erzeugende, das Gewicht c p + n und n ^p — 2
wird die Defektgruppe genau durch die verschiedenen Relationen
erzeugt, welche Basiskommutatoren vom Gewicht p in ihren
Erzeugenden enthalten. »

Der Beweis dieses Satzes stützt sich zur Hauptsache aut eine
Abbildung innerhalb der geordneten Reihe der Basiskommutatoren.

Die Arbeit erscheint demnächst unter dem Titel : « Die
Dimensionsdefekte der BuRNSiDE-Gruppen mit zwei Erzeugenden» in
den Commentarii Mathematici Ilclvetici.

3. J. 0. Fleckenstein and B. Marzetta (Basel): V3 bei Archi¬
medes.

Bekanntlich hat unter den vielen Rekonstruktionsversuchen des
von Archimedes in seiner KuxXou piéTpYjcnç ohne Ableitung gegebenen
Näherungswertes

265 - 1351

153 < V3 < 7g0

bei der Exhaustion des Kreises vermittelst des regulären*6n-Ecks den
meisten Anklang die Hypothese von Hultsch (1893/94) gefunden.
Aus der von Heron (Metrika, I, Cap. 8) übermittelten Näherungsformel

für quadratische Irrationalitäten

4±S±I <^'±b<a±-
erhält man nämlich — ausgehend von a 2 und b 1 — nach drei
« iterationsartigen » einfachen aber nicht trivialen Schritten die
Schranken des Archimedes. Selbst in dieser « Iteration » haben
C. Müller und 0. Toeplitz (1933) noch ein tieferliegendes Verfahren
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zu erkennen geglaubt, welches auf die pythagoreisch-platonische
Proportionenlehre zurückweist.

Inzwischen sind Keilschrifttexte bekanntgeworden, welche zeigen,
dass die Heronische Näherung schon Altbabylon bekanntgewesen ist;
die seleukidische Epoche kannte dann später sogar die Technik des

Radizierens vermittelst der Interpolation in Reziprokentafeln.
Bruins (1948/49) hat nun aus dem altbabylonischen Text VAT 6598

die Heronische Näherung in ihrer primordialen Form

1)2
/"à—iÏ2

1)2

< v a —b < a — 7

2a — b v .2a
eruiert, und auf den antiken Näherungswert für V2 angewendet.

Wendet man nun diese Form der Näherung für quadratische
Irrationalitäten auf \/3 an, so erhält man die Archimedische Näherung

direkt — ohne jegliche Iteration — wenn man nur 3 in sexa-
gesimalen Einheiten bis auf die Sekunden schreibt. Dann ist nämlich

„ 10800 1042—42

3600 602
und die Formel liefert für a 104, b 4 sofort

l.^<lVlÖ8ÖÖ<l.^oder2^<V3<^-1
60 51 < 60 < 60 13 153< < 780

Obwohl Archimedes im dekadisch rechnet, muss ihm die
sexagésimale Rechnung der zeitgenössischen Astronomen geläufig
gewesen sein. Da in diesem System der Näherungswert für V3 aus
der damals altbekannten babylonischen Rechenformel direkt ohne
jede Zwischenrechnung folgt, hat Archimedes eine Ableitung seines
Näherungswertes zu geben nicht für nötig gehalten. Sein Schweigen
scheint uns daher keineswegs ein besonderes Verfahren zu verdecken,
sondern nur eine Selbstverständlichkeit auszudrücken.

4. P. Nolfi (Zürich): Mathematische Analyse des Jass-Spieles.

Einleitung: In den nachstehenden Ausführungen werden die
Grundregeln des Jass-Spieles als bekannt vorausgesetzt. Wer dieses
Spiel noch nicht kennen sollte, dem ist zu empfehlendes zu erlernen.
Es handelt sich um ein schönes aber auch instruktives Spiel. Man
lernt, wie man die Karten, die einem durch den Zufall zugeteilt werden,

am besten einsetzen kann. Das ist eine gute Uebung, denn im
täglichen Leben kommt es auch darauf an, dass man seine Kräfte
so gut wie möglich einsetzt.

Wer für das Jass-Spiel Interesse hat, kaufe das Schweizerische
Jass-Reglement. Darin findet er die Grundregeln und die Verhaltungs-
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Vorschriften. Da es mehrere Spielarten gibt, wie den Aucho, den
Hindërsi usw. haben wir unsere Ausführungen möglichst allgemein
gehalten; im speziellen beziehen sie sich auf den Schieber, der wohl
am bekanntesten sein dürfte. Das Spiel besteht — um es kurz in
Erinnerung zu rufen — aus 36 Karten, unterteilt in vier Sorten
(Farben genannt), nämlich: Schaufel, Eckstein, Herz und Kreuz bzw.
Schiiten, Schellen, Rose und Eichel beim deutschen Spiel. Die
9 Karten einer Farbe heissen nach ihrem Stichwert geordnet: As (11),
König (4), Dame (3), Bub (2), Trumpfbub (20), Zehner (10), Neuner (0),
Neil (14), Achter (0), Siebner (0), Sechser (0). Die in Klammern
angeführten Ziffern geben die Punktzahl an bei der Auswertung des
Erlöses. Die Summe aller Punktzahlen: 4.11 -f- 4.4 -j- 4.3 + 3.2
-f- 20 -f- 4 -10 + 14 152 ergibt zusammen mit den 5 Punkten für
den letzten Stich 157.

Der Weis: Die Karten werden gemischt und zu je dreimal drei
verteilt. Jeder der vier Spieler erhält 9 ihm vom Zufall zugeteilte
Karten. Dabei werden gewisse Zusammensetzungen, insgesamt 78
einschliesslich Stöcke, prämiert. Drei Karten gleicher Farbe und in
der Reihenfolge gelten 20, vier 50, fünf 100, 4 Asse, 4 Könige oder
4 Damen oder 4 Zehner 100, vier Buben sogar 200, König und Dame
der Trumpfkarten 20 Punkte.

Für den Mathematiker entsteht zunächst die interessante
Aufgabe, die Häufigkeit zu berechnen, mit der diese besonderen Ereignisse
sich einstellen. Zunächst ist es einfach, die Wahrscheinlichkeit für
4 Asse, 4 Könige, 4 Damen, 4 Buben oder 4 Zehner zu berechnen.
Bezeichnet man allgemein mit n die Zahl der Karten, mit r die Zahl
der einem Spieler zukommenden Karten, so gibt es für ihn insgesamt

(fy unterschiedliche Möglichkeiten der Zuteilung. Werden nun nur
diejenigen Austeilungen berücksichtigt, die A bestimmte Karten
enthalten, so gibt es deren (^H^) unterschiedliche Möglichkeiten.

Die gesuchte Wahrscheinlichkeit wird (^)-

Für n 36, r 9 und A 4 erhält man w4 0,002 1.

Ein Spieler hat also auf 468 Kartenverteilungen die Chance,
einmal 4 Könige zu erhalten, irgendeiner der Spieler auf 117
Kartenverteilungen. Da es insgesamt 5 solche Weise gibt (4 Asse, 4 Könige,
4 Damen, 4 Buben, 4 Zehner), erscheint irgendeines dieser Ereignisse
im Durchschnitt auf rund 25 Verteilungen. Etwas schwieriger zu
berechnen ist die Häufigkeit der Weise aus Folgeblättern (z.B. As,
König, Dame), also der Punktzahlen 20 bei 3 Karten, 50 bei 4 Karten
und 100 bei 5 Karten. Hier ist es so, dass auch bei gleicher Kartenzahl
nicht alle Weise gleich oft erscheinen. Das Dreiblatt As-König-Dame
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tritt häufiger auf als z.B. König-Dame-Bub. Es erscheint paradox,
doch ist zu beachten, dass ein Dreiblatt nur dann entsteht, wenn
keine Anschlusskarte vorausgeht oder nachfolgt. Nun kann das
Dreiblatt As-König-Dame nur nach einer Seite hin, nämlich durch
den Buben zu einem Vierblatt ergänzt werden, während beim Dreiblatt

König-Dame-Bub diese Möglichkeit nach beiden Seiten hin
besteht. Im ersten Falle gilt die Formel:

Im zweiten Fall dagegen w/J 9; C9

Für n 36, r 9 und A 3 erhält man wj w/s 0,0018 bzw.
wjj 0,001'5 Der Erwartungswert, mit der die Weisung von
20 Punkten auftritt, beträgt (immer auf zwei Stellen genau) E3 0,23
pro Spieler und 0,93 auf jede Kartenverteilung (Partie). Es können
somit im Durchschnitt fast nach jeder Verteilung 3 Blatt gewiesen
werden. — Nach dem gleichen Vorgehen kann die Häufigkeit für
4 Folgekarten berechnet werden. Der Erwartungswert E4 — 0,04.
Derjenige für das Auftreten von 5 Karten beträgt E5 0,005... Der
Erwartungswert für irgendeinen Weis stellt sich auf 0,34 pro Spieler.
Der durchschnittliche Wert eines Weises beläuft sich auf 28 Punkte.
Er kann indessen nicht voll angerechnet werden, weil die Gegner
mitunter zu überbieten vermögen. — Sehr selten tritt das Neunblatt
auf, d.h. der Fall, dass ein Spieler alle 9 Karten der gleichen Farbe
zugeteilt erhält. Er kann beim Zuger mit 300 Punkten als der « Grosse
Weis » angerechnet werden. Seine Wahrscheinlichkeit beträgt pro
Partie 0,00000017 oder 17 • 10-10.

Die Möglichkeiten eines Spielverlaufs : Den Spieler interessiert
insbesondere, zu wissen, ob Möglichkeiten bestehen, gewisse
Verhaltungsregeln anzugeben, wie man am vorteilhaftesten spielen soll.
Diese Frage kann grundsätzlich bejaht werden. Abgesehen von den
praktischen Schwierigkeiten besteht tatsächlich die Möglichkeit,
Richtlinien anzugeben, um im Einzelfall ein möglichst gutes Ergebnis
zu erzielen. Aber die Gewinnung dieser Richtlinien erfordert einen
unheimlichen Arbeitsaufwand und ist wohl nie zu bewältigen.
Dagegen lassen sich bei derartigen Betrachtungen gewisse Einsichten
gewinnen, die sehr interessant sind. — Man denkt sich dazu am
besten einen Registrator, dem die Aufgabe zukommt, jedes Spiel, zu
registrieren. Angenommen es wäre ihm möglich, alle Fälle einzutragen
und diejenigen zu streichen, die nicht gut sind, dann müssten von
jeder Kartenverteilung die bestmöglichen zurückbleiben. —
Betrachten wir den Verlauf aller Partien : Sie beginnen mit der Verteilung
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der Karten. 36 Karten können auf 4 Spieler zu je 9 Karten, insgesamt
auf

0£|
a 21 452 752 266 265 320 000

yiyiyiyi
oder auf rund 21,5 TO18, das sind 21,5 Trillionen unterschiedliche
Arten verteilt werden. Man kann sich nun alle diese Fälle numeriert
denken, so dass der Registrator jedesmal hei jeder Verteilung angeben
kann, welcher von den 21,5 Trillionen Fällen tatsächlich eingetreten

ist.
Nach erfolgter Verteilung hält jeder Spieler 9 Karten in der Hand.

In einer ersten Runde legt jeder Spieler eine Karte auf den Tisch.
Dazu bestehen — abgesehen vor den Vorschriften über das Ausspielen
der Karten — für jeden Partner 9 Möglichkeiten, insgesamt also
94. Zu Beginn der zweiten Runde hat jeder Spieler 8 Karten in
der Hand und damit bestehen 84 Möglichkeiten für die Abgabe einer
weiteren Karte. Insgesamt erhält man nach dieser Rechnung ß (9!)4
oder rund 17.340 Trillionen (17,3 * 1021) Möglichkeiten. Das Produkt
mit der Zahl der Verteilungen ergibt die obere Grenze für die Zahl
der Partien. Sie beträgt S oc ' ß 36 (9!)3 und erreicht rund
37,2.1040 oder 372'000 Sextillionen. Diese Zahl ist zwar noch lange nicht
unendlich, aber für irdische Verhältnisse überaus gross. Zum Vergleich
sei angeführt, dass der Durchmesser der Milchstrassenlinse «nur»
760.1018 d.h. 760 Trillionen Meter misst. Es kann mit Sicherheit
angenommen werden, dass noch lange nicht alle Möglichkeiten
durchgespielt wurden.

Die Entropie : Besondere Bedeutung kommt bei den Kartenspielen
der Information zu. Wüsste ein Spieler von Anfang an, wie die Karten
verteilt sind, könnte er sich viel besser verteidigen. Vor der
Kartenverteilung schwebt der Spieler vollständig im ungewissen, was er
selbst für Karten erhalten wird. Nach der Verteilung ist er zwar über
die eigenen Karten genau informiert, dagegen ist ihm unbekannt, was
für Karten seine Mitspieler erhalten haben; d.h. über die tatsächliche
Verteilung ist er nur teilweise orientiert. Insgesamt sind bei gleichen

(27!)
Handkarten eines Spielers noch —— oder rund 4,7 Millionen Fälle
möglich.

'

Die Gesamtheit aller dieser Fälle bildet den Informationsbereich
des Spielers. Nach der Kartenverteilung kann jeder Spieler somit
lediglich feststellen, in welchem Informationsbereich er sich befindet.
Der Durchschnitt aller 4 Informationsbereiche ergibt den tatsächlichen

Ort, dieser ist aber den einzelnen Spielern hei Beginn des

Ausspielens unbekannt. Wenn wir die Entropie des Spieles mit

H — H PhlSPk1
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definieren, so ist diese anfänglich gleich eins: H 1. Nach der
Verteilung geht die Unkenntnis über die Kartenverteilung stark zurück,
die Entropie beträgt nur noche 0,59. Sie sinkt entsprechend der
Abnahme an Unkenntnis mit jeder Runde (Abgabe von 4 Karten) und
beträgt z.B. nach der zweiten Runde 0,44, nach der 5. Runde 0,23
und nach der 8. Runde 0,04. Nach der Abgabe der letzten Karte ist
die Entropie Null. Jeder Spieler ist genau orientiert, wie die Karten
verteilt waren, sofern er den Spielverlauf verfolgt hat. Man sieht
hieraus, dass die Information im Laufe einer Partie zunimmt und
erst am Ende derselben vollständig ist, d.h. erst, wenn es zu spät
ist. Aus dieser Eigenart des Jass-Spieles entstehen viele Streitigkeiten.
Namentlich wenn Zuschauer anwesend sind. Diese sind dann von
Anfang an vollständig orientiert, weil sie auch in die Karten der

Mitspieler blicken und darum auch besser wissen können, wie der
einzelne Partner spielen sollte. Sie sind sich jedoch meistens ihrer
besseren Situation nicht bewusst und meinen ganz zu Unrecht, sie

hätten es besser gemacht. Zuschauer sind deshalb unerwünscht.

Die Strategie: Die Chancen bei einem Kartenspiel hängen aber
nicht nur von der Verteilung ab, also vom Zufall, sondern auch von
der Geschicklichkeit, mit der ein Spieler seine Karten ausspielt. Gute
Spieler wissen, dass es sehr darauf ankommt, und treffen schon bald
nach der Kartenverteilung den Entscheid über die Reihenfolge für
das Ablegen der Karten. Sie fassen eine bestimmte Strategie ins Auge
und erreichen damit meistens gute Resultate. Da jeder Partner zu
Beginn des Ausspielens 9 Karten in der Hand hält, stehen ihm
insgesamt 9(!) Strategien zur Auswahl. Das Studium dieser Strategien
würde zweifellos wertvolle Erkenntnisse zu Tage fördern. Das folgt,
aus der Tatsache, dass der Registratcr (abgesehen von der praktischen
Durchführbarkeit) grundsätzlich immer die Möglichkeit hat, jedem
Spieler zu sagen, welche Strategie für ihn die beste ist. Für den
Registrator ist nämlich die Information von Anfang an vollständig,
da er genau feststellen kann, welche Verteilung tatsächlich vorliegt.
Er steht also vor einem Spiele mit vollständiger Information und für
solche hat Neumann gezeigt, dass sie immer eine Lösung d.h. für
jeden Spieler eine optimale Strategie besitzen.

Bei einem Jass-Spiel mit aufgedeckten Karten hätte nämlich jede
Spielpartei die Möglichkeit, ihre (9!)2 eigenen sowie die ihr bekannten
(9 !)2 gegnerischen Strategien in einem Quadrat mitsamt den Ergebnissen

einzutragen und die Gleichgewichtspunkte aufzusuchen. Das gäbe
allerdings ein sehr grosses Quadrat mit rund 5 Millionen Eingängen
auf beiden Seiten, und zwar für jede der 21,5 Trillionen Möglichkeiten.

Aus dieser wichtigen Vorarbeit Hessen sich dann auch Anhaltspunkte

gewinnen für das eigentliche Spiel, indem man für alle
möglichen Kartenzuteilungen an einen Spieler aus den ihm zustehenden
Strategien die wahrscheinlich beste herausliest. — Wegen der grossen
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Zahl der Fälle erscheint ein solches Programm vollständig undurchführbar.

Es ist aber doch denkbar, dass durch Beschränkung auf
reduzierte Spiele, z.B. mit nur 12 statt 36 Karten sich Anhaltspunkte
ergeben würden. Jedenfalls gibt es hier interessante Probleme.

5. Joseph Hersch (Institut Batteile, Genève): Le principe de Thomson

comme corollaire de celui de Dirichlet.

1. Considérons, par exemple, un problème de Poisson dans un
domaine G du plan, de frontière T: Au — p (x,y) dans G, u 0

sur T. On s'intéresse à l'intégrale de Dirichlet D (u) JJ& grad2 u dA
JJa p u dA: où dA est l'élément d'aire. — Ce problème est celui d'une

membrane (à contour fixé) en équilibre, sous l'action d'une pression
p (x, y). Pour une déflexion quelconque ç (x, y), l'énergie potentielle
est y D (v) — JJp^A; celle-ci est minimale pour ç u (x, y),
satisfaisant à l'équation d'Euler Au — p. Le principe de Dirichlet
D (u) Maxu=0 sur r{ 2 JJpc dA — D (ç)} n'est autre que le principe

du minimum de l'énergie potentielle.

2. La forme classique du principe de Thomson est la suivante:

D (w) Min div^ _ p J"JGp2dA

On a alors le contraste:

— Dirichlet: Les fonctions concurrentes v satisfont aux conditions
aux limites, mais non pas à l'équation différentielle.

— Thomson: Les champs vectoriels concurrents p satisfont à l'équa¬
tion différentielle, mais non pas aux conditions aux limites.

3. P interprète le principe de Thomson comme conséquence de celui
de Dirichlet pour 1 dimension. — Découpons un exemplaire Ga de la
membrane en lanières horizontales de largeur infinitésimale, un second
exemplaire Gb en lanières verticales; décomposons la pression p en
pa (agissant sur Ga) et pb (agissant sur Gb): pa + p5 p (x, y). Appelons

f (x, y) la solution dans Ga, g (x, y) la solution dans* Gb; / et g
s'annulent sur T; / est continue en x, deux fois dérivable par rapport
à x et satisfait fxx= — pa (x, y); g est continue en y, etc., et
gyy — pb (x, y); cette paire de solutions (/, g) realise le minimum
de l'énergie potentielle (principe de Dirichlet pour 1 dimension):

1- J II + si) dA Min^ [| JJ (Ç2 + - JJ (pa «p +

+ ?b +) dA

avec
cp continue en x, etc., <p 0 sur T
^ continue en y, etc., ^ 0 sur Y '
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or la paire de fonctions cp ^ u (x, y) est concurrente, d'où

(2) D(tt) < JJ&(/x + &) dA.

On choisira souvent non pas pa et pb, mais bien f (x, y) continue
en x, etc. et g (x, 2/) continue en y, etc. (/ g 0 sur T), satisfaisant
à la condition

(3) fxx gyy — P d) i

on aura alors la borne (2), avec l'égalité ,si f g u.

C'est le principe de Thomson pour le champ vectoriel |/x, gyy

4. Démonstration directe: f u s\ g u t*, s t 0 sur
T; Sxx + tyy 0 dans G; fx -f gy «= grad2 u + sx + ^ + 2 (usx)x
+ 2 — 2u (sxx + tyy)] le dernier terme s'annule, et (2) s'ensuit
par intégration.

5. Soit p |pl5 p2j un champ vectoriel concurrent: plx -f p2y
— p; appelons f (x, y) et g (x, y) les solutions de {/ g 0 sur T,

fxx Pix, gyy p2y}; on vérifie aisément

(2') D (u)<JJG {fl+ gpdA< JJG p dA

La borne (2) est toujours préférable (ou égale) à celle (1) du principe

classique de Thomson: L\ effacement des conditions aux limites »

(forme vectorielle du principe) est permis, mais n'est pas fructueux
Il affaiblit l'évaluation.

6. Application: Rigidité à la torsion P d'une barre prismatique
de profil G simplement connexe. — on a ici p (x, y) 2 et P D lu)

2JJBdA.
Appelons Lj la longueur d'un segment dans G, à extrémités

sur T; définissons M? JG L3? dy et JG L3- ; si nous
choisissons fxx ^— c et gw c — 2, (3) est satisfaite et (2) donne

1 f ~ ~ 1

; optimalisons c, nous obtenonsP<12 c2M^ + (2 — c)2 M->
x y

i^ P ^ 3 ~ ~ > le choix des axes y reste libre.
MA + Mh

x y
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Cette borne est toujours préférable (ou égale) à la borne connue

(4') P ~ ~ (^"î ot ^2 — nioniGiits d inertie principaux),
1 ~f~ 2

fourniG par (1) avGC 1g champ p { — ex; (c — 2) y} lorsqu'on
optimalise c.

7. Exemple: Rectangle de côtés a > b:

PI b
Avec des axes x et y inclinés à 45°, (4) donne —^ <-y (1 —7p);

au o Aa

P 1 / b2\~l
(4) dome 3(1+ 5Î) •

Rapport ajb 1 4 1 8 11 12 i 100 00

Valeur exacte 0,2808 0,3071 0,3158 0,3312
1

"3

P
ab3 i Borne supérieure (4) 0,2917 0,3125 0,3194 0,3317

1

3
1

1

i Borne «classique» (4') 0,3137 0,3282 0,3310 0,3333
1

3

Remarque : La borne classique (4') est insensible à toute « fissure »

dans le profil, tandis que la borne (4) en tient compte.

la. S. Piccard (Neuchâtel): Des problèmes de la Théorie générale
des groupes.

Soit G un groupe multiplicatif libre et soit A un système de

générateurs libres ax ÀeA, de G. Chaque élément a de G peut, comme
on sait, être mis de façon unique sous forme d'une composition finie
réduite d'éléments de A. Soit a / (a?1, %25..a^k). a possède donc

un degré fixe par rapport à tout élément de A, ce degré par rapport
à étant la somme des exposant de a^ dans /, i 1,2, /c, et 0

par rapport à tout autre élément de A. a possède également un degré
fixe par rapport à l'ensemble des éléments de A, ce degré étant la
somme des degrés de a par rapport aux divers éléments de A. En se

basant sur cette remarque, on peut décomposer d'une infinité de

façons les éléments de G en classes disjointes ayant un caractère
intrinsèque et qui constituent les éléments d'un treillis de groupes
abéliens associés à G. L'étude de ce treillis permet d'établir, de façon
nouvelle et très simple, de nombreuses propriétés de structure des

groupes libres. Elle se prête tout particulièrement à la recherche des
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sous-groupes invariants de G et à celle des éléments de G dits « libres ».

On peut aussi décomposer G en classes d'équivalence qui n'ont pas
un caractère intrinsèque, indépendant du système A de générateurs
libres à partir desquels elles sont définies, classes qui a leur tour
forment les éléments de groupes abéliens associés à G. Si A est fini,
l'élément neutre de ces derniers groupes est un sous-groupe d'index
fini de G et on peut rapidement faire le tour des sous-groupes d'index
fini de tout groupe libre ayant un nombre fini de générateurs libre
par l'examen de ces classes et en utilisant des résultats classiques de
la théorie des nombres.

Les groupes libres ne sont pas les seuls à jouir de cette propriété
que chacun de leurs éléments possède un degré fixe par rapport à
tout élément libre de G ainsi que par rapport à l'ensemble des
éléments de tout système de générateurs libres. Ils font partie d'une
classe plus générale de groupes que nous avons appelés quasi libres
et dont on peut donner les deux définitions équivalentes suivantes:
Un groupe multiplicatif G est quasi libre s'il possède un système A
de générateurs tel que tout élément a de G possède un degré fixe par
rapport à tout élément de A, ce degré étant défini de la façon
suivante. A étant un système générateur de G, tout élément a de G
peut être obtenu par composition finie d'éléments de A, plusieurs
compositions distinctes pouvant représenter le même élément, mais
chacune de ces compositions ayant le même degré par rapport à aÀ,
quel que soit l'élément ax de A. Ce degré est, par définition, le degré
de a par rapport à Tout élément d'un groupe quasi libre a également

un degré fixe par rapport à l'ensemble des éléments de A, ce
degré étant par définition la somme des degrés de a par rapport à
tous les éléments de A. Si A est infini, a peut être de degré non nul
seulement par rapport à un nombre fini d'éléments de A. Les
éléments d'un tel système de générateur de G sont dits quasi libres et
le système de générateurs A est irréductible en ce sens que quel quesoit le sous-ensemble fini A* de A il n'existe pas de sous-ensemble
B* de G, de puissance inférieure à celle de ,4* et tel que tout élément
de ^4* puisse être obtenu par composition finie des éléments de
l'ensemble B.

D'autre part, on peut définir un groupe quasi libre G par un
ensemble A d'éléments générateurs liés par une famille F de relations
quasi triviales. Une relation /(aÀ1, %2, 1 entre des
éléments de A est dite quasi triviale si son premier membre est de degré
nul par rapport à tout élément de A.

Tout groupe libre est quasi libre mais la réciproque n'est pasvraie et il existe une infinité de groupes quasi libres qui ne sont paslibres.
On peut décomposer d'une infinité de façons les éléments d'un

groupe quasi libre en classes d'équivalence ayant un caractère
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intrinsèque indépendant de la base A de G. A partir de ces décompositions,

on définit un treillis de groupes abéliens associés à G et qui
permettent de résoudre de nombreux problèmes de structure de G.
C'est ainsi qu'on peut démontrer que tout groupe quasi libre possède
une infinité de sous-groupes invariants et si le groupe quasi libre G
est de puissance infinie m, l'ensemble de ses sous-groupes invariants
est de puissance supérieure à m. Tout sous-groupe d'un groupe
quasi libre n'est pas quasi libre. Il existe même des groupes quasi
libres à un nombre fini de générateurs qui possèdent des sous-groupes
à une infinité de générateurs et qui sont dépourvus de bases, c'est-à-
dire de systèmes irréductibles de générateurs. Tout groupe quasi
libre engendré par un ensemble de puissance m de générateurs quasi
libres possède un ensemble de puissance > m de sous-groupes quasi
libres. Tout sous-groupe quasi libre d'un groupe quasi libre à un
nombre fini de générateurs est lui même à un nombre fini de
générateurs.

Soit n un entier ^ 2, soit A un système donné de générateurs
quasi libres de G et soit i un nombre quelconque de la suite 0,1,

n-1. Vous disons qu'un élément a de G est de classe C\ {A) si a est
de degré congru à i modulo n par rapport à l'ensemble des éléments
de A. On décompose ainsi les éléments de G en n classes d'équivalence

qui dépendent de la base A de G et qui, avec la loi de composition

CiCj Ck où 0 ^ k n — 1, k i + / (mod ri), forment un
groupe abélien. La classe C0 (A) est un sous-groupe d'index n de G.

Quel que soit l'entier n ^ 2, tout groupe quasi libre possède des

sous-groupes d'index n. Le nombre de ces sous-groupes, pour tout
n fini, est, comme on sait, fini, si G est engendré par un nombre
fini k d'éléments. Soient Bx (bllL, b12, blk) et B2 (b21, b22, b2k)

deux bases distinctes quelconques de G et soit A (a±, a2, ak) la
base primitive à partir de laquelle le groupe G a été défini, n étant
un entier ^ 2 et jv j2, /k étant k nombres non tous nuls et pas
nécessairement distincts de la suite 0,1, n — 1, tels que le

p.g.c.d. de ces k nombres et de n est égal à 1, il existe une base B
de G dans laquelle ai est de degré /\ par rapport à l'ensemble des

éléments de B, quel que soit i 1,2, k. Soit ju (j2i) le degré
de ai par rapport à l'ensemble des éléments de la base B1 (B2),
i 1,2, k. La condition nécessaire et suffisante pour que C0 (B±)

soit différent de C0 (B2) c'est que la matrice
^12 'lk \ soit de

V 21 J22 ' ' ' J2kj

rang 2. Il s'ensuit que tout groupe quasi libre à un nombre fini k
de générateurs possède en tout cas (nh—1 — Nn^)l<p (A) de sous-

groupes d'index fini n, quel que soit n > 2, Nn^ désignant le nombre
de suites distinctes j\ j2, /h formées de nombres non tous nuls

de la suite 0,1, n — 1, tels que le p.g.c.d. des k nombres d'une
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telle suite et de n soit > 1 et 9 (n), étant le nombre d'éléments de la
suite 1,2, n — 1, premiers avec n.

Tout élément quasi libre d'un groupe quasi libre est d'ordre
infini. Tout groupe quasi libre est d'ordre infini et il possède aussi
bien une infinité d'éléments quasi libres qu'une infinité d'éléments
qui ne sont pas quasi libres, s'il n'est pas cyclique. Il possède une
infinité de sous-groupes -invariants distincts composés uniquement
d'éléments qui ne sont pas quasi libres. Tout élément de G (que
nous appelons « nul ») de degré nul par rapport à chaque élément
d'une base donnée de G jouit de la même propriété par rapport à

tout élément de chaque base de G et il n'est pas quasi libre. Quelle
que soit la base B d'un groupe quasi libre G et quel que soit le
sous-ensemble B* non vide de G, B* engendre un sous-groupe quasi
libre G* de G et tout élément quasi libre de G* est aussi un élément
quasi libre de G*).

Les groupes fondamentaux et la décomposition d'un groupe fondamental
en produit quasi libre.

Nous appelons fondamental tout groupe qui possède des systèmes
irréductibles d'éléments générateurs appelés bases du groupe,
l'irréductibilité s'étendant dans le sens défini ci-dessus. Tous les groupes
d'ordre fini, les groupes libres, les groupes quasi libres et beaucoup
d'autres groupes sont des groupes fondamentaux. Mais il existe
aussi une infinité de groupes d'ordre infini qui ne sont pas
fondamentaux.

Nous disons qu'un groupe fondamental G est décomposé en produit

quasi libre de ses sous-groupes fondamentaux AeA, et nous
écrivons

(1)G U**GX
AeA

si l'ensemble des sous-groupes Gx engendre G et si Ax étant une base
quelconque de GXr quel que soit l'indice AeA, l'ensemble A [j Ax
constitue une base de G. - ^eA

Les facteurs Gx qui figurent dans la formule (1) sont appelés
facteurs fondamentaux de G.

Le produit quasi libre présente de grandes analogies avec le
produit libre. Il est susceptible aussi bien de prolongement que de
l'opération inverse.

*) Voir à ce sujet:
1. S. Piccard: Structure des groupes libres. Annales se. de l'Ecole. Normale supérieure

Paris, LXXVI, 1959, fasc. 1, pp. 1-58.
2. S. Piccard : Les groupes quasi libres. Comptes rendus des séances de l'Académie des

Sciences, Paris, t. 250, pp. 3260-3262.
3. S. Piccard: Les groupes quasi libres. Publications du Séminaire de Géométrie de

l'Université de Neuchâtel, fasc. 3, 1961.



158 SOCIÉTÉ MATHÉMATIQUE SUISSE

Un élément de G est appelé fondamental s'il appartient à une
base au moins de G.

Si G est décomposé en le produit quasi libre (1), aucun élément
fondamental d'un facteur Gx de ce produit ne peut être obtenu par
composition finie d'éléments des autres facteurs de cette décomposition.

Tout élément fondamental d'un facteur GÀ est aussi un élément
fondamental de G.

Deux facteurs différents et Gx2 faisant partie d'une décomposition

d'un groupe fondamental en produit quasi libre peuvent
avoir des éléments ^ 1 en commun, ils peuvent même en avoir une
infinité, mais aucun de ces éléments n'est fondamental ni dans GXl
ni dans G^2.

1b. S. Piccard (Neuchâtel): Sur les éléments libres des groupes libres.

Un élément d'un groupe libre est appelé libre s'il fait partie
d'un système de générateurs libres du groupe, c'est-à-dire d'un
système de générateurs qui ne sont liés que par des relations
triviales découlant des axiomes de groupe. Tous les éléments d'un
groupe libre ne sont pas libres. Soit L l'ensemble des éléments libres
et N l'ensemble des éléments non libres d'un groupe libre G. Si G
est cyclique, engendré par le seul élément libre a, l'ensemble L se

compose, comme on sait, des deux éléments a et ar{ alors que
l'ensemble N est infini. Si le groupe libre G n'est pas cyclique, les deux
ensembles L et N sont infinis et de même puissance. On peut répartir
les éléments de G en classes d'équivalence, telles que chacune de ces
classes soit où bien composée uniquement d'éléments de N ou bien
qu'elle contienne aussi bien des éléments de L que des éléments de
TV, chacune de ces classes contenant au plus un élément de tout
système irréductible de générateurs de G. Ces classes sont les
éléments des groupes abéliens dont le treillis est associé à G. Soit A
un système donné de générateurs libres ax, du groupe libre G.
Soit a un élément quelconque de G. Il existe comme on sait une
composition finie réduite unique d'éléments de A qui représente a.
Cette composition est de la forme

(i)<<,
où n est un entier > 1, a^eA, t 1,2, ft, afy+1> t

n — 1, et ij, in sont des entiers dont aucun n'est nul si

a -=jA 1. Une composition finie réduite d'éléments de A étant donnée,
il s'agit de savoir si elle représente un élément libre de G ou non.
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Dans le cas où l'ensemble A est fini, la solution de ce problème
découle d'un théorème du mathématicien russe Grouschko *. Cette
solution peut être formulée comme suit: Soit A A (av a2, ak)
(k fini > 2). On sait que tout système de générateurs libres appelé
base de £, est alors formé de k éléments. Soit B (èl7 &2, bu) une
base quelconque de G, soit l'opération qui consiste à remplacer
dans une base de G un élément par son inverse et soit 02 l'opération
qui consiste à remplacer dans une base de G un élément quelconque
par le produit à droite ou à gauche de cet élément par une composition

finie quelconque des autres éléments de la base considérée.
Toute base B de G peut se déduire de la base A par un nombre fini
d'opérations 01 et 02..

Supposons maintenant que l'ensemble A est de puissance infinie.
On a alors les deux propositions suivantes:

Proposition 1. — Quel que soit le sous-groupe G* du groupe libre
£, tout élément libre de G qui fait partie de G* est aussi un élément
libre de G*.

Proposition 2. — Quelle que soit la base A d'un groupe libre G
et quel que soit le sous-ensemble non vide A* de A, tout élément
libre du groupe libre G* engendré par ^4* est aussi un élément libre
du groupe G.

Il ressort de ces deux propositions que pour savoir si un élément
quelconque a d'un groupe libre à base infinie A est libre ou non, il
suffit de considérer la comopsition finie réduite d'éléments de A qui
le représente: soit / (aXl, %2, aXr) cette composition dans laquelle
figurent certains éléments ahl aXr de A, en nombre fini r;
on envisagera ensuite le sous-groupe G* de G engendré par les
éléments aAl, aXa, aXr et on s'appuiera sur le théorème de
Grouschko pour décider si a est un élément libre de G* ou non. Si
a est libre dans G* il l'est également dans G d'après la proposition 2.

Il ressort de ces considérations que toute composition finie réduite
de la forme (1) d'éléments d'une base d'un groupe libre G, dans laquelle
tous les exposants iv i2l in sont ^ 1 ou — 1, représente un
élément non libre de G. D'autre part, quels que soient les entiers
r\-> s r\i Ie groupe libre G est engendré par les k éléments
av a2, a/t, le produit

définit un élément libre de G.

Voir par exemple, Kurosch: Théorie des groupes, 2e éd. russe, Moscou, p. 252 et ss

Ti



160 SOCIÉTÉ MATHÉMATIQUE SUISSE

Si un élément a d'un groupe libre G est de degré nul par rapport
à tout élément d'une base A de G, il est également de degré nul
par rapport à chaque élément de toute autre base B de G. Un tel
élément de G n'est pas libre.

Quel que soit l'entier n ^ 2, si un élément a d'un groupe libre G
est de degré congru à zéro modulo n par rapport à chaque élément
d'une base A de G, cet élément est également de.degré congru à zéro
modulo n par rapport à chaque élément de toute autre base de G
et un tel élément n'est également pas libre.

Tout groupe libre possède une infinité de sous-groupes invariants
distincts composés uniquement d'éléments non libres.

Les propositions 1 et 2 facilitent grandement la recherche des
éléments libres et permettent de ramener le cas des groupes libres
à base de puissance infinie quelconque à celui des groupes libres à

un nombre fini de générateurs libres.
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