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82 ALBERT CHATELET

CHAPITRE I

IDÉAUX D'UN CORPS QUADRATIQUE

1. Construction d'un corps quadratique.

Un corps quadratique est caractérisé par un nombre entier,
d, différent de 0 et de +1, sans facteur carré; ou, plus précisément,

par le trinôme du second degré normé (de premier coefficient
égal à +1), appelé polynôme fondamental du corps:

dont les coefficients sont, suivant la divisibilité de d—1 par 4:

d—1 div. par 4:

Ce trinôme peut être mis sous la forme (commune aux deux cas) :

D est appelé le discriminant du corps.

Le trinôme est irréductible —ou sans zéro rationnel—, puisque

D n'est pas carré parfait (le cas d +1 —ou D +4—
étant exclus).

Si d —donc aussi D— est positif, le trinôme a deux zéros
réels, (non rationnels), on dit que le corps est réel ; si d —donc D—
est négatif, le trinôme a deux zéros complexes, le corps est dit
imaginaire.

F(x) x2—Sx+N,

S —1, N (1—d): 4, 4F(x) (2x+l)2—d;
d—1 non div. par 4:

S — 0, N —d F(x) x2—d.
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On peut donner du corps diverses constructions équivalentes:
Le corps quadratique, caractérisé par le polynôme

fondamental F(x), désigné par R(0), peut être obtenu en « adjoignant »,

par addition, soustraction et multiplication, au corps R, des
nombres rationnels, un symbole —ou générateur—, désigné
par 0, qui se comporte comme un zéro de F(x).

On peut entendre par là que ce corps R(0) est l'ensemble des
valeurs /(0), des expressions entières —ou polynômes—
à coefficients rationnels, pour la valeur 0, de l'indéterminée x.
Toutefois chacune d'elles est (considérée comme) égale à la
valeur r+s0, du binôme:

r+sx f(x)—F(X q(x),
reste de la division (euclidienne) de f(x) par le polynôme F(x).

Il est équivalent de dire qu'un élément de R(0) est Yensemble
des expressions (considérées comme) égales entre elles:

r+s0++(0)xq(0); q(x) polynôme à coefficients dans R;
(la valeur ,F(0) se comportant comme un élément nul).

On se borne, ordinairement, à utiliser les expressions linéaires
r+50, les autres servant seulement à définir, [ou à justifier], leur
calcul. Deux éléments sont égaux, si et seulement si leurs expressions
linéaires ont des coefficients (rationnels) égaux:

(r+s0) (r'++0) «• / et s'}.
Les règles explicites des opérations internes de signe +

multiplication, de signe x) se déduisent du « comportement » de 0
ou de la règle du reste (qui revient à remplacer 02 par SQ—N) :

(r+s0) + (r'++0) (r+r')+ (s+s')0;
(r+s0)x(r'+s'0) (rr'—Nss')

Ces règles (ou le calcul des expressions entières et la règle du reste),
montrent que ces deux opérations ont les qualités usuelles: elles
sont associatives, commutatives et la multiplication est distributive
relativement à l'addition.

Les binômes 0+00 (en abrégé 0) et 1+00 (en abrégé 1), sont les
elements nul (neutre pour l'addition) et (neutre pour la multi-
plication). Chaque élément r+sQ a un opposé déterminé:
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>*)+(—-5)0 (—1 + 00) X (r+s0), en abrégé —(r+s0).
La somme de deux opposés est égale à l'élément nul, la soustraction
(opération inverse de l'addition) est possible et déterminée: soustraire
un élément est équivalent à additionner son opposé 1).

On peut aussi considérer que le corps quadratique R(0) est un
ensemble d'éléments, désignés par les lettres grecques p,oc,ß,..., qui
sont des formes (linéaires) de deux symboles: 1 {unité) et 0

générateur:

p rx (l)+sx (0), en abrégé /*+s0;

dont les variables, ou multiplicateurs, des symboles 1 et 0,
désignées par des lettres latines: r,s,a,&,... sont des nombres rationnels.

Les opérations (addition, soustraction, multiplication), entre
ces éléments sont les mêmes qu'entre les formes; toutefois la
multiplication, distributive relativement à l'addition, est définie
par la table de multiplication (commutative et associative) des
symboles:

(1)X(1) - (1); (1)X(0) - (0)x(1) (0);
(0) X (0) - —N+SQ.

Les éléments, pour lesquels le multiplicateur de 0 est nul:

rx(l)+Ox0, en abrégé r,

qui comprennent les éléments nul, et unité, sont appelés les
éléments rationnels du corps; ils se calculent entre eux (égalité
et opérations) comme les nombres rationnels (éléments du
corps R).

De la construction adoptée pour R(0), il résulte que, dans
cet ensemble, le polynôme fondamental F{x) est décomposable en
—ou égal à— un produit de deux binômes linéaires riormés:

F(x) (s—0) X {x—0') ; 0' S X (l) + (—1) X 0, ou £—0.

On peut dire que, dans R(0), F(x) a deux zéros 0 et 0', tels que:

x) On reconnaît, dans ce calcul, une construction analogue à celle des
nombres complexes, dans le corps des nombres réels, par les congruences
de Cauchy. Plus généralement, on peut dire que R(0) est isomorphe à
l'anneau quotient ; [R(rc) anneau des polynômes à coefficients
rationnels; F(x) polynôme fondamental].
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6+0' S; 0X0' N; (0—0')2 » S*—iN D.

Le corps R(0) peut être construit aussi avec les deux
symboles: l'unité 1 et le générateur 0', moyennant la correspondance
(biunivoque) suivante des multiplicateurs:

r+s0 r'+s'0' o r' — r-\-sS et s' —s.

1. 2. Inverses et division.

L'irréductibilité de F(x) —ou l'inexistence de zéro rationnel—
permet d'affirmer que: tout élément p r+s0, non nul, de R(0),
a un et un seul inverse, c'est-à-dire qu'il existe un élément (unique),
désigné (suivant la notation habituelle) par p-1, tel que le produit

pXp-1 soit égal à l'élément unité +1.
Pour obtenir cet inverse, on peut calculer le produit:

(r+s0) x(r+s0') r2+£rs+iVs2 s2xF(—r:s) q;

c'est un élément rationnel du corps, qui n'est pas nul (r et s ne l'étant
pas simultanément), puisque F(x) n'a pas de zéro rationnel. Le
quotient de r+s0' par ce nombre rationnel q:

-i r
I V r+Ss sû

p - + -0 ou 0;
q q qq

est l'inverse cherché puisque pXp~
1 =q:q=+1.

Un raisonnement (de caractère général) montre que l'existence
de l'inverse de p entraîne la possibilité et la détermination r),
de la division par p (inverse de la multiplication) et, notamment
la détermination de cet inverse lui-même de la division
par p de l'élément unité):

£Xp cr o (Çxp)Xp-1 cTXp"1 o ^ =dXp^,

L'ensemble des éléments non de R(0), entre lesquels
existe une multiplication associative, et commutative, ainsi que
1 opération inv erse de division, est un groupe multiplicatif abélien.

b Par possibilité on entend qu'il existe un quotient; par détermina-
tion, on entend que ce quotient est unique.
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L'ensemble R(0), formé de ce groupe et de l'élément nul, est
un corps, au sens général de ce terme (ce qui justifie le nom
de corps quadratique). L'ensemble des éléments rationnels r,
de R(0), en est un sous-corps, isomorphe —ou, par abréviation,

égal— au corps R, des nombres rationnels (inversement
R(0) est sur corps de R).

La construction de l'addition, de la soustraction et de la multiplication
et les qualités de ces opérations resteraient valables, même sans

l'hypothèse d'irréductibilité de F(x); les inverses n'existeraient alors

que pour certains des éléments r+90 (ceux pour lesquels —r: s

n'annule pas F(x)). L'ensemble construit serait seulement un anneau,
commutatif avec une unité, —ou au sens restreint—

On peut aussi considérer que R(0) est un sous-corps du corps
des nombres: réels si D est positif; complexes si D est négatif. Cette
conception fournit encore une justification des règles de calcul, y compris

la division. Elle sera utilisée ci-dessous pour établir la détermination

des cycles d'idéaux semi-réduits, dans un corps réel (46 et 47).

2. Eléments conjugués.

Définition. — Dans le corps quadratique R(0), deux éléments
sont appelés conjugués, ou chacun d'eux est le conjugué de

l'autre, lorsqu'ils sont égaux, respectivement, à des formes
de 1, 0 et de 1, 0', avec les mêmes multiplicateurs (nombres rationnels).

Ils sont désignés par la même lettre, avec et sans accent
(comme 0 et 0', qui sont des éléments conjugués particuliers) :

p r+,90 (r-\-Ss)—,90' o p' r+sQ' (r—Ss)—s0.

Un élément du corps est égal à son conjugué, si et seulement si

c'est un élément rationnel (coefficient de 0 nul). Pour le vérifier, il suffit
de former la différence de deux conjugués:

0 p—p' « s X (0—0') —£'«9+2,90 Ss—2s0' o «9 0.

Les éléments 0 et 0' sont conjugués et inégaux.

Deux éléments de R(6), obtenus en remplaçant x par 0 ci£ 0',



L'ARITHMÉTIQUE DES CORPS QUADRATIQUES 87

dans un même polynôme f(x), à coefficients rationnels, sont

conjugués: .v

/(6) r+^0 p ^ /(6') r+sQ' p'.

Car les éléments 0 et 0', annulant chacun le polynôme fondamental

(dans R(0)), les valeurs qu'ils donnent à f(x), sont respectivement

égales à celles qu'ils donnent au binôme du premier degré:

r-\-sx — f(x)—F(x)xq(x)1

reste de la division de f(x) par F(x).

En particulier les éléments conjugués d'une somme, d'un produit
(ou, plus généralement, d'une expression entière, à coefficients rationnels),

d'éléments de R(0), sont égaux à la somme, au produit (ou à

l'expression entière) des éléments respectivement conjugués.

Propriété, caractéristique de la conjugaison. — Pour que
deux éléments, d'un corps quadratique R(0), soient conjugués,
il jaut et il suffit que leur somme et leur produit soient des éléments

rationnels —ou égaux à leurs conjugués—-
Il est équivalent de dire que les deux éléments sont

simultanément zéros d'un même polynôme, du second degré, normé,
à coefficients rationnels.

La condition est nécessaire: p+p' et pXp' sont respectivement
égaux à leurs conjugués, en raison de la commutativité de la somme
et du produit; ils sont donc rationnels. D'ailleurs:

(r+50) + (r+50/) 2r-\-Ss\ (r+sQ)x(r+sQ') r2—Srs-\-Ns2.

Les deux éléments conjugués sont zéros du trinôme normé:

r(x) (x—ç>)x(x—p') x2—(2r+&ç)£+(r2—Ss+Ns2).

La condition est suffisante: en raison des propriétés de la division
des polynômes, un trinôme normé du second degré r(#), à coefficients
rationnels, considéré dans le corps R(0), ne peut avoir plus de deux
zéros. Or les valeurs:

r(r+s6) r(p) r(r+s6') r(p'),

sont conjuguées, quel que soit le trinôme à coefficients rationnels.



88 ALBERT CHATELET

Elles ne peuvent être nulles que simultanément; si r(x) a un zéro,
il en a un deuxième qui est le conjugué du premier.

Si deux éléments p,p' ont pour somme et pour produit des éléments
rationnels: S(p) 5(p') et iV(p) — iV(p'), ils sont les deux zéros du
trinôme normé

r(x) x2—S(p)x+N(p) =-- (x-p)x(x-p');
donc sont conjugués.

Définitions. — Dans un corps quadratique R(0), pour un
couple d'éléments conjugués, p et p', —ou pour chacun d'eux—
on appelle:

Trace: la somme p + p', désignée par 5(p), ou S(p');
Norme: le produit pXp', désigné par iV(p), ou iV(p');
Polynôme fondamental: le trinôme normé, qui a pour zéros

p et p':

r(x) (x—p)X(#—p) x2—S(p) Xx+N(p);
Discriminant: le carré de leur différence, qui est encore un

élément rationnel :

(p—p)2 [S(p)]2—4iV(p) s2xD; désigné par Z>(p).

Pour deux éléments conjugués, exprimés avec le générateur 0,

ou 0':

p r+50 r'+s'0'; p' r+s0' r'+s'0;
la trace et la norme sont égales indifféremment à:

S(p) 5(p') - 2r+Ss 2r' + S$';
N(p) N(p') ^^Srs-j-Ns2 r'2-\-Sr's' +JVY2.

On peut encore exprimer la norme en utilisant la décomposition
de 4F(x):

4N(p) 47V(p/) - (2r+Ss)2—Ds2 (2r'+Ss')2—Ds'2.

Pour le couple d'éléments 0 et 0', ces expressions deviennent:

5(0) 5(0') 5; N(d) iV(O') N; £>(0) D(Q') D.

Pour un élément rationnel r, ce sont:

S(r) 2r; N(r) r2; D(r) 0.
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De ces définitions il résulte que: Xinverse p-1, d'un élément p,

non nul, est égal au produit de son conjugué par Vinverse de

sa norme :

p-l p'x»)]-1, p'-1 px»)]-1
La transformation —ou Vautotransformation— qui, dans un corps

quadratique R(0), fait correspondre —ou substitue— à tout élément p

son conjugué p', est biunivoque et involutive (le conjugué du conjugué
est égal à l'élément lui-même). Elle conserve les éléments rationnels
—ou laisse invariant le sous-corps R— elle conserve les opérations
(addition et multiplication, ainsi que leurs inverses soustraction et
division): le conjugué (du résultat) d'une expression rationnelle à

coefficients rationnels, d'éléments du corps est égal à (le résultat) de

l'expression rationnelle, avec les mêmes coefficients, des conjugués
respectifs des éléments de l'expression primitive.

Dans le langage de l'algèbre moderne, la conjugaison est un
automorphisme du corps R(0), considéré comme une extension du

corps R, ou comme une adjonction à ce corps R, d'un zéro de F(x).

3. Domaine des entiers (algébriques) d'un corps quadratique.

Par anticipation de la définition générale des bases d'un
idéal (9), on appellera bases canoniques conjuguées, d'un corps
quadratique R(0) R(0')5 les deux couples conjugués
d'éléments, éventuellement disposés en colonnes:

1 ou 1 ou

qui ont permis d'engendrer les couples d'éléments conjugués du
corps par des formes, qui peuvent être écrites en produits
matriciels : -

1

P — T'+sô — II rs II X ; p' r-f-s0' Il Il X

Les nombres rationnels r,s, multiplicateurs —ou variables
de la forme qui définit un élément p, seront appelés les coor-
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données: de p, relativement à la base utilisée, et aussi du couple
d'éléments conjugués, relativement au couple des bases

conjuguées.

Les coordonnées des termes d'une base, relativement à elle-même,
sont respectivement 1, 0 et 0, 1. La permutation —ou transposition—
des bases conjuguées remplace, ainsi qu'il a été dit r,s par r+Ss, —s.

Définitions. — On appellera facteur rationnel, d'un
élément p (et dû couple d'éléments conjugués p,p'), ^ plus grand
commun diviseur positif q, de ses coordonnées, relativement à

l'une —ou au couple— des bases canoniques conjuguées.

Le facteur rationnel q est indépendant de la base choisie —ou
de l'ordre du couple—- car:

p.g.c.d. positif (r,s) p.g.c.d. positif (r-^-Ss, —5).

Un élément —ou un couple d'éléments conjugués— est égal au

produit de son facteur rationnel par un élément —ou un couple
d'éléments conjugués— dont les coordonnées sont des nombres

(entiers rationnels) premiers entre eux a,b:

p qx(a+bQ), p' gx(a+è0'); p.g.c.d. (a,b) 1.

Définitions. — On appelle entier algébrique d'un corps R(0)

—ou, en abrégé, entier du corps— tout élément, du corps, dont
le facteur rationnel est un nombre entier —ou dont les
coordonnées relativement à une base canonique sont des nombres
entiers—

Un entier du corps est qualifié canonique, lorsque son
facteur rationnel est égal à +1 —ou lorsque ses coordonnées
sont des (nombres entiers) premiers entre eux—

Ces définitions et ces propriétés peuvent être rassemblées
dans l'énoncé suivant:

deux éléments conjugués du corps sont égaux aux produits
de leur facteur rationnel q par deux éléments conjugués ol oc' qui sont
des entiers algébriques canoniques:

p gXa, p' gXa; ou || p p' || q X || oc oc'|

Un élément rationnel du corps:
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r+0.0•= r-f-0.0'; ou simplement r;
de coordonnées r et 0, est égal à son conjugué; son facteur
rationnel est égal à la valeur absolue |r|; c'est un entier algébrique
—ou un entier du corps— si et seulement si r est un nombre

entier, dans ce cas il est appelé indifféremment: entier rationnel
du corps —ou nombre entier—

Les seuls éléments rationnels du corps qui soient des entiers
algébriques canoniques sont +1 et —1 —l'unité et son opposée—.

Théorèmes de la définition axiomatique des entiers
algébriques. — 1. Dans un corps quadratique, pour qu'un entier
du corps a (et simultanément l'entier conjugué a') soit un entier
canonique, il faut et il suffit que les nombres entiers [£(a)]2 et N(oc)
n'aient pas de diviseur carré commun, sauf l'unité.

2. Pour qu'un élément p (et, simultanément l'élément
conjugué p') soit un entier du corps, il faut et il suffit que sa trace S(p)
et sa norme JV(p) soient des nombres entiers.

Il est équivalent de dire que p (et simultanément le conjugué

p') doit être zéro d'un trinôme normé du second degré
(qui est son polynôme fondamental), dont les coefficients S(p)
et -/V(p) soient des nombres entiers.

On établit la première propriété par contraposition. La condition
est nécessaire: si un entier a du corps, de coordonnées a, b n'est pas
canonique, il existe (au moins) un diviseur premier p1 différent de 1,

commun à a et b et son carré p2, est diviseur commun de :

15(a) |2 (2 a+Sb)*eta) 2.

La condition est suffisante:on peut utiliser l'expression (2) de
la norme de l'entier algébrique a a+èO; nombres entiers):

4iV(a) (2 a+Sb)*—Db*|5(a)|2—

Si le carré p2 d'un nombre premier impair p était diviseur commun de
15(a)!2 et de ^(a)> comme il ne peut diviser D qui n'a pas de facteur
carré, le nombre premier p diviserait b et 5(a) 2 donc a et b,
de sorte que l'entier algébrique a ne serait pas canonique.

On peut établir l'impossibilité d'un diviseur 22, —ou 4— en



92 ALBERT CHATELET

distinguant les deux cas de construction de R(0). Pour S 0,
la norme iV(oc) a2-\-Nb2 ne peut être divisible par 4, car, suivant
les parités de a,b (premiers entre eux):

a,b impairs : N(oc) 1+iV ^ 0, (mod. 4);
a pair, b impair: iV(oc) N ^ 0, (mod. 4);
a impair, b pair: iV(oc) =1 0, (mod. 4).

Pour S —1, on peut considérer, suivant le cas, la trace ou la
norme :

b impair: S(oc) 2a—b n'est pas divisible par 4;
b pair et a impair: iV(a) a2—ab-^Nb2 1 ou 3, 0, (mod. 4).

On peut alors établir la deuxième propriété; la condition est

nécessaire: si les coefficients de p sont entiers, il en est évidemment
de même de S(p) et de iV(p).

La condition est suffisante: si le facteur g, de p, n'est pas entier,
son dénominateur a (au moins) un facteur premier p qui ne divise pas
le numérateur (q sous forme irréductible). D'après les expressions
de la trace et de la norme:

\S(ç>)\2 q2X |iS(a)|2, N(9) — q2xN{a); a entier canonique;

p2 ne peut diviser simultanément ^(a)]2 et N(oc); donc ^(p) et iV(p)

ne peuvent être simultanément des nombres entiers.

L'ensemble des entiers algébriques du corps R(0), qui sera
désigné par E(0) est un domaine d'intégrité, c'est-à-dire que:

il contient les sommes, les différences et les produits mutuels
de ses éléments, ainsi que l'élément unité 1 (donc tous les entiers
rationnels du corps) ; en outre tout élément a, non nul est régulier,
c'est-à-dire que l'égalité de deux produits par a peut être
simplifiée et entraîne l'égalité des facteurs:

ocxSj aX§2 ^ aX(Sx—S2) — 0 o §x §2-

Pour vérifier cette régularité, on peut considérer l'égalité dans

le corps et en multiplier les deux membres par l'inverse a-1. On

pourrait aussi, dans le domaine E(0) considéré seul, multiplier les

deux membres par le conjugué de a.

Le domaine E(0) contient tous les entiers rationnels du corps R(0)
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—ou tous les nombres entiers— ; ils y constituent un sous-domaine,

qui sera désigné par E et qui est isomorphe au domaine des nombres

entiers (ordinaires, désigné souvent par Z).
La conjugaison établit dans E(0) une autocorrespondance (le

conjugué d'un entier du corps est un entier), ou, plus exactement un

automorphisme (2), qui conserve les opérations et laisse invariants les

entiers rationnels, en sorte que E(0) est une extension de E.

Définition. — On appelle diviseur de l'unité un entier

algébrique s, dont V inverse sf1 est aussi entier algébrique, en sorte

que cet inverse est aussi diviseur de l'unité.

Un produit de diviseurs de l'unité est encore diviseur de l'unité,
puisque l'inverse de ce produit, étant égal au produit des inverses
des facteurs, est aussi un entier algébrique. Il en résulte que les

diviseurs de l'unité d'un corps quadratique R(0), qui appartiennent
au domaine E(0) forment un groupe abélien, multiplicatif; il est sous-

groupe du groupe des éléments non nuls du corps; il sera désigné

par U(0).

La construction de l'inverse (1.— 2) montre que deux diviseurs
inverses de l'unité sont des entiers conjugués, dont la norme
commune est égale à -f 1 ou à —1. Les diviseurs de l'unité s,
dans le corps -R(0) sont donc obtenus par la résolution (en
nombres entiers, x\y\ coefficients du diviseur cherché) de l'équation,

connue sous le nom de Pell-Fermat:
x2+Sxy+Ny2 +1 ou —1; x,y nombres entiers.

La structure du groupe U(0) dépend de la nature du corps, réel
ou imaginaire, c'est-à-dire encore du signe de d, ou D. On voit
immédiatement que:

pour toute valeur négative de d, exceptées —1 et —3, il n'y a
que deux diviseurs de V unité +1 et —1;

pour d —1, il y a quatre diviseurs de Vunité +1, —1, -fi, —f
(i désignant, suivant l'usage, un zéro de x2-\-1);

pour d — —3, il y a six diviseurs de Vunité +1, —1, -f /, -f/2,-
~j'r —Z2; (zéros de x2—1, de x2+x-\r 1, et de x2—x+ï).

On étudie ci-dessous le cas de d positif; le groupe U(0) est alors
formé des produits par +1 et par —1, des éléments d'un groupe
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cyclique, d'ordre infini (puissances différentes, d'exposants entiers
quelconques, d'un élément de base).

4. Bases arithmétiques des entiers d'un corps quadratique.

La construction des entiers du corps R(0) —ou des éléments
du domaine E(0)— peut être exprimée en disant qu'ils sont
engendrés, par additions et soustractions, au moyen des deux termes
d'une base canonique, indifféremment 1, 0 ou 1, 0'.

Un entier \ x-\-y%, de coordonnées x,y, nombres entiers, est
égal à la somme de \x\ éléments égaux à +1, ou à —1 (suivant le
signe de x), et de \y\ éléments égaux à 0, ou à —0 (suivant le signe de y).
Le conjugué est obtenu de la même façon en remplaçant 0 par 0',
En outre les coordonnées x,y sont déterminées, en particulier l'élément
nul a pour coordonnées 0,0.

Cette détermination (et cette construction) peut être exprimée
par l'un des deux énoncés suivants qui sont équivalents:

il y a une correspondance biunivoque entre les entiers Ç, du
corps et les couples x,y de nombres entiers (qui en sont les
coordonnées);

les entiers Ç sont représentés proprement par les points M,
de coordonnées entières x,y, dans un plan, rapporté à deux
vecteurs OA et OJ5, non colinéaires, dont l'origine 0 représente
l'élément nul et dont les extrémités A,B représentent les termes
1,0 de la base.

Les entiers conjugués £, sont ainsi représentés respectivement
par les points M, M', définis par les relations vectorielles (fig. 1)

SÎO) ozz.2 5*-4 oclc 2. 3
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ÖM x.ÖA+y.ÖB; OM' x.OA+y .OB' ;

(OB' « S.ÖA—ÖB).

Les points M,M' sont symétriques obliquement, parallèlement à la
direction relativement à la droite qui porte OA.

Dans cette représentation l'addition est manifestement conservée
en ce sens que le point N représentant la somme yj ?i+?2 [dans
E(0)], de deux entiers, représentés par les points M± et M2 est défini

par la somme géométrique des vecteurs OM1 et OM2:

r\ £rKa ON ÖM^ÖM,.

Les points représentatifs iff, de coordonnées entières, sont les
sommets du réseau de parallélogrammes (fig. 2) construit avec les

vecteurs OA et OB. On sait qu'un tel réseau peut être engendré

par tout autre couple de vecteurs ~OC1 et OC2, à condition qu'ils
forment un triangle non aplati qui ne contienne d'autres points du
réseau que ses sommets 0,CvC2. Cette propriété qui sera établie
arithmétiquement ci-dessous conduit à définir et à préciser d'autres
générations du domaine E(0), par des couples d'entiers yXi y2 qui
peuvent encore être appelés des bases, arithmétiques libres, de E(0).
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4.1; Bases arithmétiques libres.

Définitions. — On appelle base arithmétique, du domaine
des entiers du corps E(0), un système de h entiers yf, tel que tout
entier Ç, du corps soit égal à (au moins) une forme de ces termes yif
pour des multiplicateurs —ou des valeurs des variables— égaux
à des nombres entiers:

£, S^XYiî î de 1 à A; zt nombres entiers.

Il est équivalent de dire que tout entier \ peut être construit,
au moins d'une façon, par additions et soustractions, au moyen des

termes de la base: il est obtenu en additionnant les h sommes de \zf\

éléments égaux à +y^, ou à —y^ suivant le signe de z{. Les bases

canoniques sont manifestement des bases arithmétiques, de deux
termes.

Une base arithmétique doit contenir au moins deux termes, non nuls,
car les éléments xxy0l construits avec un seul terme y0, non nul, ne

peuvent contenir le produit 0Xyo, qui est encore un entier du corps,
puisque :

x nombre entier et y0 ^ 0 => 0Xyo—xXy0 (0—x) X y0 7^ 0.

Une base arithmétique est qualifiée libre, lorsque chaque entier Ç

n'est égal qu'à une seule (valeur de la) forme, en sorte qu'elle
définit une représentation propre des entiers E, par les systèmes
de h multiplicateurs zu qui sont alors appelés (sans ambiguité)
les coordonnées de £, relativement à cette base libre.

On va d'abord étudier les bases formées de h 2 termes yx y2,
dont on constate que ce sont les seules qui soient libres. On disposera
ces termes en colonne ; les multiplicateurs ou variables étant en ligne,
de sorte que la construction d'un entier peut être exprimée par le

produit matriciel:
Y2

£ hXy1+z2Xy2 |2i22||X
Y2

Théorème de construction dés bases arithmétiques libres
—Dans E(0), toute base arithmétique, de deux termes, est obtenue
en multipliant une base canonique (en colonne), à gauche, par une
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matrice carrée A à termes entiers (rationnels), et de déterminant

égal à +1 ou à —1.

Cette base est libre et les coordonnées x y, d'un entier,
relativement à la base canonique, sont obtenues en multipliant, à

droite, par la même matrice, les coordonnées z1 z2, de cet entier,
relativement à la nouvelle base, disposées en ligne:

et l2' y\1% -^21 x A

Le théorème comporte deux propositions partiellement réciproques:

d'une part: toute nouvelle base arithmétique, de deux termes ^ y2,
est obtenue par une telle multiplication.

Les entiers (du corps) y^ y2 peuvent être construits avec 1 et 0,

ce qui peut s'exprimer par une égalité matricielle: multiplication

par une matrice A, dont les termes sont des nombres entiers:

Yi 1

Ax
Y2 0

Yi %+2/i0 Yi 1 *1 Vi
ou ^4x ; A -

Y2 ^2+ 2/2® Y 2 0
(M

'

(MH

Mais les entiers 1 et 0 doivent pouvoir être construits, d'une
façon analogue, en multipliant (à gauche) la nouvelle base par une

matrice convenable B, dont les termes sont aussi des nombres entiers;
On en déduit:

1 Yi ïi 1 1 1

B et Ax => (Sx4)X
0 T2 T 2 6 0 0

L'implication est une conséquence de l'associativité de la multiplication

des matrices —ou de l'élimination de y1? y2 entre les équations
qu'expriment les égalités matricielles—

Mais, relativement à la base canonique elle-même, 1 et 0 ont des
coordonnées déterminées qui sont 1, 0 et 0, 1; donc:

BxA
1 0

0 1

ou [1], matrice unité.

L'Enseignement mathém., t. VI, fasc. 2.
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Les déterminants de B et A, qui sont des nombres entiers, dont le

produit est égal à +1, sont donc égaux à rj (+1 ou —1). S'il en est
ainsi pour la matrice A, elle a une inverse déterminée, à termes
entiers :

f\y% —Wi
B A~l

— r2 7]Xi

Réciproquement, un couple d'entiers du corps yx y2, ainsi construits

par multiplication par une telle matrice A, forment une base

arithmétique, qui est libre.
Tout élément égal à une forme de ces entiers, avec des multiplicateurs

entiers rationnels z1 z2, est un entier du corps et on peut
calculer ses coordonnées relativement à la base canonique, en
appliquant leur détermination:

\x y x Ilz1 z2||x^4 x \x y\\ \Z1 Z2 jxA

C'est la construction annoncée des coordonnées: à tout couple
de nombres entiers z± z2 correspond un, et un seul, couple de nombres
entiers x y. Mais on peut, réciproquement, exprimer z1 z2 en fonction
de x y, utilisant la matrice inverse —ou en résolvant les équations
linéaires— :

lk «g il ||«2/||xi"i-i,
comme la matrice A~1 est à termes entiers, à tout couple de nombres
entiers x y, correspond un, et un seul, couple de nombres entiers zx z2,

qui sont les coordonnées relativement à la nouvelle base, qui est
donc libre.

On peut aussi bien disposer les éléments des bases en lignes

et les coordonnées en colonnes ; les matrices A et A~{ doivent alors
être remplacées par leurs transposées, notées A et Ä~{ et obtenues en

permutant, dans les précédentes, lignes et colonnes de même rang:

X-j^ 7^2
2 Ä~l

Vi Vi —Wi TqXi
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On remarquera que la transposée de l'inverse est égale à l'inverse de
la transposée et que les déterminants des quatre matrices ainsi
considérées ont la même valeur tj (+1 ou —1).

On peut ainsi noter la construction de la nouvelle base et du
nouveau couple de coordonnées, tous deux disposés de la même façon;
en colonnes --ou en lignes— :

Ti 1 % X 1 Tx Tal I1 61!X-^
Ax 5 Ä~{X OU

Y2 e % y 11%%

4.2. Substitutions linéaires contragrédientes et unimodulaires.

Définitions. — On appelle substitution linéaire, définie par
une matrice carrée A (d'ordre 2), le remplacement d'une colonne
—ou d'une ligne— d'un couple d'éléments (d'un certain domaine)
par le produit de sa multiplication, à gauche —ou à droite—
par la matrice A.

La substitution inverse, est celle qui exprime l'ancien couple en
fonction du nouveau; elle est définie si le déterminant de A a un
inverse ^elle est alors obtenue par la multiplication par la matrice
inverse A~1i

Deux substitutions sont contragrédientes lorsqu'elles sont
respectivement définies par une matrice et la transposée de son inverse.

Une matrice carrée A (d'ordre 2), ainsi que la substitution linéaire
qu elle définit, est appelée unimodulaire, lorsque ses termes sont des
nombres entiers et que son déterminant est égal à +1 ou à —1. Il en est
alors de même de la matrice inverse A-1 et des matrices transposées A
et A ainsi que des substitutions qu'elles définissent.

Avec ce vocabulaire le remplacement: d'une base canonique
par une base arithmétique (de 2 termes, donc libre); et des couples
de coordonnées, d'un entier du corps, relativement à ces bases,
sont deux substitutions (linéaires) unimodulaires contragrédientes.

Le produit et le quotient —ou produit par l'inverse— de deux
matrices ou substitutions— unimodulaires est encore unimodulaire
(en raison de la règle de multiplication des déterminants). Gomme la
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multiplication des matrices est une opération associative, les matrices
unimodulaires forment un groupe qui contient l'inverse et la transposée
de chacune d'elles: A, A et A~1, A~{.

Il en résulte que deux bases arithmétiques (de deux termes, donc

libres) et les deux couples de coordonnées d'un même entier du corps,
relativement à ces bases, sont liés par deux substitutions unimodulaires
contragrédientes.

4. 3. Bases conjuguées et base matricielle.

Deux entiers conjugués i; et Ij ont manifestement des
coordonnées égales, relativement à une base arithmétique libre et
à sa conjuguée, c'est-à-dire formée de termes respectivement
conjugués:

l II*! zAx
Yi YJ

^ £ — \Z1 -^2 (J *
Y2 Ï2'

Les bases canoniques conjuguées 1 0 et 1 0' sont des bases

arithmétiques libres conjuguées particulières.

On appellera base matricielle, éventuellement canonique, une
matrice carrée, d'ordre 2, constituée par deux bases arithmétiques
libres, conjuguées, disposées en colonne. On peut utiliser une telle base

pour exprimer la construction commune de deux entiers conjugués:

ïi Ti

Y2 Y2

Ils rlï-lh ^21 x r*

Deux bases matricielles T et A et les couples de coordonnées

(d'un couple d'entiers conjugués \ du corps) relativement à ces

bases: zx z2 et tx \t2 se déduisent l'un de l'autre par des substitutions
unimodulaires contragrédientes :

A - ixT; \Z1 Z2 K h\\xA.

L'étude des bases arithmétiques,qui ne sont pas présumées

libres, sera faite ci-dessous dans le cas général des bases d'un
idéal (9).
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5. Congruence fondamentale (module premier).

L'arithmétique-d'un corps quadratique R(0) est intimement
liée à l'étude de son polynôme fondamental, considéré dans
Vanneau des nombres entiers, définis à un module entier m près,
—ou des classes d'entiers, mod. m—. C'est cette étude que
précisent les définitions et les propriétés suivantes.

Définitions. — On appellera congruence fondamentale,
mod. m, de R(0), l'équation congruentielle, obtenue en écrivant
que le polynôme fondamental du corps F(x), est congru à 0,
mod. m:

x2—Äc+iV" 0, (mod. m).

L'étude de cette équation en x, consiste à chercher les valeurs
entières c, de la variable x, telles que F(c), qui est un nombre entier,
soit divisible par m. S'il en existe, elles se répartissent en progressions
arithmétiques, de raison m, doublement illimitées:

c+Xm; X nombre entier quelconque.

En effet l'égalité:

F(c-\-Xm) F(c)~Vmx(un nombre entier),

montre que tous les nombres entiers F(c-{-Xm) sont divisibles par m,
s'il en est ainsi de l'un d'eux.

Une telle progression, c+Xm, est couramment appelée une classe
dentiers, mod. m —ou un entier défini, mod. m—

On appellera zéro, mod. m, de F(x) —ou solution de la
congruence fondamentale— indifféremment: une progression
c+Xm, dont chaque terme donne à F(x) une valeur F(c+Xm)
divisible par m; ou un seul des termes de cette progression, choisi
arbitrairement, ou précisé par une condition convenable.

On peut d'abord établir une propriété générale, valable pour
tout module m.

Théorème des zéros conjugués. — Les solutions de la
congruence fondamentale, s'il en existe, forment un, ou plusieurs,
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couples: de zéros mod. m, de .F(:r). Les deux zéros d'un couple ont
une somme congrue à S, mod. m:

c c' c0+Xrm; c+c' (mod. m);

ils sont appelés conjugués et désignés par une même lettre avec
et sans accent (comme les éléments conjugués du corps).

Deux zéros conjugués sont égaux si et seulement si m est diviseur
du discriminant D\ leur valeur commune est alors appelée zéro
double.

L'existence d'un zéro c entraîne celle de son conjugué c', car,
d'après les calculs évidents de congruences, mod. m:

cxc' ex (S—c) N
(mod. m)

F(x) ~ (x—c)x(x—c')

En outre la congruence:

(c—c')2 S2-—47V D, (mod. m),

montre que les deux zéros sont congrus —ou les deux progressions
sont égales—, si et seulement si D est congru à 0, mod. m.

Pour qu'un zéro soit double il faut et il suffit qu'il annule, mod. m,
le polynôme dérivé:

F(x) 2x—S:
car: v ' '

c c o 2c S, (mod. m).

On peut remarquer que ces calculs de congruences peuvent, aussi
bien, être considérés comme des calculs [d'addition, soustraction et
multiplication] entre les m classes d'entiers, mod. m:

0+Xm, 1+Xm, (m—1 )+Xm,

qui constituent un anneau commutatif avec unité —ou au sens
restreint—

Théorème de la congruence fondamentale pour un module
premier. — Lorsque le module de la congruence fondamentale
est un nombre premier

1. Si p ne divise pas le discriminant D :

ou bien la congruence est impossible;

c+c' S,
et

c2—Sc+N 0
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bu bien elle a un et un seul couple de solutions inégales —ou
F(x) a un et un seul couple de zéros conjugués incongrus—• ;

2. Si p est diviseur de D (notamment si p 1), la congruence
a deux solutions confondues —ou F{x) a un et un seul zéro
double—

La première partie du théorème peut être complétée par des

propriétés caractéristiques de possibilité:
pour un module premier p impair, ne divisant pas le

discriminant D, la congruence fondamentale est possible, si, et seulement

si, il existe un entier, dont le carré soit congru à D, mod. p.
On exprime parfois cette existence en disant que D est résidu
quadratique du nombre premier p.

pour le module premier 2, si le discriminant est impair, le
polynôme fondamental est de la forme:

F(x) x2+x+N; [S —1; D 1—4N];

la congruence fondamentale est possible si, et seulement si,
N est pair. Les deux zéros conjugués de F(x) sont 0 et 1, (mod. 2).

1. Lorsque m est égal à un nombre premier p, pair ou impair,
si la congruence est possible, le polynôme F(x) a, au moins, un couple
de zéros (conjugués), c et c', peut être égaux, et il est congru à un
produit de binômes. Il da pas alors d'autre zéro, car la congruence

(x—c) X (x—c') 0, (mod. p),

exige que l'un au moins des facteurs soit divisible par p, c'est-à-dire
que x soit congru à c ou à c'.

On peut exprimer ce raisonnement en disant que Vanneau des
p classes dentiers, mod. p, est un domaine d'intégrité, c'est-à-dire
qu'un produit de deux facteurs ne peut être nul, que s'il en est ainsi
de (au moins) l'un des facteurs. [C'est même un corps, car tout élément
non nul, y possède un inverse.]

Pour un module p, premier impair, on peut utiliser le produit
du polynôme F(x) par 4:

4F(x) (2x—S)2—D;
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l'existence d'un zéro est équivalente à celle d'un nombre entier (2c—S),
dont le carré est congru à Z), mod. p.

Pour le module premier p — 2, il n'y a que deux classes d'entiers,
représentés respectivement par 0 et 1 ; il suffit de former les valeurs

qu'elles donnent à F(x) x2-\-x-\-N:

F(0)=F(ï)=N, (mod. 2);

d'où la condition d'existence.

2. Pour un module premier impair p, diviseur de Z), l'expression
de 4F(x) est congrue à:

4F(x) (2x—S)2—D (2x—S)2, (mod. p);

elle montre qu'il existe un et un seul zéro e, mod. p, qui rend (2c—S)
divisible par p. Suivant le cas, il est congru à:

p—1
c 0, si S 0; c ——, si S —1,

A

Pour le module 2, lorsque D est pair, S est nul, la congruence:

x2+N 0, (mod. 2)

a une et une seule solution (zéro double), congrue à:

0, si N est pair; 1, si N est impair.

Pour p 1, la propriété est triviale, il n'y a qu'une seule classe,

formée de tous les nombres entiers et elle est zéro double de F(x).

6. Congruence fondamentale (module composé).

On considère d'abord un module primaire —ou puissance
d'un nombre premier > 1—

Théorème de la congruence fondamentale pour un module

primaire. Relativement à. un module ph, puissance (d'exposant A,

entier positif), d'un nombre premier p, différent de 1, le
polynôme fondamental F(x):
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1° n'a pas de zéro, pour tout exposant A, s'il n'en a pas pour
h — 1 —ou si la congruence est impossible, mod. p— ;

2° n'a pas de zéro, pour h supérieur à 1, s'il a un zéro double

pour h — 1 —ou si D est divisible par p— ;

3° a un et un seul couple de zéros conjugués, incongrus, s'il en
est ainsi pour h — 1 —ou si la congruence est possible, mod. p;
et p non diviseur de D—

Les trois conditions suffisantes énumérant tous les cas possibles,

le théorème exprime une propriété caractéristique d'existence
des zéros.

1. S'il existe un zéro c^, mod. ph, il l'est, à fortiori, mod. p;
c'est la propriété contraposée de l'énoncé.

2. Dans le cas d'un module premier impair p, différent de 1,

diviseur du discriminant Z), on peut encore utiliser 4F(x). Tout
zéro, c, mod. ph, l'est, à fortiori, mod. p; il rend.(2#—c) divisible par p
et (2x—S)2 divisible par p2, d'où la congruence:

4F(c) (2c—S)2—D —D, (mod. p2).

L'existence d'un zéro c, mod. ph, pour h > 1 ; donc, à fortiori, mod. p2;
entraînerait la divisibilité de D par p2, ce qui est contraire à la
définition du polynôme fondamental, dont le discriminant ne peut avoir
de facteur carré impair.

Dans le cas du module 2h et d'un polynôme de discriminant pair,
donc de la forme x2-\-N, tout zéro, mod. 2h, donc, à fortiori mod. 2,
ne peut être que de la forme:

0+2X, si N est pair; 1+2X, si N est impair.

Les valeurs de F(x), pour ces nombres, sont congrues à

(2X)2+iV E- iV, (l+2X)2+iV 1+iV, (mod. 4).

L'existence d'un zéro; mod. 2h, pour h > 1; donc, à fortiori, mod. 4;
entraînerait la divisibilité de iV, ou de 1+iV, par 4; ce qui est aussi
contraire à la définition du polynôme fondamental (1), puisque, dans le
premier cas N — —d, est sans diviseur carré, et que dans le second cas
l-f-TV — 1—d n'est pas divisible par. 4.
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3. On peut établir la propriété par récurrence sur en supposant
qu'il existe un et un seul couple de zéros, ch c'h, conjugués, incongrus,
mod. ph (ce qui est vrai pour h — 1). S'il en existe mod. ph+1, ils le

sont, à fortiori, mod. ph, donc de l'une des formes:

c^+Xp71, ou ch+\'ph; X,X' entiers.

On calcule les valeurs qu'ils donnent à F(x); pour le premier:

F(ch+\ph) F(ch)+Xph.F(ch),(mod. );

on a supprimé des termes du développement en X, qui sont multiples
de p271, donc à fortiori, de ph+i. La valeur ainsi obtenue est divisible

par p71, il suffit de chercher si son quotient par cette puissance peut être
divisible par p, d'où la congruence:

I^K): ph\+X.F(ch)=0, (mod. p).

Or ch étant zéro, mod. ph, l'est aussi mod. p et il ne peut être

double, en raison de la propriété 2, précédente. La dérivée, coefficient
de X, n'est donc pas nulle, mod. p, cette équation du premier degré en X

a une et une seule solution, qui peut être désignée par X^, on obtient
ainsi un zéro déterminé:

ch+i Ch+hPh,(mod.

On obtient de même un zéro déterminé ch-\-Xh.ph, de la deuxième

forme; ces deux zéros sont incongrus, puisque leur différence:

ch+l—e'h+i ch—ch, (mod. ph)

n'étant pas divisible par ph, ne peut l'être par ph+i. Comme ce sont
les deux seuls zéros, ils sont conjugués et leur somme est congrue à S.

L'application de la récurrence, depuis h 1, permet d'écrire

ces zéros, en partant des zéros, mod. p:

ch+i q+XiP+ .^+XftP71,

(mod. ph+i).

ch+1
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La somme de ces deux développements, limités a l'indice A, est

congrue à S, mod. pk+i f1].

Théorème de la congruence fondamentale pour un module
composé. — Pour un module égal au produit de plusieurs
puissances de nombres premiers différents:

m IImx\ mi p\l\ pl premier 1; rde 1 à s;

le polynôme fondamental a des couples de zéros conjugués si et
seulement si:

1° pour tout facteur premier diviseur du discriminant Z),

Vexposant ht est égal à 1 (mi pf) ;

2° pour tout facteur premier p^ premier avec Z), la congruence,
mod. pp est possible —ou le polynôme a deux zéros conjugués
incongrus—

Si ces deux conditions sont remplies et si s' < s est le nombre
de facteurs premiers .^- (ou mf) premiers avec Z), il y a 2S' zéros
incongrus. Si s' n'est pas nul, ils sont répartis en 2S,_1 couples de
zéros conjugués; si s' 0; ils se réduisent à un zéro double;
m étant d'ailleurs alors diviseur de D.

Les conditions sont nécessaires: si l'une, au moins, n'était pas
vérifiée pour un facteur mir ou m-, le polynôme n'aurait pas de zéro
relativement à ce facteur, donc, à fortiori, relativement au module m,
qui en est un multiple.

Les conditions sont suffisantes: pour chaque facteur mt1 diviseur
de Z), le polynôme F(x) a un zéro ci (double) ; pour chaque facteur mp
premier avec Z), il a deux zéros (conjugués) c- et c-. Tout zéro c
de F(x), mod. m, doit alors vérifier l'un des systèmes de s congruences:

c (mod. mf) ; c ~ Cj ou c c-, (mod. m,.).

x) La démonstration de cette existence aurait pu être faite sans utiliser
nommément la dérivée F(x). Sous la forme adoptée, elle est valable pour
un polynôme F(x), de degré quelconque, à coefficients entiers et normé.
Si ce polynôme a, relativement à un module premier p, un zéro c, qui
n'annule pas sa dérivée F(x), il a, relativement à tout module ph (h entier
positif), un zéro c*> congru à c, mod. p. Cette propriété, qui peut encore être
énoncée sous une forme plus générale (existence d'un polynôme, de degré
quelconque diviseur de F(x)), est connue sous le nom de lemme de Hensel.
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Chacun des systèmes a une solution déterminée, mod. m, puisque les s

modules mi sont premiers entre eux deux à deux et que leur produit
est égal à ml1].

Dans la formation d'un système de congruences, pour chacun
des s' modules mp premiers avec Z), on peut choisir entre deux

congruences. Il y a donc bien 2S/ systèmes, d'où le nombre de zéros

indiqué. Leur répartition en couples conjugués en résulte; on passe
d'ailleurs d'un zéro c à son conjugué c', en changeant le choix dans
chacune des congruences, mod. mp

Pour m diviseur de D et sans facteur carré, il n'y a qu'un système
de s congruences, qui détermine un zéro double. Il peut être obtenu

par les règles suivantes :

D impair; raimpair / ,m. jf55 (m'—1): 2, (mod. m);
D 4d; d impair, m pair: ~~ '* [= m: 2, (mod. m);
D id; m diviseur de d ; c =0, (mod. m).

7. Idéaux canoniques.

L'extension de la théorie de la divisibilité (arithmétique) à un
corps quadratique R(0) et au domaine de ses entiers (algébriques)
E(0) a conduit à considérer, dans R(0), des sous-ensembles

particuliers, appelés idéaux.
On peut donner d'un idéal une définition constructive, en le

caractérisant par deux de ses éléments, convenablement choisis,
qui en constituent une base canonique et, à partir desquels, il est

1) La résolution d'un système de deux congruences:
x oq, (mod. mf) x a2, (mod. m2) ;

est équivalent à la résolution de l'équation en X:

flj + Xwj a2, (mod. m2) ;

elle est possible et déterminée si m1 et m2 sont premiers entre eux et la
solution du système est de la forme:

ai+ P^i+^^2) X mi b + ux (mx X m2) ;

elle est déterminée, [module m m1 x m2].

Cette construction s'étend, de proche en proche, ou par récurrence sur 5,
à un système de s congruences dont les modules sont premiers entre eux
deux à deux.
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engendré par additions et soustractions. On peut alors établir
des propriétés —ou qualités— caractéristiques déappartenance
d'un tel ensemble.

On peut, inversement, utiliser ces qualités caractéristiques,

pour donner d'un idéal une définition axiomatique, dont il est

possible de déduire sa définition constructive, c'est-à-dire sa

génération par une base canonique 1);

On peut encore établir sa génération par dé autres bases,

qualifiées arithmétiques libres, équivalentes arithmétiquement à

la base canonique; ou encore par des bases, non présumées libres,
d'un nombre plus grand de termes.

On va étudier d'abord une famille d'idéaux particuliers,
appelés canoniques; ils permettent de construire et de caractériser

les idéaux les plus généraux, appelés fractionnaires
(comprenant les idéaux entiers.

7.1. Définition constructive. — Dans un corps quadratique

R(0), caractérisé par un polynôme fondamental dont un des

zéros 0, est pris pour générateur, un idéal canonique M peut être
défini par:

x) Dans certaines conceptions de la divisibilité arithmétique usuelle,
c'est-à-dire dans le corps R des nombres rationnels et du domaine E de ses
nombres entiers, on considère d'abord un sous-ensemble rxE (parfois
noté (r)), des multiples d'un nombre (rationnel) r, c'est-à-dire des produits
rxx, du nombre r par tous les nombres entiers x. Il est manifeste qu'un
tel ensemble contient les différences mutuelles de ses termes et leurs produits
par tout entier.

Mais inversement si un ensemble de nombres rationnels, dont les valeurs
absolues sont limitées inférieurement, vérifie ces propriétés d'appartenance,
c'est-à-dire contient tout les éléments x1xr1Jt-x2Xr2 (x^x2 entiers
arbitraires) construits par additions et soustractions au moyen de tout couple r±,
r2 de ses éléments, il est égal à l'ensemble rxx, des multiples d'un de ses
éléments r convenablement choisi; le plus petit en valeur absolue, qui peut
être pris positif.

Cette propriété dont la démonstration résulte de la construction de la
division euclidienne —ou de la partie entière d'une fraction— est une des
formes de la propriété fondamentale de la divisibilité (des nombres rationnels)

; elle entraine notamment l'existence du p.g.c.d. (et du p.p.c.m.) de
plusieurs nombres rationnels. On en trouvera ci-dessous une démonstration
explicite, dans une circonstance qui n'est particulière qu'en apparence:
construction de la norme d'un idéal canonique, défini axiomatiquement.
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un nombre entier positif m, appelé la norme de M; tel que la

congruence fondamentale soit possible, mod. m;
une progression arithmétique c+Xm, de raison m, —ou un

entier, défini, mod. m— dont les termes, qui seront appelés les

racines de M; constituent un zéro, de cette congruence (5):

F(c) 0, (mod. m) <=> F(c-\-'km) 0, (mod. m).

Une racine c étant choisie arbitrairement, l'idéal canonique M
est Vensemble des éléments de R(0), construits par additions et

soustractions, au moyen du couple m, 0—c; c'est-à-dire des

valeurs de la forme de m et 0—c, dont les valeurs des variables
sont des nombres entiers.

m

£.=xxm+yx(Q—c) Il^ 2/IlX x, y nombres entiers.

Les éléments Ç, ainsi construits sont des entiers {particuliers)
du corps ; l'idéal est un sous-ensemble de E(0).

Un tel couple de termes sera appelé une base canonique de

Vidéal, qui sera désigné lui-même par ce couple entre parenthèses

M (m, 0—c); [F{c) 0, (mod. m)].

Les nombres entiers x,y, qui sont déterminés, pour un
élément I, sont encore appelés ses coordonnées, relativement à cette

base.

On emploie ainsi un vocabulaire et une construction, analogues
à ceux qui ont été employés pour le domaine E(0) des entiers du corps:
l'élément £, de M, de coordonnées x,y, est égal à la somme de \x\

éléments égaux à m, ou à —m, et de \y\ éléments égaux à (0—c), ou

à (—0+c).

La détermination des coordonnées x,y résulte de l'équivalence:

x X m+y X (0—c) x'x m+y' X (0—c)

o [{x—x')xm— {y—y')Xc\+(y—y') X 0 0;

en raison des règles de calcul dans E(0), la deuxième forme de l'égalité
entraîne la nullité de y—y', donc aussi de x—x'; donc:

y y' et x x
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Il y a correspondance biunivoque entre les éléments de l'idéal et les

couples de nombres entiers x,y (qui en sont les coordonnées).

Dans un corps R(0), de générateur 0, le sous-ensemble M est

indépendant de la base canonique adoptée pour le construire, c'est-à-

dire du choix de la racine c, dans sa progression ; quand on la remplace

par c1 cArhm, les coordonnées des éléments restent des nombres

entiers :

xxm-{-yx{Q—c) (z+yA)xm+yx(0—c-Q.

Dans un idéal canonique M, ainsi construit et considéré

comme un ensemble d'entiers du corps R(0), on peut caractériser
la construction de la norme et des racines :

la norme, d'un idéal canonique M, est égale au minimum
(effectivement atteint) des valeurs absolues des entiers rationnels,
non nuls, qui lui appartiennent —ou au plus petit de ceux qui
sont positifs— ;

les racines sont égales aux entiers rationnels c, de R(0), pour
lesquels les différences 0—c appartiennent à M.

D'une part, un élément de M:

xxm+yxi®—c) (xXm—î/Xc)+j/X0,
est un entier rationnel si, et seulement si, y est nul et il est égal
à xxm. La plus petite des valeurs absolues de ces entiers
\xxm\ \x\ xm est m, qui est aussi égal au plus petit entier positif
1 Xm m.

D'autre part les entiers rationnels u, pour lesquels 0—u appartient
à M, vérifient la condition :

Q—u xXm+yx(Q—c) o [xxm—yxc+u]+ (y—l)x0 O;

dans laquelle x,y sont des nombres entiers. Il en résulte:

y — 1 et u c—xxm (termes de la progression).

Le domaine E(0) de tous les entiers rationnels du corps (3) est

un idéal canonique, trivial, construit avec la base 1 0—0, ou 1 0;
sa norme est égale à 1, la progression de ses racines est celle des
nombres entiers, qui est bien zéro de F(x), mod. 1.
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7. 2. Définition axiomatique d'un idéal canonique.

Gomme il a été dit, on peut caractériser un idéal canonique

par certaines conditions d'appartenance, qui sont
caractéristiques.

Théorème caractéristique d'un idéal canonique. —- Pour
qu'un ensemble M, d'entiers du corps R(0), soit un idéal canonique,
il faut et il suffit que:

1. Il contienne les différences, donc aussi les sommes, mutuelles
de ses éléments',

2. Il contienne des éléments de la forme 0—c, c'est-à-dire des

entiers du corps, dont le coefficient de 0 soit égal à 1 (il suffit
qu'il en contienne au moins un);

3. Il contienne tout produit de chacun de ses éléments par
tout entier du corps (et notamment les produits mutuels de ses

éléments).

En langage de l'algèbre moderne, ces conditions peuvent être

énoncées;

1. M est un module —ou un groupe additif— ;

2. L'ensemble M—0 contient des entiers rationnels;
3. M x entier du corps cz M.

Les conditions sont nécessaires: les deux premières sont
manifestement remplies par un ensemble M d'éléments engendrés par une
base canonique.

Pour vérifier la troisième, on peut calculer (0—c)2, en utilisant
notamment la formule de Taylor, appliquée à F(x), dans le corps R(0) :

0 F(Q) (d—c)2+(2c—S)x(Q—c)+F(c).

Gomme F(c) est un multiple de m, il en résulte une construction
de (0—c)2 au moyen de la base canonique:

(0—c)2 axm-\~bx(§—c);
[a —F(c) : m, —b 2c—S, nombres entiers]

On peut alors calculer le produit d'un élément de M, par un
entier de R(0), dont on peut prendre pour base 1 et 0—c:

[x X m-\-y X (0—c)] X [x'+y' X (0—c)]
(xx'-\-yy'a) X m-\-{xy'm-\-yx'-\-yy'b) X (0—c) ;
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c'est bien un élément de M, engendré par la base m, 0—c, avec les
coefficients entiers:

xx'+yy'af xy'm+yx'+yy'b.
Les conditions sont suffisantes: dans un ensemble Ml5 qui las

vérifie, on va d'abord construire la norme, en appliquant la propriété
de détermination qui en a été donnée.

M1 contient des entiers rationnels non nuls, notamment:

(0 c) X (6'—c) F(c),

qui est le produit d'un élément 0—c, dont l'existence dans M2 résulte
de la condition 2, par son conjugué 0'—c, qui est un entier du corps.
Pour ces entiers, il existe un minimum m, effectivement atteint, de
leurs valeurs absolues. On va vérifier qu'ils sont égaux aux
multiples xx m, de ce minimum.

D'une part, en raison de la condition 1, les entiers rationnels +m,
~m et tous ceux xxm qui en sont déduits par additions et
soustractions appartiennent à Mr

D'autre part pour toute valeur z, d'un entier rationnel de Mx,
on peut effectuer sa division (euclidienne) par l'entier m:

r — z xx m; 0 < r < m; x nombre entier.
Comme les valeurs z et x x m sont égales à des entiers rationnels de M±
il en est de même de leur différence r, qui est nulle puisqu'elle est
inférieure au minimum m, des valeurs absolues non nulles; donc
2 xxm.

Ce premier point étant acquis, reste à vérifier que M1 est bien
engendré au moyen des éléments: 6—c déjà utilisé et qui vient
d être construit. D'une part toute valeur ainsi obtenue:

x X m-\-y x (0—c) ; nombres entiers

appartient à Mj, en raison de la condition 1.

D'autre part tout élément de étant un entier du corps peut
être mis sous la forme:

ç, x'+y+ (x'+y'c)+y'x(0—c); \—y'x(Q—c).
Le nombre entier x'+y'c, qui est égal à la différence de deux éléments
de Mj appartient aussi à M1 et en est un entier rationnel ; il est donc
bien égal à un multiple ijXm, de m.

L'Enseignement mathérn., t. VI, fasc. 2.
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On vérifie encore que c, donc tout terme de la progression c+Xm,
est zéro de la congruence fondamentale: c'est une conséquence de la
première remarque utilisée: la valeur F{c) étant égale à un entier
rationnel de Mv est multiple de m.

7. 3. Idéaux conjugués.

Gomme pour la construction d'un corps quadratique et de
son domaine d'entiers (1 et 3), un idéal canonique peut être
engendré en utilisant indifféremment les générateurs 0 et 0',
(zéros du polynôme fondamental) mais sous la réserve de leur
associer respectivement les zéros conjugués de la congruence
fondamentale, dont le module est la norme de l'idéal. On peut
exprimer ceci par la formation des bases canoniques:

Un idéal canonique a deux suites de bases canoniques, définies
par la même norme m et les différences 0—c et 0'—c', des générateurs

du carps et des zéros conjugués c, c', (progressions de
raison ra), de la congruence fondamentale:

(m, 0—c) (m, 0'—c');

Les constructions des termes de ces différences (zéros du
polynôme et zéros de la congruence) peuvent être exprimées par les
formules :

0 + 0' — S ; 0X0' - N; dans le corps;
c-\-c' S; exe' N; (mod. m).

L'égalité des éléments construits avec ces deux bases est assurée

par une correspondance biunivoque de leurs coordonnées, relativement

à chacune d'elles:

xxm+yx(d—c) x'xm—yX(Q'—c');.
x'—x 2/X[(c-fcr—-S): m\.

Cette propriété conduit à la conception de la conjugaison des
idéaux canoniques et à sa définition, constructive et axio-
matique.

Définition (constructive). — Deux idéaux canoniques sont
appelés conjugués, et seront désignés par la même lettre, avec
et sans accent, lorsqu'ils sont engendrés: par une même norme,
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avec les mêmes racines, mais avec les générateurs conjugués
0 et 0', du corps:

M (i m,0—c), M' (j 0'—c);

c'est-à-dire encore par des bases canoniques conjuguées [2],

Il est équivalent de dire (définition axiomatique) que deux
idéaux canoniques conjugués sont constitués par des éléments
(entiers du corps) respectivement conjugués [3]; définis par des
coordonnées égales, relativement aux bases conjuguées; car:

l \xy\x
m

eM l' |a:y|x
m

i —c
eM'.

En appliquant une remarque précédente, il est encore
équivalent de caractériser deux idéaux conjugués, relativement à un
même générateur 0 du corps, par deux zéros conjugués, c et c',
de la congruence fondamentale [5]:

M m,0c); M' (m, 0—c'); c-fc' S, (mod. m).

Il suffit, en effet, dans la base précédente de M', de remplacer
0'— -cpar la différence du générateur conjugué de 0' et d'un zéro
conjugué de c.

Un idéal canonique est double, lorsqu'il est égal à l'idéal
conjugué, c'est-à-dire lorsque ses racines sont un zéro double de la
congruence ; ce qui a lieu si, et seulement si, sa norme m est
diviseur du discriminant D (5. théorème des zéros conjugués).

L'idéal canonique trivial E(0) est double.

7. 4. Racines minimum.

Comme il a déjà été dit (5); dans la progression c+\m des
racines d'un idéal, de norme m, on peut distinguer —ou choisir-
une racine particulière, notamment en précisant qu'elle appartient

à un segment déterminé, de longueur m, dont une extrémité
est exceptee, s'il y a lieu. Il y a intérêt, ainsi qu'il sera dit plusloin (21), à ce que ce choix soit fait simultanément pour l'idéal
et son conjugué; ils ont même norme m et la somme de leurs



116 ALBERT CHATELET

racines- est congrue à S, mod. m. Pour cette raison on choisira
un segment, de longueur m et de milieu S: 2 (0 ou —1: 2). On
vérifie aisément qu'une racine ainsi déterminée est aussi de valeur
absolue minimum dans sa progression. C'est cette condition
qu'exprime 1 a définition suivante.

Définition. — On appelle racine minimum, d'un idéal

canonique, de norme m, et on note avec une surligne, celle de ses

racines qui vérifie la condition de comparaison:

S—m — S+m —

< c < ou —m <2c — S < m.
2 2

Cette condition est encore équivalente à l'alternative:

|2c—S| < m, ou bien: 2c—S — m.

On peut préciser cette limitation, suivant les divers cas, pour
les racines minimum de deux idéaux conjugués et vérifier qu'elles
sont bien déterminées.

Pour un idéal double —ou deux idéaux conjugués égaux—-

toute racine c rend 2c—S divisible par la norme m. En se reportant

à la construction des racines doubles (6), la racine minimum c

est:
S+m

0 [S es? 0 et m diviseur de N] ou —-—
A

Si un idéal n'est pas égal à son conjugué, sa racine n'est pas

double, 2 c—Sn'est pas divisible par m et, à fortiori, n'est pas nul.

Pour deux idéaux conjugués inégaux, deux racines, de somme

égale à S, donnent des valeurs opposées, donc une même valeur
absolue à 2x—S. Elles vérifient donc simultanément le premier
terme de l'alternative de la condition de minimum. L'une d'elles

est négative, elle sera notée de préférence par la lettre accentuée

c', l'autre c est positive ou nulle. On en conclut la situation
suivante de ces racines, relativement au segment adopté; ce qui
met aussi en évidence leur détermination:

— — S—m— — j- m
c'—m < c—m < ——— < c'<0 < c<——— < c -\-m < c-\-m
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8. Idéaux fractionnaires.

8.1. Définition constructive.

Les idéaux fractionnaires —ou, plus simplement, les idéaux—
d'un corps quadratique, peuvent être construits au moyen des

idéaux canoniques, dont ils sont, par ailleurs, une généralisation.

Définition. — Dans un corps R(0), un idéal fractionnaire I,
non nul, peut être défini par:

un nombre rationnel positif q, appelé son facteur rationnel;
un idéal canonique M (m, 0—c), appelé son facteur

canonique.

L'idéal ainsi défini I est Y ensemble des éléments p, de R(0),
obtenus en multipliant par le facteur rationnel les éléments du
facteur canonique M:

p qxE, — xxm-\-yx{6—c);x,y nombres entiers.

La génération des éléments peut être exprimée directement
par les valeurs d'une forme, dont les valeurs des variables
—ou les multiplicateurs— sont des nombres entiers:

P \xy X
qxm

qx{0—
ou F yx

qxm

-?x(6'-
Les nombres entiers c et c' sont des termes de deux progressions
arithmétiques, de raison m, de somme congrue à S. Les couples
d'éléments générateurs qxm, qxsont encore appelés les
bases canoniques, de l'idéal I, qui sera lui-même désigné par
l'une des expressions, appelée sa forme canonique:

I ?XM, ou qx(m, 0—c), ou 0'—c').

Les nombres entiers x,y, qui sont déterminés pour chaque
élément E, de M, le sont aussi pour chaque élément p E, de I, car:

?XEX qxl2 ?x(çx—y o - ;*•
Ils seront encore appelés les coordonnées de l'élément p, relativement
à la base canonique de I.
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Un idéal canonique est, à fortiori, un idéal fractionnaire; il est

égal à son facteur canonique; son facteur rationnel est +1 —ou il
n'a pas de facteur rationnel «proprement dit. » (différent de 1)—

On appelle encore idéal nul, le sous-ensemble de R(6) constitué

par le seul élément nul; il peut être considéré comme défini

par un facteur rationnel égal à 0 et un facteur canonique arbitraire.

Définition. — La norme d'un idéal fractionnaire est

(le nombre rationnel positif égal à) le produit du carré du facteur
rationnel par la norme du facteur canonique:

Norme de [qx(m, 0—c)] q2xm.

Cette définition sera justifiée ci-dessous (13); elle comprend
le cas d'un idéal canonique, pour lequel q — 1 ; elle s'étend à Yidéal nul,
qui est le seul dont la norme soit nulle.

Dans un idéal fractionnaire I, non nul, ainsi construit
et considéré comme un ensemble d'éléments p r+s0, du

corps R(0), on peut caractériser les termes de sa forme
canonique, ainsi qu'il a été fait pour un idéal canonique (7).

Le facteur rationnel, d'un idéal I, est égal au minimum,
effectivement atteint, des valeurs absolues |s|, des deuxièmes coordonnées

—ou multiplicateurs de 0— des éléments [non rationnels]
de I, (pour lesquels ces coordonnées s ne sont pas nulles). C'est
aussi le plus petit des facteurs rationnels (3), des éléments non
nuls de I.

Le facteur canonique est Vensemble des quotients pX#-1, des

éléments p, de I, par son facteur rationnel q. Ce sont des entiers
du corps, qui constituent un idéal canonique.

Les expressions des éléments de I sont:

p xx(qm)+yX[qX(Q—c)] {xxqm—yx qc) + (y X q)Q.

Les multiplicateurs de 0 sont s yxq, le minimum des valeurs
absolues |yx ?l \y\ xq, de ceux qui ne sont pas nuls, est manifestement

<7, et il est atteint pour tous les éléments où y — 1.

Le facteur rationnel de tout élément p — qx £ est multiple de q

(égal à son produit par le facteur rationnel de £), le plus petit est

effectivement égal à puisqu'il est notamment celui de qX(Q—c).
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Les quotients pX#—1 £, sont les éléments du facteur

canonique M.

8. 2. Définition axiomatique d'un idéal fractionnaire.

On peut encore caractériser un idéal fractionnaire par des

conditions d'appartenance, ainsi qu'il a été fait pour un idéal

canonique.

Théorème caractéristique d'un idéal fractionnaire. — Pour

qu'un ensemble I, d'éléments du corps R(0), soit un idéal frac-
tionnaire, il faut et il suffit que:

1. Il contienne les différences, donc aussi les sommes, mutuelles
de ses éléments —ou soit un module— ;

2. Les facteurs rationnels, de ses éléments non nuls (3), soient

limités inférieurement\

3. Il contienne tout produit de chacun de ses éléments par tout
entier du corps (mais non plus tout produit mutuel).

Les conditions 1 et 3 sont aussi celles qui ont été indiquées pour
un idéal canonique (7); toutefois elles s'appliquent ici à des éléments

qui ne sont plus nécessairement des entiers du corps.

La condition 2 pourrait être remplacée par la condition, plus
restrictive, que les dénominateurs des facteurs rationnels, non nuls
(mis sous forme irréductible), soient limités supérieurement et, par
suite, en nombre fini. La condition 2 en résulterait évidemment;
en outre on pourrait affirmer l'existence d'un nombre entier w
(notamment le p.p.c.m. de ces dénominateurs) tel que tous les

produits wxp soient des entiers du corps (en abrégé w Xi cE(6)).

Les conditions sont nécessaires: les appartenances 1 et 3, vérifiées

par les éléments (entiers du corps) du facteur canonique M, le sont
aussi, évidemment, par leurs produits par le facteur rationnel q.

D'autre part, les facteurs rationnels des éléments de I sont des

multiples de g, les valeurs absolues de ceux qui ne sont pas nuls sont
donc au moins égales kq.

Les conditions sont suffisanteselles sont vérifiées par le sous
ensemble de R(0), réduit au seul élément nul, qui, par définition est

un idéal (trivial).
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,Si elles sont vérifiées par un ensemble I, qui contient des éléments
non nuls, .on peut d'abord construire le facteur g, en utilisant la
détermination qui en a été donnée, en appliquant un raisonnement
arithmétique, analogue à celui qui a été employé pour la norme d'un
idéal canonique.

L'ensemble {5} des coefficients s, de 0, dans les éléments p, de

l'ensemble I, contient des éléments non nuls, car s'il existe dans I
un élément rationnel r, non nul, il existe aussi l'élément r0, qui est

son produit par l'entier (du corps) 0 (condition 3). Cet ensemble
contient les opposés de ses termes, +5 et —s, et leurs sommes —et
différences— mutuelles; car la différence s1—s2 des coefficients de

0 dans deux éléments px et p2, de I, est le coefficient de 0, dans la
différence pj—p2, qui appartient aussi à I, d'après la condition 1.

On peut se borner à considérer les coefficients s positifs; ils sont
limités inférieurement, puisqu'ils sont multiples des facteurs rationnels,

eux-mêmes limités, d'après la condition 2. Ils ont une limite
inférieure g; elle est effectivement atteinte, si non son voisinage
contiendrait une infinité d'éléments de {s} dont les différences

mutuelles, appartenant aussi à {s}, seraient infiniment petites.

On peut alors constater que Y ensemble {«9} est égal à Vensemble des

multiples de q —ou des produits xxq, par les nombres entiers x—
D'une part ces multiples, construits par additions et soustractions

au moyen de g, qui est élément de {s} appartiennent à cet ensemble.

D'autre part tout élément s, de {s}, est de cette forme, car en lui
retranchant le plus grand multiple de g, qui lui est au plus égal, on
obtient la différence:

sf — s—qxx\ 0 < s' < g; x nombre entier;

elle appartient à {s}, ainsi que s et x x g, et elle ne peut être que nulle
puisqu'elle est inférieure à g et non négative.

On peut ensuite vérifier que, dans tout élément p r+50, de I,
la coordonnée r, ou multiplicateur de 1, est aussi multiple de g. Il
suffit de constater qu'il est égal au coefficient de 0, dans un autre
élément de I, qui peut être construit en multipliant p par un entier du

corps, ce qui est notamment le cas pour le produit:

(r+s0)x(0—S) —(Sr+Ns)-\-rQ — rx+r0; (/q rationnel).
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Tout élément p, de I, ayant ainsi des coordonnées multiples de q

est, lui-même, égal au produit de q par un entier du corps:

p r+sO px £ x'+y'O; %',y' nombres entiers.

L'ensemble M, de ces entiers £, est un idéal canonique, car il
vérifie les conditions de la définition axiomatique:

I et 3 puisque :

Pi?p2 ^ Pi p2 GI ^ [(pi^g *) (P2^? *)] E M;
a g E(0) et p g I => aXpel => [aX(pX q~{)] è M.

2, puisque, d'après la construction de g, il existe dans I, un
élément p0, dont il est le coefficient de 0, de sorte que:

p0Xg_1 (ro-fg0)xg-1 0—c; c — —r0Xg_1 entier rationnel.

L'ensemble I est donc égal à un idéal, défini par sa forme
canonique

t _ M- 1 ^ nom^re rationnel positif;
' [M idéal canonique.

8. 3. Idéaux entiers.

Définition. —- Un idéal fractionnaire I, d'un corps R(0), -

est appelé idéal entier, lorsque son facteur rationnel q est un
nombre entier; [en particulier si q 1, c'est-à-dire si I est un
idéal canonique].

II est équivalent de dire que tous les éléments, de l'idéal I,
sont des entiers, du corps (3) —ou que I est contenu dans
l'ensemble E(0), des entiers de R(0), dont on a dit qu'il était un
idéal trivial—

La deuxième propriété est nécessaire: les produits par un nombre
entier g, des entiers (algébriques) du facteur canonique M sont des
entiers du corps.

Elle est suffisante : si l'idéal I ne contient que des entiers du corps,
leurs facteurs rationnels et le plus petit d'entre eux sont des nombres
entiers.

L'idéal trivial E(0) est ainsi l'idéal maximum, aussi bien des
idéaux canoniques, que des idéaux entiers, en ce sens qu'il
en est un et qu'il les contient tous. Il est appelé l'idéal unité;
qualificatif qui sera, à nouveau justifié ci-dessous (12).
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On peut aussi donner une définition axiomatique d'un idéal
entier par des conditions directes d'appartenance à un sous
ensemble du domaine des entiers E(0):

pour qu'un ensemble I, Rentiers du corps R(0), soit un idéal
(nécessairement entier) il faut et il suffit qu'il vérifie les conditions
1 (module) et 3 (produit par tout entier du corps), des propriétés
caractéristiques des idéaux (canonique, 7, ou fractionnaire, 8).

8. 4. Multiplication d'un idéal par un élément.

De la définition axiomatique d'un idéal fractionnaire, on peut
déduire immédiatement des propriétés qui seront reprises
ci-dessous comme cas particuliers de la multiplication des

idéaux (13).

L'ensemble J, des produits, des éléments d'un idéal
fractionnaire I, par un élément p, du corps, est encore un idéal. Cette
propriété peut être exprimée par les relations réciproques;
si p n'est pas nul:

J pxl <=> I p_1xJ; I, J idéaux.

La forme canonique d'un idéal I et la co nstruction de son
facteur canonique M, en sont des cas particuliers:

I qxM o M q~i xi; q facteur rationnel de I.

On peut en remarquer divers cas particuliers:

Si p est un élément rationnel q', non nul, les idéaux I et qr xi ont
le même facteur canonique:

I ?XM => q'xl {qx \q'\) XM. •

Le cas de p 0 est trivial: Oxl — 0.

Si p est un entier oc, du corps, l'idéal axl est contenu dans I, car
tout produit oc X élément de I, appartient à I (condition 3).

Si p est un diviseur de l'unité y], l'idéal Y) XI-est égal à I, car:

Y)"1 X(T)Xl) (Y]_1 X Y]) XI I,

est contenu dans y)XI, qui lui-même contient I, de sorte qu'ils sont

égaux.
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8. 5. Idéaux conjugués.

Les définitions (constructive et axiomatique) de la conjugaison

des idéaux canoniques s'étendent évidemment aux
idéaux fractionnaires.

Définition. — Deux idéaux fractionnaires sont appelés
conjugués, et sont désignés par une même lettre, avec et sans
accent I et F, lorsqu'ils ont des facteurs rationnels égaux et des

facteurs canoniques conjugués:

I q X M q x {m, 0—c) ; V qxM' qx(m, 0 — c).

Ils ont par suite des bases canoniques conjuguées (2).

II est équivalent de dire (définition axiomatique) que deux
idéaux (fractionnaires) conjugués sont constitués par des éléments,
du corps, respectivement conjugués (2), construits d'ailleurs avec
des coordonnées égales, relativement à des bases conjuguées.

p p y\\x
qXm

qX(Q-c)
el \x y x

qXm

q X (0'—c)
el.

Un idéal fractionnaire est double, lorsqu'il est égal à son
conjugué. Il faut et il suffit que son facteur canonique soit
double.

9. Bases arithmétiques d'un idéal.

La construction des éléments p, d'un idéal I, fractionnaire
(ou canonique), par les valeurs d'une forme, dont le couple de
générateurs est une base canonique et dont les valeurs des
variables sont des nombres entiers est une généralisation de la
construction des entiers du corps (4), ou des éléments du
domaine E(0), qui est d'ailleurs un idéal trivial (unité).

On réalise encore ainsi une représentation propre, des éléments
de l'idéal par les couples de nombres entiers, ou par les sommets d'un
réseau de parallélogrammes.

Si l'idéal est entier —ou contenu dans E(0)— on peut représenter

l'idéal par un réseau contenu dans celui qui représente E(0).
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Les parallélogrammes de ce sous-réseau (avec une frontière convenablement

précisée) contiennent tous le même nombre de sommets du
réseau primitif.

On est ainsi conduit à étendre aux idéaux la notion de base

arithmétique, éventuellement libre, définie pour E(0) (4.1).

Définitions. — On appelle base arithmétique, d'un idéal
fractionnaire I, un système de h éléments p{, de I, tel que tout
élément p, de I, soit égal à (au moins) une forme (linéaire) de ces

termes pi7 pour des valeurs des variables —ou des multiplicateurs—

égales à des nombres entiers:

p S^Xpi; i de 1 à h\ nombres entiers.

Il est équivalent de dire que tout élément de I peut être construit
par additions et soustractions au moyen des termes de la base.

Une base arithmétique, d'un idéal I, non nul, doit contenir au moins
deux termes, non nuls, car les éléments x X p0, construits avec un seul
terme p0 non nul, ne peuvent contenir le produit 0 x p0, qui d'après la
troisième qualité de la définition axiomatique (8. 2) doit appartenir
à l'idéal contenant p0. Cette impossibilité résulte de l'implication
déjà indiquée pour E(0):

{x nombre entier et p0 ^ 0} => 0 x p0—x X p0 (0—x) X p0 # 0.

Une base arithmétique d'un idéal I, est qualifiée libre,
lorsqu'elle définit une représentation propre des éléments p, de I,
par les systèmes de multiplicateurs qui sont encore appelés les
coordonnées des éléments p, relativement à cette base libre.

Pour un idéal (non nul), I qx(m, 0—c), on constate que les

bases arithmétiques de h 2 termes, px p2, sont encore les seules qui
soient libres. En adoptant la disposition déjà indiquée pour l'idéal
trivial E(0), la construction d'un élément p, de I, défini par ses

coordonnées x y, relativement à la base canonique, ou z± z2, relativement

à la nouvelle base est exprimée par les produits matriciels

p II® y||x
qxm

rx (0—c)
OU p -1 z2 X
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La construction de ces bases, et des coordonnées relatives, sont
les mêmes que dans le cas particulier de l'idéal trivial.

Théorème de construction des bases arithmétiques libres. —
Pour un idéal fractionnaire, non nul, toute base arithmétique,
de deux termes, est déduite d'une base canonique par une substitution

(linéaire) unimodulaire; c'est-à-dire par multiplication par
une matrice carrée A dont les termes sont des nombres entiers
et le déterminant égal à +1 ou à —1.

Cette base est libre et les coordonnées, d'un élément de I,
relativement aux deux bases (canonique et nouvelle) sont liées par
la substitution (unimodulaire) contragrédiente; c'est-à-dire que
les anciennes sont obtenues en multipliant les nouvelles (en ligne,
si les bases sont en colonnes), par la même matrice A :

et \\x y II \\z1 z2\\xA
Pl qXm

Ax
P2 qX(d—c)

A
Vi

^2 y2

Xi,yi; x2,y2 nombres entiers;
x1y2—x2y1 +1 ou —1.

On peut aussi bien multiplier les anciennes coordonnées,
disposées en colonne (comme les bases), à gauche, par la
matrice A~i inverse de la transposée de A.

La démonstration de cette propriété, faite dans le cas de l'idéal
trivial E(0), reste valable pour un idéal fractionnaire quelconque,
non nul.

Il en résulte aussi, plus généralement, que deux bases arithmétiques,

d'un idéal, et les coordonnées d'un élément, relativement à ces
bases, sont liées par deux substitutions unimodulaires contragrédientes.

En particulier pour deux bases canoniques (m, 0—c); (m, 0'—c')
dont les racines ont pour somme c+c' S—hm, et pour les coordonnées

x,y et x',y' d'un même élément relativement à ces bases, les
substitutions sont explicitement:

Fy\ If y'ix
m 1 0 m

X
0'—c' h— 1 0—c

1 0

h —1



126 ALBERT CHATELET

On peut aisément préciser les transformations des bases

arithmétiques dans les deux opérations étudiées ci-dessus

(8. 4 et 8. 5) sur les idéaux fractionnaires.

9. 2. Multiplication d'un idéal par un élément.

Si deux idéaux fractionnaires se déduisent l'un de l'autre
par multiplication par un élément non nul (8. 4) :

Jz=xxl et I fjixj; X x p.
1

il en est de même de leurs bases arithmétiques libres (de 2 termes)

p! p2 base de I => Xxpx XXp2 base de J

cq 0*2 base de J => pi x g1 p. X ct2 base de I.

En particulier les bases arithmétiques libres d'un idéal sont

égales aux produits par son facteur rationnel des bases arithmétiques
libres de son facteur canonique. Dans ce cas les bases canoniques sont

conservées, ce qui n'est pas vrai dans le cas général d'une multiplication

par un élément non rationnel.

9. 3. Idéaux conjugués et base matricielle.

Pour deux idéaux fractionnaires conjugués I et F (8. 5), les

bases arithmétiques libres (de deux éléments) sont respectivement
conjuguées. Les coordonnées de deux éléments conjugués p, de I
et p7 de F, relativement à ces bases respectives, sont égales:

Zi z2 X G I O p' Il Z1 ZJX G F.

On peut considérer simultanément des couples d'idéaux conjugués

I et F, et les couples d'éléments conjugués p de I et p' de F. On appelle
alors base matricielle, du couple I, F, une matrice carrée constituée

par des bases arithmétiques libres conjuguées, éventuellement
canoniques, des idéaux du couple.

Un couple d'éléments conjugués p de I et p' de I7 est alors défini

par un couple de nombres entiers z1 z2, qui sont ses coordonnées, rela-
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tivement à la base matricielle; et l'équivalence des égalités précédentes

peut être exprimée par une seule égalité matricielle:

P P Zi z2 II X
Pl Pl

\\x y\\x
P2 P2

qXm qxm

q X (6—c) q X (0'—c)

9. 4. Bases arithmétiques surabondantes.

Relativement à une base arithmétique, dont le nombre A,

de termes, est supérieur à 2, la représentation, des éléments,
ré est plus propre et la base n'est plus libre.

On exprime les termes de la base, au moyen d'une base arithmétique

libre, de deux éléments, qui peut être canonique:

p. aiXy1-\-biXy2:> i de l k h; ai% b{ nombres entiers.

Les propriétés usuelles des équations linéaires homogènes montrent

qu'il est possible de trouver des nombres entiers u{, non tous nuls,
tels que :

{yLuixai 0 ' et Huixbi 0} => Si^Xp* 0.

Il en résulte que si un élément p, de l'idéal est construit, au

moyen de la base avec un système de multiplicateurs zi7 il l'est aussi

avec tous les systèmes zi-\-'kui (X nombre entier arbitraire), car:

p X p4 => Sfo+X^) X Pi Szi X Pi+X X SWi X Pi p.

On exprime ces propriétés en disant que : les termes —ou les

générateurs— de la base sont dépendants (il existe entre eux une
relation); ou que la base arithmétique est surabondante (on peut
construire une base d'un nombre moindre de termes).

9. 5. Construction dé une forme canonique.

On peut préciser des conditions pour que des éléments d'un
corps quadratique, en nombre h constituent une base arithmétique

d'un idéal (fractionnaire). On peut alors construire sa
forme canonique (8.1 et 8. 2) par des opérations d'arithmétique
élémentaire (sur des nombres rationnels).

Théorème caractéristique d'une base arithmétique. —
Dans un corps quadratique R(0), dont une base des entiers
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est It, pour qu'un système, de h éléments pi? soit une base arithmétique

d'un idéal I, il faut et il suffit: que les h produits p^Xt
puissent être construits, par additions et soustractions au moyen
des termes pt* c'est-à-dire qu'il existe (au moins) un système de
A2 nombres entiers tel que :

pi X t 2 zxj X pj ; / de 1 à h dans 2 ; égalités i de 1 à h.

On peut prendre t égal à 0, ou à 0', ou, plus généralement à

±0+e; e nombre entier arbitraire.

La condition est nécessaire: Si l'ensemble I0, construit avec les p^

est un idéal, il doit contenir les produits des pi par tout entier du

corps (8. 2) et, notamment, par t.
La condition est suffisante. L'ensemble I0 vérifie bien les trois

conditions de la définition axiomatique (8.2): 1° il contient les

sommes et les différences de ses éléments; 2° les facteurs rationnels
de ses éléments:

p Hxi x pi ; xi nombres entiers ;

sont limités intérieurement; ils sont au moins égaux au p.g.c.d. des

facteurs rationnels des p^ Pour vérifier 3, il suffit de former le produit
d'un élément p par un entier arbitraire du corps a+èv; (a,b nombres
entiers) :

(2xiXpi)x(a+6r) ZfoaJXpi+StSfoteyJJXp..
C'est bien une forme des h termes p3-, avec des multiplicateurs:

^a+E^-àjz^) nombres entiers.

Le théorème est trivial si les pi sont tous nuls, la condition est
manifestement remplie, l'idéal engendré est Y idéal nul.

Si non, on peut vérifier (à nouveau, voir 9.1), que la base ne peut
se réduire à un seul terme: px ^+^0, car en prenant le produit
par 0, la condition est exprimée par:

(r,+Sle)x(8)_«W+»19) ou

Ces égalités considérées comme des équations linéaires et homogènes
en et s1 ne peuvent avoir que des solutions nulles, puisque leur
déterminant

N-z(S-z) z2—Sz+N

ne peut être nul, pour z égal à un nombre entier (1).
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Pour un idéal I, non nul, défini par une base arithmétique,
dont les termes, en nombre A, au moins égal à 2, sont exprimés
par leurs coordonnées ri et si7 relativement à une base canonique
du corps R(0):

Pi — i de 1 ä h; ri,si nombres rationnels;

la forme canonique peut être obtenue par les constructions
suivantes.

1. Le facteur rationnel q, de I, est égal au p.g.c.d. positif
des multiplicateurs si (deuxièmes coordonnées des pj, qui ne
sont pas tous nuls.

2. Le facteur canonique M, de I q x M, a pour base arithmétique

les h quotients :

ai PiXg-1 «i+M; [®t bi sixq~ll
qui sont des entiers du corps.

3. Une racine c, de Vidéal canonique M, est obtenue, en appliquant

aux ai (premières coordonnées des oq) les multiplicateurs
qui permettent de construire le p.g.c.d., au moyen des si:

q HuiXsi => Huixai —c; u{ nombres entiers.

4. La norme m, de M, est égale au p.g.c.d. positif des h
entiers rationnels, appartenant à M:

[ai X (0 c)] a.L-f-bjC,; i de 1 à A.

En prenant t égal à 0, les conditions que doivent vérifier les
générateurs pi sont exprimées par:

Les deuxièmes relations montrent que les sl ne sont pas tous nuls
si non, il en serait de même des ri et par suite des

1. Les st ont donc un p.g.c.d. positif q (nombre rationnel) et ces
mêmes relations montrent qu'il est diviseur des rv En conséquence,
il existe des systèmes de nombres entiers ui et des nombres entiers a{
et tels que:

]îluixsi q- si qxbi, rt qxa^

L'Enseignement mathém.5 t. VI, fasc. 2. 4
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Pour les éléments de I :

p r+sO 2zixpi X (2^ xa^+gx (2^X^X0,
les multiplicateurs s sont des multiples de q et le minimum de leurs
valeurs absolues est <7, effectivement atteint, pour les valeurs
des xv C'est la construction qui a été donnée (8.1) du facteur rationnel.

2. Les quotients:

p Xq~lS^Xp iXq-1S^Xoq,

constituent un ensemble d'entiers du corps, engendrés par les

h termes oq, qui vérifient les conditions du théorème, car:

Pi X t 2^- X pj => oq X t X a,,-.

C'est donc un idéal M, facteur canonique de I gxM, et qui est,

par suite, un idéal canonique.

D'ailleurs, d'après la construction précédente, le facteur rationnel
de M est égal au p.g.c.d. des b{ — sixq~i, qui est égal à 1.

3. Le p.c.g.d. g, des ayant été exprimé avec des multiplicateurs

Ufr on les utilise pour construire un nombre entier c,

Xuixai —c o 2uix{ai-{-bi0) 0—c.

L'élément 0—c appartient à M et c est bien une racine.

4. On peut alors former les entiers rationnels de M, en retranchant,

de chaque élément, un élément convenable de M, de façon à

annuler le multiplicateur de 0:

2^iX(ai+èi0)—2xix&iX(0—c) 2^x(ai+6ic).
La norme m, de M, qui est la plus petite valeur absolue de ces entiers

est égale au p.g.c.d. positif des h nombres entiers et elle est

effectivement atteinte, pour des valeurs convenables, des xt.

On vérifie aisément qu'un changement de multiplicateurs u{1 dans

l'expression de g, et par suite de c, remplace cette racine par un
des termes de la progression c+Xra (X nombre entier), (5).
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10. Bases algébriques.

Pour engendrer un idéal avec certains de ses éléments, on
peut conjuguer, à l'addition et à la soustraction, la multiplication
par des entiers du corps; ceci conduit à la définition suivante
(comparer à celle d'une base arithmétique; 9).

Définition. — On appelle base algébrique, d'un idéal
fractionnaire I, un système de h éléments pi? de I, tel que tout élément p,
de I, soit égal à une forme (linéaire) de ces termes p^, pour des
valeurs des variables —ou des multiplicateurs—- égaux à des
entiers du corps

p n S^XpiJ i de 1 à h; ^ entiers du corps.

Une base arithmétique d'un idéal I est, à fortiori algébrique:
tout élément de I est égal à une forme, pour des multiplicateurs
entiers rationnels, donc, entiers du corps.

D'autre part, la multiplication des p. par des entiers du corps ne
donne que des éléments de I.

Il n'y a pas de condition imposée aux éléments d'une base
algébrique; c'est ce que précise la propriété suivante.

Théorème de la génération d'un idéal par une base
algébrique. — Dans un corps R(0), étant donné (arbitrairement) un
système, d'un nombre fini h (peut être réduit à 1) d'éléments Pi,du corps, l ensemble des sommes, de leurs produits par des entiers
du corps ;

p Hi^xp^ i de 1 à À; entiers du corps;
est un idéal fractionnaire, dont le système des Pi est une base
algébrique.

Cet idéal est désigné par la notation:
* — (les pi éventuellement écrits nommément);

(dont on précisera, le cas échéant, qu'elle est une base arithmétique).

Elle a déjà été employée pour un idéal défini par sa base
canonique (qm, qx(Q-c)) (ci-dessus 7.1 et 8.1).
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L'ensemble des éléments p, ainsi construit, vérifie bien les conditions

du théorème caractéristique (8. 2) : il contient les différences

(et sommes mutuelles), obtenues par les différences des multiplicateurs

Çj, de même indice; et les produits par tout entier oc, du corps,
obtenus en multipliant les iL par oc. En outre les facteurs rationnels
des éléments p sont limités inférieurement, au moins par le p.g.c.d. w

des facteurs rationnels des termes p^. Car les produits w~1 X pi? ayant
des facteurs rationnels entiers, sont des entiers du corps. Alors, pour
tout élément p:

p wxfS^X^XpJ) w X entier du corps ;

son facteur rationnel est un multiple de w, donc lui est au moins égal.

A une base algébrique, on peut, évidemment, adjoindre
d'autres éléments de l'idéal engendré, c'est-à-dire toute valeur
d'une forme des termes de la base, pour des variables, égales à

des entiers du corps.
Inversement, dans une base algébrique, définissant un idéal,

on peut supprimer un terme, s'il est égal à une forme linéaire des

autres, pour des valeurs des variables, égales à des entiers
du corps.

10. 2. Cas particuliers et opérations.

L'élément unité 1 est, à lui seul, une base algébrique de l'idéal
trivial E(0), qui est, par suite désigné par (1) et dont on a déjà
dit qu'il était appelé l'idéal unité (8.3), nom qui sera
ci-dessous (12) l'objet d'une justification complémentaire. On

peut adjoindre à 1 des entiers quelconques du corps et inversement

une base formée d'entiers du corps et comprenant 1 engendre

l'idéal (1).
Un élément unique p est une base algébrique de l'idéal formé

par les produits de p par tous les entiers du corps, donc du

produit par p de l'idéal unité (8. 4) :

(p) p X (1), OU pXE(0);

un tel idéal est appelé principal, de base p (ei-dessous 11).

La multiplication par un élément (8. 4) —et la conjugaison

(8.5)— d'un idéal sont réalisées par des opérations simples
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sur une base algébrique (produits par p —et conjugués— de

ses termes):
P X (...,p X p^,...),

(•••îPir ••) (•••?Piv)*

La vérification est immédiate; éventuellement les bases restent
arithmétiques, ce qui a déjà été constaté directement (9. 2 et 9. 3).

10. 3. Propriétés d'inclusion.

De la génération des idéaux par des bases algébriques, on
déduit immédiatement des propriétés d'inclusion dont on indique
ci-dessous qu'elles sont aussi des propriétés de divisibilité (18 bis).

Pour qu''un idéal F contienne un idéal I, défini par une base

algébrique, il faut et il suffit que chacun des termes pt de cette base

appartienne à F, ou que chaque idéal principal (pj soit inclus
dans F:

(-•-,Pi,---) cF <s> p. e F [ou (pj c F], tout i.

En particulier, pour qu'un idéal I, défini par une base algébrique
soit entier (8. 3) —ou soit contenu dans l'idéal (1)— il faut et il suffit
que les termes de sa base soient des entiers du corps.

La propriété d'inclusion s'étend immédiatement à plusieurs
idéaux: pour qu un idéal F contienne des idéaux (un ou plusieurs)
définis par des bases algébriques, il faut et il suffit qu'il contienne
tous les termes des bases.

Ceci peut être exprimé par la définition —ou construction—
et la propriété suivantes.

Pour un système (d'un nombre fini) d'idéaux, définis par des
bases algébriques:

I (...,pir..), J (...7p^...)?

on appelle plus petit idéal contenant —et on appellera ci-dessous
plus grand commun diviseur— l'idéal D, dont une base
algébrique est constituée par la réunion des bases, des idéaux
considérés:

D — en abrégé
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Pour qu'un idéal F contienne des idéaux I,J,..., il faut et il
suffit qu'il contienne leur plus petit idéal contenant:

{I cF et JcF, et o (I,J,,..) c F.

La propriété résulte immédiatement de l'énoncé précédent. Elle
montre que la construction de l'idéal D est indépendante des bases
choisies pour définir les idéaux considérés: un idéal Dx construit
avec d'autres bases doit être contenu dans D, mais aussi le contenir;
ils sont donc égaux.

La construction de D est donc une opération déterminée sur les
idéaux I,J, ...; c'est une égalité dans le cas d'un seul idéal; elle est
manifestement associative et commutative.

La notation adoptée pour un idéal défini par une base algébrique
de termes pi7 peut être considérée comme l'indication de la construction

du plus petit idéal contenant les idéaux principaux (p^):

(...,PjV..) (...5(pj)r..).

Par analogie avec le vocabulaire de l'arithmétique élémentaire,

on dit que des idéaux principaux (oq), —ou leurs bases oq—
sont premiers entre eux, dans leur ensemble, lorsque leur plus
petit idéal contenant est l'idéal unité —ou lorsque le système
des bases oq constitue une base algébrique de l'idéal unité— :

(...,<*iv..) (1).

On vérifie aisément qu'il en est ainsi si et seulement si les oq sont
des entiers du corps et s'il existe des entiers du corps tels que
2^x^ 1.

Des nombres entiers, premiers entre eux, au sens de l'arithmétique
ordinaire, considérés comme des entiers rationnels, d'un corps quadratique,

sont aussi premiers, au sens précédent.

10. 4. Construction d'une base arithmétique.
En modifiant une base algébrique par remplacement, ou par

adjonction de termes on peut la rendre arithmétique.
Pour un idéal I, défini par une base algébrique de h éléments pi?

on obtient une base arithmétique, de 2h éléments, en multipliant
par chaque terme p{ les deux termes yr y2, dune base arithmétique
des entiers du corps —ou de l'idéal unité—• (4):

(...»YiXpj, TaXpj, ...)•
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On peut choisir notamment, comme il a été fait pour le
théorème caractéristique (9.5), une base It, des entiers. La
modification de la base se borne alors à l'adjonction des k
termes t x : -

(***7pi,***) (•••îPiv•• r "jT X Pii •••)

Le système de 2h termes est encore une base algébrique de I:
d'une part tous ses termes, produits par des entiers du corps des

termes de I appartiennent à I. D'autre part l'idéal engendré par
cette nouvelle base contient tous les éléments des idéaux:

PiX(ïi, y2) (Pi),

et notamment tous les termes pt; donc l'idéal I.

Reste à vérifier que cette base vérifie la condition caractéristique
d'une base arithmétique. Les produits y-Xt pouvant être construits
avec la base arithmétique yx y2, on en conclut, pour chaque terme
de la nouvelle base:

(ïjx Pi) X T pyX(Yj Xt)PX{Xj + Vj X y2)

xj X (piX Yi)+yjX{piXy2)
les Xpjjj sont des nombres entiers, dépendant de /' égal à 1 ou 2 et
de i(de 1 à h). Les produits par t, des termes de la nouvelle base,
peuvent donc être effectivement construits par additions et
soustractions, au moyen de ces termes eux-mêmes.

11. Idéaux principaux.

Définition (Rappel; 10.2). — Un idéal fractionnaire
appelé principal, lorsqu'il peut être engendré par une base d'un
seul élément p ; c est-à-dire lorsqu'il est égal au produit par
l'élément p de l'idéal unité (1).

L'élément p est une base (sous entendu algébrique) de l'idéal
qui est lui-même désigné, comme il a été dit par:

(p) abréviation de pX(l), ou pxE(6).
L idéal nul est un idéal principal de base 0. Pour un idéal

principal, non nul, toutes les bases sont égales aux produits de l'une
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(Telles (arbitraire) par les diviseurs de Vunité, du corps (3), qui
peuvent se réduire à +1 et —1. Les valeurs absolues des normes
de ces bases sont égales entre elles.

En particulier les bases de l'idéal unité (1), ou E(0), sont les

diviseurs de l'unité.

La démonstration de cette propriété est analogue à celle qui
établit la relation entre les bases arithmétiques de deux éléments.

Pour que les idéaux principaux {p^, (p2) soient égaux, il faut et il
suffit que la base de chacun d'eux appartienne à l'autre, ce qui est

équivalent à leur inclusion réciproque:

p2 ^xpa et px £2Xp2; £i, entiers du corps.

Il en résulte:

P2 £1 x £2) x p2 => x Ç2 — 1.

L'implication est obtenue en multipliant les deux membres de la

première égalité par l'inverse de p2, supposé non nul. Les entiers ^
et Ç2, sont inverses l'un de l'autre, donc diviseurs de l'unité, (3). La

condition est manifestement suffisante. En outre:

|Ar(Pi)| |^v(p2)xiV(y| |iV(P2)|.

Un idéal principal est qualifié rationnel lorsque Y une de ses

bases est un élément rationnel q, du corps. Son facteur rationnel
est égal à la valeur absolue de q, son facteur canonique est

l'idéal unité.

11. 2. Base canonique Tun idéal principal.

D'après la construction générale de 10. 4, on obtient des

bases arithmétiques d'un idéal principal (p), en multipliant par p

des bases arithmétiques de (1):

pXyi pXy2; notamment: p pXi.
Ces bases ayant deux termes sont libres (Th. de construction;

9. 1). Elles sont d'ailleurs déduites de l'une d'elles par des

substitutions unimodulaires, puisqu'il en est ainsi des bases

arithmétiques de E(0).
On peut utiliser cette construction pour obtenir la forme

canonique d'un idéal principal.
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Théorème de la forme canonique d'un idéal principal. —
Pour un idéal principal (p), de base p, élément du corps:

1. Le facteur rationnel de V idéal est égal au facteur rationnel de

(l'élément de) la base p:

(p) (f+s6) ?XM, M canonique; q p.g.c.d. (r, s).

2. Le facteur canonique M est égal à l'idéal principal (oc),

dont une base oc est Ventier canonique du corps égal au quotient
de p par le facteur q:

M (a); oc — a+60; [a rxq~~l, b

En explicitant la construction d'une base arithmétique avec la
base 1 t 0—5, de (1), on obtient:

p X 1 r+50, p x (Q—S) —(rS + sN) +r0.
Le facteur rationnel est bien égal au p.g.c.d. positif de r,s qui sont
multiplicateurs de 0.

Le facteur canonique- en résulte, sa base a+bQ est un entier
canonique, puisque les multiplicateurs afi sont premiers entre eux.

On retrouve bien ainsi la forme canonique d'un idéal principal
rationnel, de base q ^+0x0:

|?|x(l, 6) |?|x(l).

11.3. Idéal principal canonique.

De ce théorème, on déduit immédiatement les propriétés
caractéristiques :

Pour qu'un idéal principal (a) soit entier, il faut et il suffît que
sa base a soit un entier du corps.

Pour qu'il soit un idéal canonique (à fortiori entier), il faut
et il suffit que sa base soit un entier canonique du corps.

(oc) canonique o a canonique.

Pour calculer une base canonique d'un idéal principal, il suffît
de chercher la norme et une racine de son facteur canonique M, qui
est un idéal canonique. En appliquant la construction générale
de 10. 3, on obtient les propriétés suivantes.
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Théorème de la base canonique d'un idéal principal
canonique. — Pour un idéal principal canonique:

(a+60); a,b (nombres entiers) premiers entre eux;

1. Une racine c est donnée par l'expression:

c —(aa'+Sab'+Nbb'); ba'—ab' +1.

2. La norme m est égale à la valeur absolue de la norme de

(l'élément de) la base oc:

m |iV(oc)| \a2+Sab+Nb2\.

L'existence des nombres entiers a', b' résulte de ce que a,b sont

premiers entre eux; ces quatre nombres forment une matrice carrée

unimodulaire, qui permet de construire une base arithmétique libre
de (1):

a b 1 a -\-60' a'
X

a' b' 6' o'+ô'e' ß'

On en déduit une base arithmétique de l'idéal (a) :

ocXoc' iV(oc) a2-\-Sab-\-Nb2
(oc) (aXa', ocXß')

ocxß' (aa'+Sab'+Nbb^ + Q.

Mais cette base est canonique puisque son premier terme est un entier
rationnel et que le second est de la forme 0—c. On obtient bien les

expressions de l'énoncé.

En calculant la valeur F(c), pour le nombre c, on obtient:

F(c) (a2+Sab+Nb2)x{a'2+Sa'b'+Nb'2);'

elle est bien divisible par m.

On peut aussi vérifier que le nombre c n'est défini qu'à l'addition
près d'un multiple de m, les nombres a' et b' n'étant eux-mêmes

définis qu'à l'addition près d'équimultiples de a et b.

On aurait pu aussi utiliser une base arithmétique:

a+bd, (a+60) X (0—S) —{Sa+Nb)+aQ;
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on obtient le valeur de c par le calcul:

(a+b%)xa'+[—(6,a+7Vè)+a6]x(— {aa'+Sàb'+JS[W)+b.
On obtient la norme en prenant le p.g.c.d. des nombres :

ax(ba'—ab')+cxb —
—(Sa+Nb)x(ba'—ab')+cxa

Dans le cas particulier d'une base a+0, le calcul se simplifie
(a' 1, b'=s= 0), la racine est égale à —a et la norme à F(—a),
ce qui peut être exprimé par la forme canonique :

(0—c) (|-F(c)|, 6—c); [d'ailleurs (0—c)x(0'—c)].

(A suivre)
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