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82 ALBERT CHATELET

CHAPITRE 1

IDEAUX D’UN CORPS QUADRATIQUE

1. Construction d’un corps quadratique.

Un corps quadratique est caractérisé par un nombre entier,
d, diftérent de 0 et de +1, sans facteur carré; ou, plus précisé-
ment, par le trinome du second degré normé (de premier coefficient
egal & +1), appelé polynéme fondamental du corps:

F(x) = 2>—Sx-+N,
dont les coefficients sont, suivant la divisibilité de d—1 par 4:

d—1 div. par 4:
§ =—1, N = (1—d):4, 4F(x)= (2z+1)>—d;

d—1 non div. par 4:

§= 0, N= —d , F@) = z2—d.
Ce trindme peut étre mis sous la forme (commune aux deux cas):
4F(x) = (22—8)>—D; D = S2—4N = }42 ;

D est appelé le discriminant du corps.

Le trinéme est irréductible —ou sans zéro rationnel—, puis-
que D n’est pas carré parfait (le cas d = +1 —ou D = +4—
étant exclus). | |

Sid —donc aussi D— est positif, le trindme a deux zéros
réels, (non rationnels), on dit que le corps est réel; sid —donc D—
est négatif, le trindme a deux zéros complexes, le corps est dit
imaginatire.
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On peut donner du corps diverses constructions équivalentes:

Le corps quadratique, caractérisé par le polynéme fonda-
mental F(z), désigné par R(0), peut éire obtenu en « adjoignant »,
par addition, soustraction et multiplication, au corps R, des
nombres rationnels, un symbole —ou générateur—, désigné
par 0, qui se comporte comme un zéro de F(z).

On peut entendre par 14 que ce corps R(0) est I'ensemble des
valeurs f(0), des expressions entiéres —ou polynémes— f(z),
a coeflicients rationnels, pour la valeur 0, de I'indéterminée .
Toutefois chacune d’elles est (considérée comme) égale a la
“valeur r-+s6, du binome: '

risz = f(x)—F(z) x q(z),

reste de la division (euclidienne) de f(xz) par le polynéme F(x).
Il est équivalent de dire qu’un élément de R(0) est ensemble
des expressions (considérées comme) égales entre elles:

r+s0+F(0)xq(0); ¢(z) polynéme a coefficients dans R;
(la valeur F(6) se comportant comme un élément nul).

On se borne, ordinairement, a utiliser les expressions linéaires
r+s0, les autres servant seulement a définir, [ou & justifier], leur
calcul. Deux éléments sont égaux, si et seulement si leurs expressions
lindaires ont des coefficients (rationnels) égaux:

(r+s0) = ("+50) < {r=7r ot s— s'}.
Les régles explicites des opérations internes (addition, de signe 4,

multiplication, de signe x) se déduisent du « comportement » ‘de 0
ou de la régle du reste (qui revient a remplacer 62 par S6—WN):

(r+80)4(r'+5'6) = (r41")+(s+5")8;

(r+s6) < (r'++s'6) = (rr'—Nss’)—l—(rs'+sr’+Sss’)6.
Ces regles (ou le calcul des expressions entiéres et la régle du reste),
montrent que ces deux opérations ont les qualités usuelles: elles
sont assoctatives, commutatives et la multiplication est distribusive
relativement a I’addition. ‘

Les binémes 04-00 (en abrégé 0) et 14-00 (en abrégé 1), sont les

éléments nul (neutre pour I'addition) et unité (neutre pour la multi-
plication). Chaque élément r+s6 a un opposé déterminé:
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(—7)F(—8)0 = (—1-406) X (r+-58), en abrégs —(r-s0).

La somme de deux opposés est égale a ’élément nul, la soustraction
(opération inverse de I’addition) est possible et déterminée: soustraire
un élément est équivalent & additionner son opposé 1).

On peut aussi considérer que le corps quadratique R(6) est un |
ensemble d’éléments, désignés par les lettres grecques p,o,B,..., qui
sont des formes (linéaires) de deux symboles: 1 (unité) et 6
générateur:

e = rx(1)+sx(0), en abrégé r4-s6:

dont les variables, ou muliiplicateurs, des symboles 1 et 0, dési-
gnées par des lettres latines: r,s,a,b,... sont des nombres rationnels.
- Les opérations (addition, soustraction, multiplication), entre
ces éléments sont les mémes qu’entre les formes; toutefois la
multiplication, distributive relativement a I’addition, est définie
par la table de multiplication (commutative et associative) des
symboles: : |
(1)Xx(1) = (1); (1) x(6) = (6)x(1) = (0);
(0) X (0) = —N--S6.

Les éléments, pour lesquels le multiplicateur de 0 est nul:
 rxX(1)40x0, en abrégé r,

qui comprennent les éléments nul, et unité, sont appelés les
éléments rationnels du corps; ils se calculent entre eux (égalité
et opérations) comme les nombres rationnels (éléments du
corps R). ~

De la construction adoptée pour R(6), il résulte que, dans
cet ensemble, le polyndme fondamental F(x) est décomposable en
—ou égal &— un produit de deux binémes linéaires rormés:

F(x) = (x—0) X (x—0'); 0" = Sx(1)+(—1)x0, ou S—8.
On peut dire que, dans R(0), F(z) a deux zéros 0 et 0', tels que:

) On reconnait, dans ce calcul, une construction analogue & celle des
nombres complexes, dans le corps des nombres réels, par les congruences
de Cavcry. Plus généralement, on peut dire que R(6) est isomorphe
I’anneau quotient R(x)|F(z); [R(xz) anneau des polynémes a coefficients
rationnels; F(z) polynéme fondamental].
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0+6 =S; X0 =N; (0—6)2 = S>4N = D.

Le corps R(B) peut étre construit aussi avec les deux sym-
boles: Punité 1 et le générateur 6/, moyennant la correspondance
(blunivoque) suivante des multiplicateurs:

r4+s60 = r'+s'0' < r =r+s§ et § = —s.

1. 2. Inverses et division.

L’irréductibilité de F(x) —ou 'inexistence de zéro rationnel—
permet d’affirmer que: tout élément o = r--s6, non nul, de R(0),
a un et un seul inverse, ¢’est-a-dire qu’il existe un élément (unique),
- désigné (suivant la notation habituelle) par p~!, tel que le pro-
dutt o X ™! soit égal a I'élément unité +1.

Pour obtenir cet inverse, on peut calculer le produit:
(r4-s0) X (r+s8’) = r*+Srs+Ns* = 22X F(—r:s) = gq;

c’est un élément rationnel du corps, qui n’est pas nul (r et s ne Pétant
pas simultanément), puisque F(x) n’a pas de zéro rationnel. Le
quotient de r-+sf’ par ce nombre rationnel g:

r+S8s s

ot ="ty ou g, .
79 9 q q

est I'inverse cherché puiquue exp l=ygq:q — 1.

Un raisonnement (de caractére général) montre que Iexistence
de l'inverse de o entraine la possibilité et la détermination 1),
de la division par ¢ (inverse de la multiplication) et, notamment
la détermination de cet inverse lui-méme (quotient de la division

par o de I’élément unité):
EXp=o0 <« (Exp)Xpl=o0oxp! o £ = cxp
L’ensemble des éléments non nuls, de R(0), entre lesquels

existe une multiplication associative, et commutative, ainsi que
Popération inv erse de division, est un groupe multiplicatif abélien.

') Par possibilité on entend qu’il existe un ‘quotient; par détermina-
twon, on entend que ce quotient est unique.
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L’ensemble R(6), formé de ce groupe et de 1’élément nul, est
un corps, au sens général de ce terme (ce qui justifie le nom
de corps quadratique). L’ensemble des éléments rationnels r,
de R(0), en est un sous-corps, isomorphe —ou, par abrévia-
tion, égal— au corps R, des nombres rationnels (inversement
R(0) est sur corps de R). |

La construction de ’addition, de la soustraction et de la multiplica-
tion et les qualités de ces opérations resteraient valables, méme sans
Ihypothése d’irréductibilité de F(z); les inverses n’existeraient alors
que pour certains des éléments r4-s6 (ceux pour lesquels —r:s
n’annule pas F(x)). L’ensemble construit serait seulement un anneau,
commutatif avec une unité, —ou au sens restreint— .

On peut aussi considérer que R(0) est un sous-corps du corps
des nombres: réels si D est positif; complexes si D est négatif. Cette
conception fournit encore une justification des régles de caleul, y com-
pris la division. Elle sera utilisée ci-dessous pour établir la détermina-
tion des cycles d’idéaux semi-réduits, dans un corps réel (46 et 47).

2. Eléments conjugués.

DerinitioN. — Dans le corps quadratique R(6), deux éléments
sont appelés conjugués, ou chacun d’eux est le conjugué. de
Pautre, lorsqu’ils sont égaux, respectivement, da des formes
de 1, 0 etdel, 0, avec les mémes multiplicateurs (nombres ration-
nels). Ils sont désignés par la méme lettre, avec et sans accent
(comme 0 et 0’, qui sont des éléments conjugués particuliers):

o = r4s0 = (r+Ss)—sb <« o = r+sd = (r—Ss)—s0.

Un élément du corps est égal a son conjugué, si et seulement si
c’est un élément rationnel (coefficient de 0 nul). Pour le vérifier, il suffit
de former la différence de deux conjugués:

0 =p—p" = sX(0—0") = —S8s+2s6 = S5—2s6" = s =0.

Les éléments 0 et 0 sont conjugués et inégaux.

Deux éléments de R(0), obtenus en remplacant x par 6 et 6,
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dans un méme polynéme f(x), & coefficients rationnels, sont
CONJUgues:

(B) =r+sb =p = [(0) =r+sb =o'

Car les éléments 0 et 6’, annulant chacun le polynéme fondamental
(dans R(0)), les valeurs qu’ils donnent & f(z), sont resp ectivement
égales & celles qu’ils donnent au binéme du premier degré:

r+sz = f(z) X q(),
reste de la division de f(x) par F(x).

En particulier les éléments conjugués d’une somme, d’un produit
(ou, plus généralement, d’une expression entiére, & coefficients ration-
nels), d’éléments de R(6), sont égaux a la somme, au produit (ou &
Iexpression entitre) des éléments respectivement conjugués. |

PropPRIETE, caractéristique de la conjugaison. — Pour que
deux éléments, d’un corps quadratique R(0), soient conjugués,
il faut et il suffit que leur somme et leur produit soient des éléments
rationnels —ou égaux a leurs conjugués—

Il est équivalent de dire que les deux éléments sont simul-
tanément zéros d’'un méme polynéme, du second degré, normé,
a coefficients rationnels.

La condition est nécessaire: p+p’ et pXp’ sont respectivement
égaux a leurs conjugués, en raison de la commutativité de la somme
et du produit; ils sont donc rationnels. D’ailleurs:

(r+s0)4(r+4s0") = 2r+38s; (r+s0) x(r-+s06’) = r2—Srs-1-Ns2,

Les deux éléments conjugués sont zéros du trin6me normé:

r(zr) = (x—p) X (r—p") = 2>—(2r+38s)x+ (r2—Ss-+ Ns?).

La condition est suffisante: en raison des propriétés de la division
des polyndmes, un trinéme normé du second degré r(z), a coefficients
rationnels, considéré dans le corps R(0), ne peut avoir plus de deux
zéros. Or les valeurs: '

r(r+s0) = I‘(p)‘ r(r4-s0’) = r(p’),

sont conjuguées, quel que soit le trindme r(z), & coefficients rationnels.




88 ‘ ALBERT CHATELET

Elles ne peuvent étre nulles que simultanément; si r(z) a un zéro,
il en a un deuxiéme qui est le conjugué du premier.

Si deux éléments p,p" ont pour somme et pour produit des éléments
rationnels: S(p) = S(p") et N(p) = N(p"), ils sont les deux zéros du
trindme normé

r(@) = 2%—S(p)r+N(p) = (x—p) X (3—p');
donc sont conjugués.

DEriNiTiONs. — Dans un corps quadratique R(0), pour un
couple d’éléments conjugués, p et o', —ou pour chacun d’eux— ,
on appelle:

Trace: la somme p+p’, désignée par S(p), ou S(p’);

Norme: le produit p Xp’, désigné par N(p), ou N(p');

Polynéme fondamental: le trindme normé, qui a pour zéros

o et p’:
r(r) = (r—p) X (x—p") = 22—=5(p) X2+ N(p);

Discriminant: le carré de leur différence, qui est encore un
élément rationnel:

(6—¢')? = [S(p)—4N(p) = s*x D;  désigné par D().

Pour deux éléments conjugués, exprimés avec le générateur 0,
ou 6: |

o =r+4+s0 =r'+s'0"; o =rt+st’ =r'4s0;
la trace et la norme sont égales indifféremment a:

S(p) = S(p') = 2r4+8s = 2r' 4+ Ss';
N(p) = N(p") = r*+Srs+Ns?* = r’?+Sr's’+ Ns".

On peut encore exprimer la norme en utilisant la décomposition
de 4F(x):

4N(p) = 4N(p') = (2r485)2—Ds? = (2r'+8s")2—Ds"2.
Pour le couple d’éléments 0 et 0, ces expressions deviennent:
S(0) = S(6') = S;  N(6) = N(®) = N; D(6) = D(§) = D.
Pour un élément rationnel r, ce sont:

S(r) = 2r; N(r) =r%;, D(r) = 0.
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De ces définitions il résulte que: I'inverse p~!, d’un élément p,
non nul, est égal au produit de son conjugué par linverse de
sa norme:

ol =o' X[N@E)I™Y, o' = o X[N(p)]™

La transformation —ou I'autotransformation— qui, dans un corps
quadratique R(0), fait correspondre —ou substitue— a tout élément p
son conjugué p’, est biunivoque et involutive (le conjugué du conjugué
est égal & I’élément lui-méme). Elle conserve les éléments rationnels
—ou laisse invariant le sous-corps R— elle conserve les opérations
(addition et multiplication, ainsi que leurs inverses soustraction et
- division): le conjugué (du résultat) d’une expression rationnelle &
coefficients rationnels, d’éléments du corps est égal & (le résultat) de
I'expression rationnelle, avec les mémes coefficients, des conjugués
respectifs des éléments de I’expression primitive.

Dans le langage de I’algebre moderne, la conjugaison est un
automorphisme du corps R(0), considéré comme une extension du
corps R, ou comme une adjonction & ce corps R, d’un zéro de F(z).

3. Domaine des entiers (algébriques) d’un corps quadratique.

Par anticipation de la définition générale des bases d’un
idéal (9), on appellera bases canoniques conjuguées, d’un corps
quadratique R(6) = R(6"), les deux couples conjugués d’élé-
ments, éventuellement disposés en colonnes: o

_ 1 . 1
16, ou X 16, ou
6 6’

qui ont permis d’engendrer les couples d’éléments conjugués du .

corps par des formes, qui peuvent &tre écrites en produits
matriciels:
1 1
p=rtsh=lrslx | 5 o= rts0 = |rs]x
6 ' 6’
" Les nombres rationnels r,s, multiplicateurs —ou variables—,
de la forme qui définit un élément p, seront appelés les coor-
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données: de o, relativement da la base.utilisée, et aussi du couple
d’éléments conjugués, relativement au couple des bases con-
juguées.

Les coordonnées des termes d’une base, relativement & elle-méme,
sont respectivement 1, 0 et 0, 1. La permutation —ou transposition—
des bases conjuguées remplace, ainsi qu’il a été dit r,s par r4Ss, —s.

DEriNiTIONS. — On appellera facteur rationnel, d’un élé-
ment p (et du couple d’éléments conjugués p,o’), le plus grand
commun diviseur positif q, de ses coordonnées, relativement a
I'une -—ou au couple— des bases canoniques conjuguées.

Le facteur rationnel ¢ est indépendant de la base choisie —ou
de I’ordre du couple— , car:

p.g.c.d. positif (r,s) = p.g.c.d. positif (r—FSs, —s).

Un élément —ou un couple d’éléments conjugués— est égal au
produit de son facteur rationnel par un élément —ou un couple
d’éléments conjugués— dont les coordonnées sont des nombres
(entiers rationnels) premiers entre eux a,b:

o = gX(a+b0), o = gxX(a+0bb); p.g.c.d.(ab) =1.

DEriNiTIONS. — On appelle entier algébrique d’un corps R(6)
—ou, en abrégé, entier du corps— fout élément, du corps, dont
le facteur rationnel est un nombre entier -—ou dont les coor-
données relativement a une base canonique sont des nombres
entiers— .

Un entier du corps est qualifié canonique, lorsque son
facteur rationnel est égal & +-1 —ou lorsque ses coordonnées
sont des (nombres entiers) premiers entre eux— . '

Ces définitions et ces propriétés peuvent étre rassemblées
dans I’énoncé suivant:

deux éléments conjugués du corps sont égaux 'aux produits
de leur facteur rationnel q par deux éléments conjugués o o’ qui sont
des entiers algébriques canoniques:

p=gxa, o =gxa; ou |ep'|=gx|[ad]|

Un élément rationnel du corps:
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r+0.0 = r-4+0.6"; ou simplement r;

de coordonnées r et 0, est égal a son conjugué; son facteur
rationnel est égal a la valeur absolue |r|; c’est un entier algébrique
—ou un entier du corps— st et seulement si r est un nombre
entier, dans ce cas il est appelé indifféremment: entier rationnel
du corps —ou nombre enlier—

Les seuls éléments rationnels du corps qui soient des entiers
algébriques canoniques sont +1 et —1 —’unité et son opposée—.

TreEorEMES de la définition axiomatique des entiers algé-
briques. — 1. Dans un corps quadratique, pour qu’'un entier
du corps o« (et simultanément I’entier conjugué ') soit un entier
canonique, 1l faut et il suffit que les nombres entiers [S(«)]? et N(x)
n’atent pas de diviseur carré commun, sauf I'unité.

2. Pour qu’'un élément o (et, simultanément I’élément con-
jugué o) soit un entier du corps, il faut et il suffit que sa trace S(p)
et sa norme N(p) sotent des nombres entiers.

Il est équivalent de dire que p (et simultanément le conju-
gue o) doit étre zéro d’un trindme normé du second degré
(qui est son polynéme fondamental), dont les coefficients S(p)
et N(p) soient des nombres entiers.

On établit la premiére propriété par contraposition. La condition
est nécessaire: si un entier a du corps, de coordonnées a, b n’est pas
canonique, il existe (au moins) un diviseur premier p, différent de 1,
commun a a et b et son carré p? est diviseur commun de:

IS(a)|2 = (2a+Sb)2 et  N(a) = a?+Sab--Nb2.

La condition est suffisante: on peut utiliser Pexpression (2) de
la norme de I'entier algébrique « = a—+50; (a,b nombres entiers):

4N(2) = (2a-+Sb)*—Db? = |S(a)[2—Db.

Si le carré p? d’un nombre premier impair p était diviseur commun de
[S(a)[? et de N(x), comme il ne peut diviser D qui n’a pas de facteur
carré, le nombre premier p diviserait b et S(a) = 2a-+S5b, donc a et b,
de sorte que I'entier algébrique « ne serait pas canonique.

On peut établir impossibilité d’un diviseur 22, —ou 4— en




92 ALBERT CHATELET

distinguant les deux cas de construction de R(6). Pour § = 0,
la norme N(x) = a?+4Nb? ne peut étre divisible par 4, car, suivant
les parités de a,b (premiers entre eux): |

a,b impairs : N(o) =1+N £ 0, (mod. 4);
a pair, b impair: N(x) = N £ 0, (mod. 4);
a impair, b pair:  N(a) = = 0, (mod. 4).
Pour § = —1, on peut considérer, suivant le cas, la trace ou la

norme:

b impair:  S(a) = 2a—b n’est pas divisible par 4;
b pair et aimpair: N(a) = a®>—ab+Nb?2=1ou 3, # 0, (mod. 4).

On peut alors établir la deuxieme propriété; la condition est
nécessaire: si les coefficients de p sont entiers, il en est évidemment
de méme de S(p) et de N(p).

La condition est suffisante: si le facteur ¢, de p, n’est pas entier,
son dénominateur a (au moins) un facteur premier p qui ne divise pas
le numérateur (¢ sous forme irréductible). D’apres les expressions
de la trace et de la norme:

1S(e) ]2 = X |S(a)|?, N(p) = ¢>X N(«); o entier canonique;

p? ne peut diviser simultanément |S(a)[* et N(a); donc S(p) et N(p)
ne peuvent étre simultanément des nombres entiers.

I’ensemble des entiers algébriques du corps R(0), qui sera
désigné par E(0) est un domaine d’intégrité, c’est-a-dire que:

il contient les sommes, les différences et les produits mutuels
de ses éléments, ainsi que ’élément unité 1 (donc tous les entiers
rationnels du corps); en outre tout élément «, non nul est régulier,
c’est-a-dire que 1’égalité de deux produits par o peut étre sim-
plifiée et entraine I’égalité des facteurs:

Pour vérifier cette régularité, on peut considérer ’égalité dans
le corps et en multiplier les deux membres par linverse «~!. On
pourrait aussi, dans le domaine E(0) considéré seul, multiplier les
deux membres par le conjugué de a.

Le domaine E(0) contient tous les entiers rationnels du corps R(0)
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—ou tous les nombres entiers— ; ils y constituent un sous-domaine,
qui sera désigné par E et qui est isomorphe au domaine des nombres
entiers (ordinaires, désigné souvent par Z). \

La conjugaison établit dans E(0) une autocorrespondance (le
conjugué d’un entier du corps est un entier), ou, plus exactement un
automorphisme (2), qui conserve les opérations et laisse invariants les
entiers rationnels, en sorte que E(0) est une extension de E.

DErFinNiTION. — On appelle diviseur de D’unité un entier
algébrique ¢, dont Uinverse €1 est ausst entier algebrzgue en sorte
que cet inverse est aussi diviseur de I'unité.

Un produit de diviseurs de I'unité est encore diviseur de I'unité,
puisque Pinverse de ce produit, étant égal au produit des inverses
des facteurs, est aussi un entier algébrique. Il en résulte que les
diviseurs de I'unité d’un corps quadratique R(0), qui appartiennent
au domaine E(0) forment un groupe abélien, multiplicatif; il est sous-
groupe du groupe des éléments non nuls du corps; il sera désigné
par U(0).

La construction de I'inverse (1.— 2) montre que deux diviseurs
inverses de l'unité sont des entiers conjugués, dont la norme
commune est égale & +1 ou & —1. Les diviseurs de 'unité e,
dans le corps -R(0) sont donc obtenus par la résolution (en
nombres entiers, z,y; coefficients du diviseur cherché) de I’équa-
tion, connue sous le nom de PrrLL-FERMAT:

r?++Sxy+Ny? = +1 ou —1; z,y nombres entiers.

La structure du groupe U(0) dépend de la nature du corps, réel
ou imaginaire, ¢’est-a-dire encore du signe de d, ou D. On voit immé-
diatement que: ‘

pour toute valeur négative de d, exceptées —1 et —3, il n'y a
que deux diviseurs de lunité 41 et —1;

pour d = —1, il y a quatre diviseurs de lunité +1, —1, +1i, —1;
(1 désignant, suivant I'usage, un zéro de 224-1);

pour d = —3, il y a siz diviseurs de lunité +1, ——1, +7, +72,
—J, —J%; (zéros de 22>—1, de 22-+x4-1, et de 22—z+1).

On étudie ci-dessous le cas de d positif; le groupe U(0) est alors
formé des produits par +1 et par —1, des éléments d’un groupe
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cyclique, d’ordre infini (puissances différentes, d’exposants entiers
quelconques, d’un élément de base).

4. Bases arithmétiques des entiers d’un corps quadratique.

La construction des entiers du corps R(6) —ou des éléments
du domaine E(0)— peut étre exprimée en disant qu’ils sont
engendrés, par additions et soustractions, au moyen des deux termes
@’une base canonique, indifféremment 1, 6 ou 1, 6.

Un entier £ = 2440, de coordonnées z,y, nombres entiers, est
égal a la somme de |z| éléments égaux & +1, ou & —1 (suivant le
signe de z), et de |y| éléments égaux & 6, ou & —0 (suivant le signe de y).
Le conjugué &’ est obtenu de la méme fagon en remplacant § par 6’.
En outre les coordonnées x,y sont déterminées, en particulier ’élément
nul a pour coordonnées 0,0.

Cette détermination (et cette construction) peut étre exprimeée
par I'un des deux énoncés suivants qui sont équivalents:

1l y a une correspondance biunivogue entre les entiers g, du
corps et les couples z,y de nombres entiers (qui en sont les
coordonnées); .

les entiers & sont représeniés proprement par les points M,
de coordonnées entiéres z,y, dans un plan, rapporté a deux

—— S

vecteurs OA et OB, non colinéaires, dont ’origine O représente
I’élément nul et dont les extrémités A,B représentent les termes
1,6 de la base. |

Les entiers conjugués &, &' sont ainsi représentés respectivement
par les points M, M’, définis par les relations vectorielles (fig. 1)

A A A D Pl i Py P
M P e P s I

i S sy | R g e A Wt P ot 1
- s (2 iy - P i B
Y O B/ i Wt
77 o e o et

B’ é - - // // // _ -
- // S ///: ﬂ/:]/j/f//,'l/:’///
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OM — x.O_;él—{—y.O—g’; oM’ — x.574+y.573';
(OB' = §.0A—O0B).

Les points M,M’ sont symétriques obliquement, parallélement & la
direction BB’, relativement & la droite qui porte OA.

Dans cette représentation ’addition est manifestement conservée
en ce sens que le point IV représentant la somme v = &;+£, [dans
E(0)], de deux entiers, représentés par les points M, et M, est défini

par la somme géométrique‘ des vecteurs (7M1 et OM ..
N = gl‘l_az < ON = 0M1—|~0M2

Les points représentatifs M, de coordonnées entiéres, sont les
sommets du réseau de parallélogrammes (fig. 2) construit avec les

—

> ve I = -~ I
Al ol Vol Kl P

—_

vecteurs OA et OB. On sait qu'un tel réseau peut étre engendré

par tout autre couple de vecteurs %1 et 52’2, a condition qu’ils
forment un triangle non aplati qui ne contienne d’autres points du
réseau que ses sommets 0,C;,C,. Cette propriété qui sera établie
arithmétiquement ci-dessous conduit a définir et a préciser d’autres
générations du domaine E(), par des couples d’entiers v;, v, qui
peuvent encore étre appelés des bases, arithmétiques libres, de E(0).
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4. 1. Bases arithmétiques libres.

DEFINITIONS. — On appelle base arithmétique, du domaine
des entiers du corps E(0), un systéme de h entiers v,, tel que tout
entier &, du corps soit égal & (au moins) une forme de ces termes vy;,
pour des multiplicateurs —ou des valeurs des variables— egaux
a des nombres entiers:

£ =2z,Xy;; tdelah; z nombres entiers.

Il est équivalent de dire que tout entier & peut étre construit,
au moins d’une fagon, par additions et soustractions, au moyen des
termes de la base: il est obtenu en additionnant les 2 sommes de |z,|
éléments égaux & +v;, ou & —y,, suivant le signe de z,. Les bases
canoniques sont manifestement des bases arithmétiques, de deux
termes.

Une base arithmétique doit contenir au moins deux termes, non nuls,
car les éléments x Xvy,, construits avec un seul terme vy,, non nul, ne
peuvent contenir le produit 0 Xvy,, qui est encore un entier du corps,
puisque:

x nombre entier et v, # 0 = O0Xy;—z Xy, = (0—x) Xy, #% 0.

Une base arithmétique est qualifiée libre, lorsque chaque entier &
n’est égal qu’a une seule (valeur de la) forme, en sorte qu’elle
définit une représentation propre des entiers £ par les systémes
de # multiplicateurs z;, qui sont alors appelés (sans ambiguité)
les coordonnées de &, relativement a cette base libre.

On va d’abord étudier les bases formées de & = 2 termes Y1 Yo
dont on constate que ce sont les seules qui soient libres. On disposera
ces termes en colonne; les multiplicateurs ou variables étant en ligne,
de sorte que la construction d’un entier peut étre exprimée par le
produit matriciel:

T
& = 2 XY1F5 XY = Hzl Z2H><
| | Ye
TutorEME de construction des bases arithmétiques libres

—Dans E(0), toute base arithmétique, de deux termes, est obtenue
en multipliant une base canonique (en colonne), & gauche, par une
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matrice carrée A & termes entiers (rationnels), et de déterminant
égal a +1 ou a —1. )

Cette base est libre et les coordonnées x y, d’'un entier, relati-
vement & la base canonique, sont obtenues en multipliant, &
droite, par la méme matrice, les coordonnées z, z,, de cet entier,
relativement & la nouvelle base, disposées en ligne:

Y1 _ 1 _
=Ax| |5 et Jey]=]uz]x4

Yzl 0

Le théoréme comporte deux propositions particllement récipro-
ques: d’une part: toute nouvelle base arithmétique, de deux termes vy, v,
est obtenue par une telle multiplication.

Les entiers (du corps) y;, v, peuvent étre construits avec 1 et 0,
ce qui peut s’exprimer par une égalité matricielle: multiplication

par une matrice A, dont les termes sont des nombres entiers:

Y1 = Z1+y,0 Y1 _ 1 _ Ty Y1
ou = AX ;0 A=

Yo = Zy+Y,0 Ye 6 Ta Y2 |

Mais les entiers 1 et 0 doivent pouvoir étre construits, d’une
fagon analogue, en multipliant (& gauche) la nouvelle base par une

matrice convenable B, dont les termes sont aussi des nombres entiers
On en déduit:

1 s nl 1 1] 1

:Z?X et = A X =
0 lval o lve] ’6 0

L’implication est une conséquence de I'associativité de la multipli-
cation des matrices —ou de I'élimination de v, v, entre les équations
qu’expriment les égalités matricielles— .

Mais, relativement & la base canonique elle-méme, 1 et 6 ont des
coordonnées déterminées qui sont 1, 0 et 0, 1; done:

10
Bx A = ou [1], matrice unité.
01

I’Enseignement mathém., t. VI, fasc. 2. 4
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Les déterminants de B et A, qui sont des nombres entiers, dont le
produit est égal & +1, sont donc égaux a v (+1 ou —1). S’il en est
ainsi pour la matrice A, elle a une inverse déterminée, & termes
entiers: | '
- NY2 —Y1
TYe—TYy =n = B=A""=

“7)552 %y

Réciproquement, un couple d’entiers du corps v, v, ainsi construits

par multiplication par une telle matrice A, forment une base arith-
métique, qui est libre.

Tout élément égal & une forme de ces entiers, avec des multipli-
cateurs entiers rationnels z, z,, est un entier du corps et on peut
calculer ses coordonnées relativement & la base canonique, en appli-
quant leur détermination:

1 1
lzylx| | =lazlxax) | = |zy] =]2z][x4

(’est la construction annoncée des coordonnées: & tout couple
de nombres entiers z; z, correspond un, et un seul, couple de nombres
entiers z y. Mais on peut, réciproquement, exprimer z, z, en fonction
de z y, utilisant la matrice inverse —ou en résolvant les équations
linéaires— : -

o 2l = oy <A

comme la matrice A~! est a termes entiers, & tout couple de nombres
entiers z y, correspond un, et un seul, couple de nombres entiers z, z,,
qui sont les coordonnées relativement & la nouvelle base, qui est
donc libre. '

On peut aussi bien disposer les éléments des bases en lignes

et les coordonnées en colonnes; les matrices A et A~! doivent alors
étre remplacées par leurs transposées, notées 4 et A~! et obtenues en
permutant, dans les précédentes, lignes et colonnes de méme rang:

B Ty Xy : NYo2 —NZy
A = At =
Y1 Yo ‘ |~ Y1 N
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On remarquera que la transposée de I'inverse est égale & 'inverse de
la transposée et que les déterminants des quatre matrices ainsi
considérées ont la méme valeur % (-+1 ou —1).

On peut ainsi noter la construction de la nouvelle base et du
nouveau couple de coordonnées, tous deux disposés de la méme facon:
en colonnes —ou en lignes— :

Y1 I z [vavell =1 0]x 4

= A X ; =4 1x ou .
Yo 6 Zo |l Y Hz1 Zg “ — ”x y”XA_1

- 4. 2. Substitutions lindaires contragrédientes et unimodulaires.

DEFinNiTIONS. — On appelle substitution linéaire, définie par

une matrice carrée A (d’ordre 2), le remplacement d’une colonne
—ou d’une ligne— d’un couple d’éléments (d’un certain domaine)
par le produit de sa multz,plwatwn a gauche —ou a droite—

par la matrice A.

La substitution inverse, est celle qui exprime ’ancien couple en

fonction du nouveau; elle est définie si le déterminant de A a un
inverse; elle est alors obtenue par la multiplication par la matrice

inverse A~
Deux substltumons sont contragrédientes lorsqu’elles sont respec-
tivement définies par une matrice et la transposée de son inverse.

Une mairice carrée A (d’ordre 2), ainsi que la substitution linéaire
qu’elle définit, est appelée ummodulaz,re lorsque ses termes sont des
nombres entiers et que son déterminant est égal & 4+1 ou @ —1. Il en est,

alors de méme de la matrice inverse 4! et des matrices transposées 4
et A1, ainsi que des substitutions qu’elles définissent.

Avec ce Vooabulalre le remplacement: d>une base canonique
par une base arithmétique (de 2 termes, donc libre); et des couples
de coordonnées, d’un entier du corps, relativement & ces bases,
sont deux substitutions (linéaires) unimodulaires contragredwntes

Le produit et le quotient —ou produit par l'inverse— de deux
matrices —ou substitutions— unimodulaires est encore unimodulaire
(en raison de la régle de multiplication des déterminants). Comme la
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multiplication des matrices est une opération associative, les matrices
unimodulaires forment un groupe qui contient 'inverse et la transposée
de chacune d’elles: Z, A et Z‘l, A1

Il en résulte que deux bases arithmétiques (de deux termes, donc
libres) et les deux couples de coordonnées d’un méme entier du corps,
relativement & ces bases, sont liés par deux substitutions unimodulaires
contragrédientes.

4. 3. Bases conjuguées et base matricielle.

Deux entiers conjugués & et £ ont manifestement des coor-
données égales, relativement & une base arithmétique libre et
a sa conjuguée, c’est-a-dire formée de termes respectivement
conjugués:

’

Y1 Y1
£ = |21 22| % = £ =z z5|x
Y2 163

Les bases canoniques conjuguées 1 0 et 1 6' sont des bases
arithmétiques libres conjuguées particuliéres.

On appellera base matricielle, éventuellement canonique, une
matrice carrée, d’ordre 2, constituée par deux bases arithmétiques
libres, conjuguées, disposées en colonne. On peut utiliser une telle base
pour exprimer la construction commune de deux entiers conjugués:

!/

Y1 Y1
r—| s Jeel=laslxr
Yo Yzl .

Deux bases matricielles I' et A et les couples de coordonnées
(d’un couple d’entiers conjugués & &', du corps) relativement a ces
bases: z; z, et t; t, se déduisent I'un de I’autre par des substitutions
unimodulaires contragrédientes:

& = ZxI’; | Hzl Z2” = Htl t2|[XZ.

L’étude des bases arithmétiques, qui ne sont pas présumées
libres, sera faite ci-dessous dans le cas général des bases d’un
idéal (9).
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5. Congruence fondamentale (module premier).

L’arithmétique -d’un corps quadratique R(0) est intimement
liée a I'étude de son polyndéme fondamental, considéré dans
Ianneau des nombres entiers, définis a un module entier m prés,
—ou des classes d’entiers, mod. m—. C’est cette étude que
précisent les définitions et les propriétés suivantes.

DerinitioNs. — On appellera congruence fondamentale,
~mod. m, de R(0), I’équation congruentielle, obtenue en écrivant
que le polynéme fondamental du corps F(x), est congru a 0,
mod. m: _

22—Sz+N = 0, (mod. m).

L’étude de cette équation en z, consiste & chercher les valeurs
entieres ¢, de la variable z, telles que F(c), qui est un nombre entier,
soit divisible par m. S’il en existe, elles se répartissent en progressions
arithmétiques, de raison m, doublement illimitées:

¢+nm;  Amnombre entier quelconque.
En effet 1’égalité:
F(c+xm) = F(c)+m X (un nombre entier),

montre que tous les nombres entiers F(c4-Mm) sont divisibles par m,
s’ en est ainsi de 'un d’eux.

Une telle progression, ¢c+Mm, est couramment appelée une classe
@’entiers, mod. m —ou un entier défini, mod. m— .

On appellera zéro, mod. m, de F(x) —ou solution de la
congruence fondamentale— indifféremment: une progression
¢c+xm, dont chaque terme donne & F(z) une valeur F(c+xm)
divisible par m; ou un seul des termes de cette progression, choisi
arbitrairement, ou précisé par une condition convenable.

On peut d’abord établir une propriété générale, valable pour
tout module m. |

TueorEME des zéros conjugués. — Les solutions de la con-
gruence fondamentale, §’il en existe, forment un, ou plusteurs,
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couples. de zéros mod. m, de F(x). Les deux zéros d’un couple ont
une somme congrue & S, mod. m:

¢ = cyFhm, ¢ = cy+Nm; ¢ = S, (mod. m);

ils sont appelés conjugués et désignés par une méme lettre avec
et sans accent (comme les éléments conjugués du corps).
Deux zéros conjugués sont égaux si et seulement si m est diviseur

du discriminant D; leur valeur commune est alors appelée zéro
double.

L’existence d’un zéro ¢ entraine celle de son conjugué ¢, car,
d’apres les calculs évidents de congruences, mod. m: '

c+c =S, ex¢ = cX(S§—c) = N
et = (mod. m)
¢ —Sc+N =0 F(z) = (z—c) X (z—¢')

En outre la congruence:
(c—C')? = §°—4N = D, (mod. m),

montre que les deux zéros sont congrus —ou les deux progressions
sont égales—, si et seulement si D est congru & 0, mod. m.

Pour qu’un zéro soit double il faut et il suffit qu’il annule, mod m,
le polynéme dérivé:

F () = 22—8;

’

ear: c=c¢ < 2c=JS8, (mod. m).

On peut remarquer que ces calculs de congruences peuvent, aussi
bien, étre considérés comme des calculs [d’addition, soustraction et
multiplication] entre les m classes d’entiers, mod. mn:

0+am, 1+am, ..., (m—1)4+wm,

qui constituent un anneau commutatzf avec unité —ou au sens
restreint— . ' ‘

TuroriME de la congruence fondamentale pour un module

‘premier. — Lorsque le module de la congruence fondamentale

est un nombre premier p,
1. Si p ne divise pas le discriminant D:
ou bien la congruence est impossible;
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ou bien elle a un et un seul couple de solutions inégales: —ou
F(x) a un et un seul couple de zéros conjugués incongrus— ;

2, Si p est diviseur de D (notamment si p = 1), la congruence
a deux solutions confondues —ou F(x) a un et un seul zéro
double— .

La premiere partie du théoréme peut étre complétée par des
propriétés caractéristiques de possibilité:

pour un module premier p impair, ne divisant pas le discri-
minant D, la congruence fondamentale est possible, si, et seule-
‘ment si, il existe un entier, dont le carré soit congru @ D, mod. p.
On exprime parfois cette existence en disant que D est résidu
quadratique du nombre premier p.

pour le module premier 2, si le dlscrlmmant est impair, le
polynéme fondamental est de la forme:

F(z) = 2®+24+N;  [§S=—1; D= 1—4N];

la congruence fondamentale est possible si, et seulement si,
N est pair. Les deux zéros conjugués de F(z) sont 0 et 1, (mod. 2).

1. Lorsque m est égal & un nombre premier p, pair ou impair,
si la congruence est possible, le polynéme F(z) a, au moins, un couple
de zéros (conjugués), ¢ et ¢, peut étre égaux, et il est congru a un
produit de bindmes. Il n’a pas alors d’autre zéro, car la congruence

(x—c) X (z—¢') = 0, (mod. p),

exige que I'un au moins des facteurs soit divisible par p, ¢’est-a-dire
que z soit congru & ¢ ou a ¢'.

On peut exprimer ce raisonnement en disant que Panneau des
p classes d’entiers, mod. p, est un domaine d’intégrité, c’est-a-dire
qu'un produit de deux facteurs ne peut &tre nul, que 8’1l en est ainsi
de (au moins) I'un des facteurs. [(’est méme un corps, car tout élément
non nul, y posséde un inverse.]

Pour un module p, premier impair, on peut utiliser le prodult
du polynéme F(z) par 4:

4F(z) = (25—S8)*—D:;
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Iexistence d’un zéro est équivalente & celle d’un nombre entier (2¢—JS),
dont le carré est congru & D, mod. p.

Pour le module premier p = 2, il n’y a que deux classes d’entiers,
représentés respectivement par O et 1; il suffit de former les valeurs
qu’elles donnent & F(x) = 22+x+NV:

F(0) = F(1) = N, (mod. 2);
d’ou la condition d’existence.

2. Pour un module premier impair p, diviseur de D, I’expression
de 4F(x) est congrue a:

LF(x) = (20—8)*—D = (22—35)%, (mod. p);

elle montre qu’il existe un et un seul zéro ¢, mod. p, qui rend (2c—S)
divisible par p. Suivant le cas, 1l est congru a:

p—1

=0, siS=0; c=-—
c , Sl " c D) y

s1. 5 = —1.

Pour le module 2, lorsque D est pair, § est nul, la congruence:
24N =0, (mod. 2)
a une et une seule solution (zéro double), congrue a:
0, si N est pair; 1, si/V est impair.

Pour p = 1, la propriété est triviale, il n’y a qu’une seule classe,
formée de tous les nombres entiers et elle est zéro double de F(x).

6. Congruence fondamentale (module composé).

On considére d’abord un module primaire —ou puissance
d’un nombre premier > 1— .

TutortEME de la congruence fondamentale pour un module
- primaire. Relativement & un module p", puissance (d’exposant #,
entier positif), d’'un nombre premier p, différent de 1, le poly-
nome fondamental F(x):
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10 n’a pas de zéro, pour tout exposant A, s’il n’en a pas pour
h =1 —ou si la congruence est impossible, mod. p— ;

20 n’a pas de zéro, pour h supérieur a 1, 8’il a un zéro double
pour # = 1 —ou si D est divisible par p— ;

3° a un et un seul couple de zéros conjugués, incongrus, 8’1l en
est ainsi pour # = 1 —ou si la congruence est possible, mod. p;
et p non diviseur de D—

Les trois conditions suffisantes énumérant tous les cas possi-
bles, le théoréme exprime une propriéié caractéristique d’existence

~ des zéros.

1. §’1l existe un zéro c¢,, mod. p", il Test, a fortiori, mod. p;
¢’est la propriété contraposée de I’énoncé.

2. Dans le cas d'un module premier impair p, différent de 1,
diviseur du discriminant D, on peut encore utiliser 4F(z). Tout .
zéro, ¢, mod. p"

et (22—S)? divisible par p? d’ou la congruence:

4F(c) = (2¢—S8)*>—D = —D, (mod. p?).

, Iest, a fortiori, mod. p; il rend (2x—c) divisible par p

L’existence d’un zéro ¢, mod. p", pour A > 1; donc, & fortiori, mod. p2;
entrainerait la divisibilité de D par p2, ce qui est contraire & la défi-
nition du polynéme fondamental, dont le discriminant ne peut avoir
de facteur carré impair.

Dans le cas du module 2" et d’un polynéme de discriminant ‘pa‘ii.",
donc de la forme 224NV, tout zéro, mod. 2", done, & fortiori mod. 2,
ne peut étre que de la forme: '

0-+2x, sitVest pair; 1-42), siV est impair.

Les valeurs de F(x), pour ces nombres, sont congrues a

(20)*+N =N, (I+20)*+N=1+N, (mod. 4).

L’existence d’un zéro; mod. 2" pour 2 > 1; done, a fortiori, mod. 4;
entrainerait la divisibilité de NV, ou de 14N, par 4; ce qui est aussi
contraire & la définition du polynéme fondamental (1), puisque, dans le
premier cas IV == —d, est sans diviseur carré, et que dans le second cas
1+N = 1—d n’est pas divisible par. 4.




106 ALBERT CHATELET

3. On peut établir la propriété par récurrence sur %, en supposant
qu’il existe un et un seul couple de zéros, ¢, ¢’;, conjugués, incongrus,
mod. p" (ce qui est vrai pour & = 1). S'il en existe mod. p"*!, ils le
sont, & fortiori, mod. p", donc de I'une des formes:

e +2p",  ou ¢ -FNpt; A entiers.

On calcule les valeurs qu’ils donnent & F(x); pour le premier:
F(e,+2p") = F(e) +2p".F(cy), (mod. p"*1);

on a supprimé des termes du développement en A, qui sont multiples
de p*", donc a fortiori, de p"*!. La valeur ainsi obtenue est divisible
par p", il suffit de chercher si son quotient par cette puissance peut étre
divisible par p, d’ou la congruence:

|[F(cy): P*|+2.F(e,) =0, (mod. p).

Or ¢, étant zéro, mod. p,, 'est aussi mod. p et il ne peut étre
double, en raison de la propriété 2, précédente. La dérivée, coefficient
de A, n’est donc pas nulle, mod. p, cette équation du premier degré en A
a une et une seule solution, qui peut étre désignée par A,, on obtient
ainsi un zéro déterminé:

Ch41 = Ch‘|“7\hpha (mod. Ph+1)-

On obtient de méme un zéro déterminé c,-+2,.p", de la deuxiéme
forme; ces deux zéros sont incongrus, puisque leur différence:

’ . ’. h
Chpt—Cht = C—Cpy (mod. p")
n’étant pas divisible par p", ne peut I’étre par p"*!. Comme ce sont

les deux seuls zéros, ils sont conjugués et leur somme est congrue a §.

L’application de la récurrence, depuis 2 = 1, permet d’écrire
ces zéros, en partant des zéros, mod. p:

Chp1 = crtMp+ oAD",

(mod. p"*?).

Cht = CiFMP+ 2P
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La somme de ces deux ‘développements, limités & I'indice %, est
congrue & S, mod. p**! [1].

TutorkEME de la congruence fondamentale pour un module
composé. — Pour un-module égal au produit de plusieurs puis-
sances de nombres premiers différents:

m=Im;; m, = p"; p'premier=1; idelas;

le polynéme fondamental a des couples de zéros conjugués si et
seulement si:

1° pour tout facteur premier p;, diviseur du discriminant D,
Pexposant h; est égal a 1 (m; = p,);

20 pour tout facteur premier p;, premier avec D, la congruence,
mod. p;, est possible —ou le polynome a deux zéros conjugués
incongrus— . o

S1 ces deux conditions sont remplies et si s’ < s est le nombre
de facteurs premiers p; (ou m;) premiers avec D, il y a 2% zéros
ncongrus. Si s’ n’est pas nul, ils sont répartis en 25! couples de
zéros conjugués; si 8" = 0; ils se réduisent & un zéro double;
m étant d’ailleurs alors diviseur de D. |

Les conditions sont nécessaires: si I'une, au moins, n’était pas
vérifiée pour un facteur m;, ou m;, le polyndéme n’aurait pas de zéro
relativement & ce facteur, done, a fortiori, relativement au module m,
qui en est un multiple. |

Les conditions sont suffisantes: pour chaque facteur m;, diviseur
de D, le polynéme F(z) a un zéro c; (double); pour chaque facteur m;,
premier avec D, il a deux zéros (conjugués) c¢. et c.. Tout zéro ¢

i j
de F(z), mod. m, doit alors vérifier I'un des systémes de s congruences:

¢c=c¢, (mod.m); c=¢ ou c=g¢, (mod. m;).

') La démonstration de cette existence aurait pu étre faite sans utiliser

nommément la dérivée F(z). Sous la forme adoptée, elle est valable pour
un polyndme F(z), de degré quelconque, & coefficients entiers et norms.
Si ce polyndéme a, relativement a un module premier p, un zéro ¢, qui

n’annule pas sa dérivée F(z), il a, relativement & tout module p" (kh entier
positif), un zéro ¢t congru a ¢, mod. p. Cette propriété, qui peut encore étre
¢noncée sous une forme plus générale (existence d’un polyndme, de degré
quelconque diviseur de F(z)), est connue sous le nom de lemme de HENSEL.
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Chacun des systémes a une solution déterminée, mod. m, puisque les s
modules m; sont premiers entre eux deux & deux et que leur produit
est égal & m [1].

Dans la formation d’un systéme de congruences, pour chacun
des s" modules m;, premiers avec D, on peut choisir entre deux
congruences. Il y a donc bien 2% systémes, d’olt le nombre de zéros
indiqué. Leur répartition en couples conjugués en résulte; on passe
d’ailleurs d’un zéro ¢ & son conjugué ¢’, en changeant le choix dans

chacune des congruences, mod. m;.

Pour m diviseur de D et sans facteur carré, il n’y a qu’un systéme
de s congruences, qui détermine un zéro double. Il peut étre obtenu
par les régles suivantes:

D impair; m impair o o= (m—1): 2, (mod. m);
D = 4d; d impair, m pair: ¢=(m+5): 2{5 m:2, (mod. m);
D = 4d; m diviseur de d; c = (), (mod. m).

7. Idéaux canoniques.

L’extension de la théorie de la divistbilité (arithmétique) & un
corps quadratique R(6) et au domaine de ses entiers (algébriques)
E(0) a conduit a considérer, dans R(0), des sous-ensembles
particuliers, appelés idéaux.

On peut donner d’un idéal une définition constructive, en le
caractérisant par deux de ses éléments, convenablement choisis,
qui en constituent une base canonique et, a partir desquels, il est

1) La résolution d’un systeme de deux congruences:
x=a, (mod.m;) z=a, (mod.m,));
est équivalent & la résolution de I’équation en A:
a,+ram; = a,, (mod. my);

elle est possible et déterminée si m, et m, sont premiers entre eux et la
solution du systeme est de la forme:

a4 (A umy) X my = b+ux (m1>< my);
elle est déterminée, [module m = m; X m,].

Cette construction s’étend, de proche en proche, ou par récurrence sur s,
a un systéme de s congruences dont les modules sont premiers entre eux
deux a deux.




L’ARITHMETIQUE DES CORPS QUADRATIQUES - 109

engendré par additions et soustractions. On peut alors établir
des propriétés —ou qualités— caractéristiques d’apparienance
d’un tel ensemble. |

On peut, inversement, utiliser ces qualités caractéristiques,
pour donner d’un idéal une définition axiomatique, dont il est
possible de déduire sa définition constructive, c’est-a-dire sa
génération par une base canonique !);

On peut encore établir sa génération par d’autres bases,
qualifiées arithmétiques libres, équivalentes arithmétiquement &
la base canonique; ou encore par des bases, non présumeées libres,
d’un nombre plus grand de termes.

On va étudier d’abord une famille d’idéaux particuliers,
appelés canoniques; ils permettent de construire et de caracté-
riser les idéaux les plus généraux, appelés fractionnaires (com-
prenant les idéaux entiers.

7.1. DeEFiNiTION constructive. — Dans un corps quadra-
tique R(0), caractérisé par un polynoéme fondamental dont un des
zéros 0, est pris pour générateur, un idéal canonique M peut étre
défini par:

1} Dans certaines conceptions de la divisibilité arithméiique usuelle,
c’est-a-dire dans le corps R des nombres rationnels et du domaine E de ses
nombres entiers, on considére d’abord un sous-ensemble rxE (parfois
noté (r)), des multiples d’'un nombre (rationnel) r, c’est-a-dire des produits
rXz, du nombre r par tous les nombres entiers z. Il est manifeste qu’un
tel ensemble contient les différences mutuelles de ses termes et leurs produits
par tout entier.

Mais inversement si un ensemble de nombres rationnels, dont les valeurs
absolues sont limitées inférieurement, vérifie ces propriétés d’appartenance,
c’est-a-dire contient tout les éléments z; X r;+2,Xr, (2,2, entiers arbi-
traires) construits par additions et soustractions au moyen de tout couple r,,
r, de ses éléments, il est égal & I’ensemble rx z, des multiples d’un de ses
éléments r convenablement choisi; le plus petit en valeur absolue, qui peut
étre pris positif.

Cette propriété dont la démonstration résulte de la construction de la
digision euclidienne —ou de la partie entiére d’une fraction— est une des
formes de la propriété fondamentale de la divisibilité (des nombres ration-
nels); elle entraine notamment existence du p.g.c.d. (et du p.p-c.m.) de
plusieurs nombres rationnels. On en trouvera ci-dessous une démonstration
explicite, dans une circonstance qui n’est particuliére qu’en apparence:
construction de la norme d’un idéal canonique, défini axiomatiquement.
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un nombre entier positif m, appelé la norme de M; tel que la
congruence fondamentale soit possible, mod. m;

une progression arithmétique c+xm, de raison m, -—ou un
entier, défini, mod. m— , dont les termes, qui seront appelés les
racines de M; constituent un zéro, de cette congruence (9):

F(¢) =0, (mod.m) < F(c+wnm) =0, (mod.m).

Une racine ¢ étant choisie arbitrairement, ’idéal canonique M
est U'ensemble des éléments de R(0), construits par additions et
soustractions, au moyen du couple m, 6—c; c’est-a-dire des
valeurs de la forme de m et 0—c, dont les valeurs des variables
sont des nombres entiers.

m
£ = axxXm+yx(0—c) = Hx y”x :  x,ynombres entiers.
O—-c

Les éléments £, ainsi construits sont des entiers (particuliers)
du corps; 'idéal est un sous-ensemble de E(0).

Un tel couple de termes sera appelé une base canonique de
idéal, qui sera désigné lui-méme par ce couple entre parenthéses

M = (m, 0—c); [F(¢) =0, (mod.m)].

Les nombres entiers z,y, qui sont déterminés, pour un élé-
ment £, sont encore appelés ses coordonnées, relativement a cette
base.

On emploie ainsi un vocabulaire et une construction, analogues
a ceux qui ont été employés pour le domaine E(0) des entiers du corps:
’élément &, de M, de coordonnées z,y, est égal & la somme de || élé-
ments égaux a m, ou & —m, et de |y elements égaux a (6—-c), ou

a (—0+c).
La détermination des coordonnées z,y résulte de I’équivalence:

X m—+y X (0—c) = &' xm—+y’ X (6—c)
< [(z—2")xXm—(y—y') X c]+(y—y') X0 = 0;

en raison des régles de calcul dans E(0), la deuxiéme forme de I’égalité
entraine la nullité de y—y’, donc aussi de z—=z’'; done:

y=y et z=2z.
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11y a correspondance biunivoque entre les éléments de 'idéal et les
couples de nombres entiers 2,y (qui en sont les coordonnées).

Dans un corps R(0), de générateur 6, le sous-ensemble M est
indépendant de la base canonique adoptée pour le construire, ¢’est-a-
dire du choix de la racine ¢, dans sa progression; quand on la remplace
par ¢; = c+hm, les coordonnées des éléments restent des nombres
entiers: -

X m~+y X (0—c) = (x+yh) Xm-+y X (0—c¢,).

Dans un idéal canonique M, ainsi construit et considéré
- comme un ensemble d’entiers du corps R(0), on peut caractériser
la construction de la norme et des racines:

la norme, d’un idéal canonique M, est égale au minimum
(effectivement atteint) des valeurs absolues des entiers rationnels,
non nuls, qui lul appartiennent —ou au plus petit de ceux qui
sont positifs— ;

les racines sont égales aux entiers rationnels ¢, de R(0), pour
lesquels les différences 0—-c appartiennent a M.

D’une part, un ¢lément de M: |
xXm~4y X (0—c) = (xXm—y Xc)+y X0,

est un entier rationnel si, et seulement si, ¥ est nul et il est égal
& xxXm. La plus petite des valeurs absolues de ces entiers
[xxXm| = |z| xXm est m, qui est aussi égal au plus petit entier positif
ILxm = m.

D’autre part les entiers rationnels u, pour lesquels 6—u appartient
aM, vérifient la condition:

0—u — rXm-+yX(0—c) < [zXm—yX c¥i—u]—|—(y——1) X0=0;
dans laquelle z,y sont des nombres entiers. Il en résulte:
y=1 et u=c—axXxm (termes de la progression).

Le domaine E(0) de tous les entiers rationnels du corps (3) est
un 1déal canonique, trivial, construit avec la base 1 6—0, ou 1 0;
sa norme est égale & 1, la progression de ses racines est celle des
nombres entiers, qui est bien zéro de F(z), mod. 1.
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7. 2. Définition axiomatique d’un idéal canonique.
Comme il a été dit, on peut caractériser un idéal canonique

par certaines conditions d’appartenance, qui sont caracté-
ristiques.

THEOREME caractéristique d’un idéal canonique. — Pour
qu’un ensemble M, d’entiers du corps R(0), soit un idéal canonique,
il faut et il suffit que:

1. Il contienne les différences, donc aussi les sommes, mutuelles
de ses éléments, '

2. Il contienne des éléments de la forme 6—c, c’est-a-dire des
entiers du corps, dont le coefficient de 0 soit égal a 1 (il suffit
qu’il en contienne au moins un);

3. Il contienne tout produit de chacun de ses éléments par
tout entier du corps (et notamment les produits mutuels de ses
éléments).

En langage de ’algébre moderne, ces conditions peuvent étre
énonceées; ,

1. M est un module —ou un groupe additif— ;

2. L’ensemble M—0 contient des entiers rationnels;

3. M x entier du corps C M.

Les conditions sont nécessaires: les deux premieres sont mani-
festement remplies par un ensemble M d’éléments engendrés par une
base canonique.

Pour vérifier la troisiéme, on peut calculer (6—c)?, en utilisant
notamment la formule de TA YLOR, appliquée & F(z), dans le corps R(0):

0 = F(0) = (6—¢)24(2¢—S) X (6—c¢)+F(c).
Comme F(c) est un multiple de m, il en résulte une construction
de (6—c)% au moyen de la base canonique:

(6—c¢)2 = axXm-+bx(b—c);
[a = —F(¢): m, —b = 2¢—S, nombres entiers]

On peut alors calculer le produit d’un élément de M, par un
entier de R(6), dont on peut prendre pour base 1 et 6—c:

[z X m~+y X (6—c)] X[2'+y" X (0—c)]
= (22’ +yy'a) X m4-(zy' m~+yx'+yy'd) X (0—c);
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c’est bien un élément de M, engendré par la base m, 6—c, avec les
coefficients entiers:

xx'+yy'a, ay'm-t+yx'+yy'b.
Les conditions sont suffisantes: dans un ensemble M, qui lzs
vérifie, on va d’abord construire la norme, en appliquant la propriété

de détermination qui en a été donnée.
M; contient des entiers rationnels non nuls, notamment:

(0—c) X (0"—¢) = F(c),

qui est le produit d’un élément 6—c, dont 'existence dans M, résulte
de la condition 2, par son conjugué 6’—c, qui est un entier du corps.
Pour ces entiers, il existe un minimum m, effectivement atteint, de
leurs valeurs absolues. On va vérifier qu’ils sont égaux aux mul-
tiples 2 X m, de ce minimum. ‘

D’une part, en raison de la condition 1, les entiers rationnels +m,
—m et tous ceux zXm qui en sont déduits par additions et sous-
tractions appartiennent a M;.

D’autre part pour toute valeur z, d’un entier rationnel de M,,
on peut effectuer sa division (euclidienne) par V’entier m:

r=z—xxm; 0<r<m; znombre entier.

Comme les valeurs z et z X m sont égales & des entiers rationnels de M,
il en est de méme de leur différence 7, qui est nulle puisqu’elle est
inférieure au minimum m, des valeurs absolues non nulles; donec
z = xXm.

Ce premier point étant acquis, reste a vérifier que M, est bien
engendré au moyen des éléments: O0—¢ déja utilisé et m, qui vient
d’8tre construit. D’une part toute valeur ainsi obtenue:

TXm—+yX(0—c);  x,y nombres entiers

appartient & M,, en raison de la condition 1.
D’autre part tout élément de M, étant un entier du corps peut
étre mis sous la forme:

= 2'4y'0 = (@' 4yc)+y X (6—c); 2'dylc — &Y' X (6—c).

Le nombre entier 2’ +'c, qui est egal a la différence de deux éléments
de M, appartient aussi 4 M, et en est un entier rationnel; il est done
bien égal a un multiple ryXm, de m.

I’Enseignement mathém., t. VI, fasc. 2. 3
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On vérifie encore que ¢, donc tout terme de la progression c+m,
est zéro de la congruence fondamentale: c’est une conséquence de la
premiére remarque utilisée: la valeur F(c) étant égale & un entier
rationnel de M;, est multiple de m.

7. 3. Idéaux conjugués.

LS

Comme pour la construction d’un corps quadratique et de
son domaine d’entiers (1 et 3), un idéal canonique peut é&tre
engendré en utilisant indifféremment les générateurs 6 et 6’
(zéros du polynéme fondamental) mais sous la réserve de leur
associer respectivement les zéros conjugués de la congruence
fondamentale, dont le module est la norme de Iidéal. On peut
exprimer ceci par la formation des bases canoniques:

Un 1déal canonique a deux suites de bases canoniques, définies
par la méme norme m et les différences 6—rc et 6'—c’, des généra-
teurs du corps et des zéros conjugués ¢, ¢/, (progressions de
raison m), de la congruence fondamentale:

(m, 0—c) = (m, 0'—c');

Les constructions des termes de ces différences (zéros du poly-
noéme et zéros de la congruence) peuvent étre exprimées par les
formules:
0+0"=S8; 06x06" = N; dans le corps;
c+¢'=8; exd =N; (mod. m).

L’égalité des éléments construits avec ces deux bases est assurée
par une correspondance biunivoque de leurs coordonnées, relative-
- ment & chacune d’elles:

xXm+yX(0—c) = 2’ X m—y X (6'—c’);,
x'—r = yX[(c+c'—S8): m].

Cette propriété conduit & la conception de la conjugaison des
1déaux canoniques et a sa définition, constructive et axio-
matique.

D&riNITION (constructive). — Deux idéaux canoniques sont
appelés conjugués, et seront désignés par la méme lettre, avec
et sans accent, lorsqu’ils sont engendrés: par une méme norme,
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avec les mémes racines, mais avec les générateurs conjugués
6 et 6, du corps:

M= (m, 6—), M = (m, 0—c);
c’est-a-dire encore par des bases canoniques conjugudes [2].

Il est équivalent de dire (définition axiomatique) que deux
wdéaux canoniques conjugués sont constitués ‘par des élémenis
(entiers du corps) respectivement conjugués [3]; définis par des
coordonnées égales, relativement aux bases conjuguées; car:

£ = ||z y|x }:_ eM <« & =|zy|x :_c eM’.

En appliquant une remarque précédente, il est encore équi-
valent de caractériser deux idéauz conjugués, relativement a un
méme générateur 0 du corps, par deux zéros conjugueés, ¢ et ¢,
de la congruence fondamentale [5]:

M = (m, 6—); M = (m, 6—'); ct+c =S, (mod. m).

Il suffit, en effet, dans la base precédente de M’, de remplacer
0’—c par la différence du générateur conjugué de 6’ et d’un zéro
conjugué de ¢.

Un idéal canonique est double, lorsqu’il est égal a I’idéal
conjugué, c’est-a-dire lorsque ses racines sont un zéro double de la
congruence; ce qui a lieu si, et seulement si, sa norme m est
diviseur du discriminant D (5. théoréme des zéros conjugués).

L’idéal canonique trivial E(6) est double.

7. 4. Racines minimum.

Comme il a déja été dit (5); dans la progression c-+im des
racines d’un idéal, de norme m, on peut distinguer —ou choisir—
une racine particuliére, notamment en précisant qu’elle appar-
tient & un segment déterminé, de longueur m, dont une extrémité
est exceptée, s’il y a lieu. Il y a intérét, ainsi qu’il sera dit plus
loin (21), & ce que ce choix soit fait simultanément pour ’idéal
et son eonjugué; ils ont méme norme m et la somme de leurs
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racines est congrue a4 S, mod. m. Pour cette raison on choisira
un segment, de longueur m et de milieu S: 2 (0 ou —1:2). On
vérifie aisément qu’une racine ainsi déterminée est aussi de valeur
absolue minimum dans sa progression. C’est cette condition
qu’exprime 1a définition suivante.

!

DEFINITION. — On appelle racine minimum, d’un idéal
canonique, de norme m, et on note avec une surligne, celle de ses
racines qui vérifie la condition de comparaison:

S~—m — - S+m

Cette condition est encore équivalente & I'alternative:
2c—S| < m, ou bien: 2c—S = m.

On peut préciser cette limitation, suivant les divers cas, pour
les racines minimum de deux idéaux conjugués et vérifier qu’elles
sont bien déterminées.

Pour un idéal double —ou deux idéaux conjugués égaux—
toute racine ¢ rend 2c—S divisible par la norme m. En se repor-

tant & la construction des racines doubles (6), la racine mintmum c
est:
S-+m

O[S = 0 et m diviseur de N] ou 5

Si un idéal n’est pas égal & son conjugué, sa racine n’est pas
double, 2c—S n’est pas divisible par m et, & fortiori,n’est pas nul.
Pour deux idéaux conjugués inégaux, deux racines, de somme
égale 4 S, donnent des valeurs opposées, donc une méme valeur
absolue a 22—S. Elles vérifient donc simultanément le premier
terme de 1’alternative de la condition de minimum. L’une d’elles
est négative, elle sera notée de préférence par la lettre accen-

tuée ¢, Pautre ¢ est positive ou nulle. On en conclut la situation
suivante de ces racines, relativement au segment adopté; ce qui
met aussi en évidence leur détermination:

S—m

— — — — S+m - —
c’——m<c——m<,—2——<c<O<c<~2—<c+m<c+m
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8. Idéaux fractionnaires.

8. 1. Définition constructive.

Les idéauzx fractionnaires —ou, plus simplement, les idéaux—
d’un corps quadratique, peuvent étre construits au moyen des
idéaux canoniques, dont ils sont, par ailleurs, une généralisation.

DEriNiTION. — Dans un corps R(0), un idéal fractionnaire I,
non nul, peut étre défini par:

“un nombre rationnel positif g, appelé son facteur rationnel;
un idéal canonique M = (m, 6—c), appelé son facteur cano-
nique. ‘

L’idéal ainsi défini I est I’ensemble des élémenis o, de R(0),
obtenus en multipliant par le facteur rationnel ¢ les éléments du
facteur canonique M:

o =gXx£&; § = xXm+yx(0—c); x,y nombres entiers.

La génération des éléments peut étre exprimée directement
par les valeurs d’une forme, dont les valeurs des wvariables
—ou les multiplicateurs— sont des nombres entiers:

gxXm g xXm
e = |z ylx ou  [a"y]x
g X (6—c) —q X (0'—¢")
Les nombres entiers ¢ et ¢’ sont des termes de deux progressions
arithmétiques, de raison m, de somme congrue a S. Les couples
d’éléments générateurs ¢ xXm, ¢ x (6—c) sont encore appelés les

bases canoniques, de I'idéal I, qui sera lui-méme désigné par
'une des expressions, appelée sa forme canonique:

I =¢xM, ou g¢gx(m,0—c), ou. gx(m, 0 —c).

Les nombres entiers z,y, qui sont déterminés pour chaque élé-
ment £ de M, le sont aussi pour chaque élément e =¢xé&, del, car:

IX& =qX& = gx(§—E) =0 = &1 = &

Ils seront encore appelés les coordonnées de 1’élément e, relativement
a la base canonique de I.
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Un 1déal canonique est, & fortiori, un idéal fractionnaire; il est
égal a4 son facteur canonique; son facteur rationnel est +1 —ou il
n’a pas de facteur rationnel « proprement dit » (différent de 1)— .

On appelle encore idéal nul, le sous-ensemble de R(6) cons-
titué par le seul élément nul; il peut étre considéré comme défini
par un facteur rationnel égal d 0 et un facteur canonique arbitraire.

DEriniTioN. — La mnorme d’un idéal fractionnaire est
(le nombre rationnel positif égal a) le produit du carré du facteur
rationnel par la norme du facteur canonique:

Norme de [¢g X (m, 0—c)] = ¢ X m.

Cette définition sera justifiée ci-dessous (13); elle comprend
le cas d’un idéal canonique, pour lequel ¢ = 1; elle s’étend a I'idéal nul,
qui est le seul dont la norme soit nulle.

Dans un idéal fractionnaire I, non nul, ainsi construit
et considéré comme un ensemble d’éléments p = r-s6, du
corps R(0), on peut caractériser les termes de sa forme cano-
nique, ainsi qu’il a été fait pour un idéal canonique (7).

Le facteur rationnel, d’un idéal I, est égal au minimum, effec-
tivement atteint, des valeurs absolues |s|, des deuxiémes coordon-
nées —ou multiplicateurs de 6— des éléments [non rationnels]
de I, (pour lesquels ces coordonnées s ne sont pas nulles). Cest
aussi le plus petit des facteurs rationnels (3), des éléments non
nuls de L

Le facteur canonique est 'ensemble des quotients o X ¢!, des
éléments o, de I, par son facteur rationnel ¢. Ce sont des entiers
du corps, qui constituent un idéal canonique.

Les expressions des éléments de I sont:

o = xX (qgm)+yx[gx (0—c)] = (zX gm—y X gc)+(y X q)b.

Les multiplicateurs de 6 sont s = yxg¢, le minimum des valeurs
absolues |y X g| = |y| X g, de ceux qui ne sont pas nuls, est manifeste-
ment ¢, et il est atteint pour tous les éléments ou y = 1.

Le facteur rationnel de tout élément p = ¢Xx & est multiple de ¢
(6gal & son produit par le facteur rationnel de ), le plus petit est
effectivement égal a ¢, puisqu’il est notamment celui de ¢ x (6—c).
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Les quotients pxg~' = £ sont les éléments du facteur cano-
nique M.

8. 2. Définition axiomatique d'un idéal fractionnaire.

On peut encore caractériser un idéal fractionnaire par des
conditions d’appartenance, ainsi qu’il a été fait pour un idéal
canonique.

THEOREME caractéristique d’un idéal fractionnaire. — Pour
g’ un ensemble I, d’éléments du corps R(0), soit un idéal frac-
ttonnaire, il faut et il suffit que:

1. Il contienne les différences, donc aussi les sommes, mutuelles
de ses éléments —ou soit un module— ;

2. Les facteurs rationnels, de ses éléments non nuls (3), sotent
limités inférieurement;

3. Il contienne tout produit de chacun de ses éléments par tout
entier du corps (mais non plus tout produit mutuel).

Les conditions 1 et 3 sont aussi celles qui ont été indiquées pour
un idéal canonique (7); toutefois elles s’appliquent ici & des éléments
qui ne sont plus nécessairement des entiers du corps.

La condition 2 pourrait étre remplacée par la condition, plus
restrictive, que les dénominateurs des facteurs rationnels, non nuls
(mis sous forme irréductible), soient limités supérieurement et, par
suite, en nombre fini. La condition 2 en résulterait évidemment;
en outre on pourrait affirmer l'existence d’un nombre entier .
(notamment le p.p.c.m. de ces dénominateurs) tel que tous les
produits w X p soient des entiers du corps (en abrégé wxI C E(0)).

Les conditions sont nécessaires: les appartenances 1 et 3, vérifiées
par les éléments (entiers du corps) du facteur canonique M, le sont
aussi, évidemment, par leurs produits par le facteur rationnel g.

D’autre part, les facteurs rationnels des éléments de I sont des
multiples de ¢, les valeurs absolues de ceux qui ne sont pas nuls sont
donc au moins égales a gq. ’

Les conditions sont suffisantes: elles sont vérifiées par le sous

ensemble de R(0), réduit au seul élément nul, qui, par définition est
un idéal (trivial).
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Si elles sont vérifiées par un ensemble I, qui contient des éléments
non nuls,.on peut d’abord construire le facteur ¢, en utilisant la
détermination qui en a été donnée, en appliquant un raisonnement
arithmétique, analogue & celui qui a été employé pour la norme d’un
idéal canonique. |

L’ensemble {s} des coefficients s, de 6, dans les éléments o, de
Iensemble I, contient des éléments non nuls, car §'il existe dans I
un élément rationnel r, non nul, il existe aussi élément rf, qui est
son produit par l'entier (du corps) 0 (condition 3)‘. Cet ensemble
contient les opposés de ses termes, +s et —s, et leurs sommes —et
différences— mutuelles; car la différence s;—s, des coefficients de
0 dans deux éléments p, et p,, de I, est le coefficient de 6, dans la
différence p;—p,, qui appartient aussi a I, d’aprés la condition 1.

On peut se borner & considérer les coefficients s positifs; ils sont
limités inférieurement, puisqu’ils sont multiples des facteurs ration-
nels, eux-mémes limités, d’aprés la condition 2. Ils ont une limite
inférieure q; elle est effectivement atteinte, si non son voisinage
contiendrait une infinité d’éléments de {s} dont les différences
mutuelles, appartenant aussi a {s}, seraient infiniment petites.

On peut alors constater que I’ensemble {s} est égal a Uensemble des
multiples de ¢ —ou des produits x X ¢, par les nombres entiers z— .

D’une part ces multiples, construits par additions et soustractions
au moyen de ¢, qui est élément de {s} appartiennent a cet ensemble.

D’autre part tout élément s, de {s}, est de cette forme, car en lui
retranchant le plus grand multiple de ¢, qui lui est au plus égal, on
obtient la différence:

s =s—qxz; 0 <s <g; «nombre entier;

elle appartient a {s}, ainsi que s et £ ¢, et elle ne peut étre que nulle
puisqu’elle est inférieure a ¢ et non négative.

On peut ensuite vérifier que, dans tout élément p = r-+s0, de I,
la coordonnée r, ou multiplicateur de 1, est aussi multiple de ¢. Il
suffit de constater qu’il est égal au coefficient de 0, dans un autre
élément de I, qui peut étre construit en multipliant p par un entier du
corps, ce qui est notamment le cas pour le produit:

(r+s0) x (6—S8) = —(Sr+Ns)+r0 = r;-+r0;  (r; rationnel).
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Tout élément p, de I, ayant ainsi des coordonnées multiples de ¢
est, lui-méme, égal au produit de ¢ par un entier du corps:

o =r+s0 =pox&; E=2a'4y'0; z',y nombres entiers.

L’ensemble M, de ces entiers &, est un idéal canonique, car il
vérifie les conditions de la définition axiomatique:

1 et 3 puisque: |

ppe €1 = p—py el = [(prxXq ) —(paxg )] & M;

veE0)etpel = axpel = [ax(pxqg !)]eM.

2, puisque, d’apres la construction de ¢, il existe dans I, un élé-
ment p,, dont il est le coeflicient de 6, de sorte que:

coXq ' =(ro+g0) xq ' =6—c; c¢= —ryx g ! entier rationnel.

L’ensemble I est donc égal a un idéal, défini par sa forme
canonique _
I— gxM: {q nombre rationnel positif;

M idéal canonique.

8. 3. Idéaux entiers.

DeriNiTiON. — Un idéal fractionnaire I, d’un corps R(0),
est appelé idéal entier, lorsque son facteur rationnel q est un
nombre entier; [en particulier &1 ¢ = 1, c’est-a-dire si I est un
déal canoniquel].

Il est équivalent de dire que tous les éléments, de Iidéal I,

sont des entiers, du corps (3) —ou que I est contenu dans ’en-

semble E(0), des entiers de R(0), dont on a dit qu’il était un
idéal trivial— .

La deuxiéme propriété est nécessaire: les produits par un nombre
entier ¢, des entiers (algébriques) du facteur canonique M sont des
entlers du corps.

Elle est suffisante: si I'idéal I ne contient que des entiers du corps,

leurs facteurs ratlonnels et le plus petit d’entre eux sont des nombres
entiers.

L’idéal trivial E(0) est ainsi I’idéal maximum, aussi bien des
idéaux canoniques, que des idéaux entiers, en ce sens qu’il
en est un et qu’il les contient tous. Il est appelé I'idéal unité;
qualificatif qui sera, & nouveau justifié¢ ci-dessous (12).




122 ALBERT CHATELET

On peut aussi donner une définition axiomatique d’un idéal
entier par des conditions directes d’appartenance & un sous
ensemble du do maine des entiers E(6):

pour qu'un ensemble I, d’entiers du corps R(0), soit un idéal
(nécessairement entier) il faut et il suffit qu’il vérifie les conditions
1 (module) et 3 (produit par tout entier du corps), des propriétés
caractéristiques des idéaux (canonique, 7, ou fractionnaire, 8).

8. 4. Multiplication d’un tdéal par un élément.

De la définition axiomatique d’un idéal fractionnaire, on peut
déduire immeédiatement des propriétés qui seront reprises
ci-dessous comme cas particuliers de la multiplication des
idéaux (13).

L’ensemble J, des produits, des éléments d’un idéal frac-
tionnaire I, par un élément o, du corps, est encore un idéal. Cette
propriété peut étre exprimée par les relations réciproques;
si p n’est pas nul:

J=poxI < I=p71xJ; I Jidéaux.

La forme canonique d’un idéal I et la co nstruction de son
facteur canonique M, en sont des cas par ticuliers:

I=¢gxXxM < M= ¢ 'xI; g facteur rationnel de L

On peut en remarquer divers cas particuliers:
Si p est un élément rationnel ¢’, non nul, les idéaux I et ¢’ XTI ont
le méme facteur canonique:

I=gxM = ¢XxXI=(gxlq])xM.

Le cas de p = 0 est trivial: O0xI = 0.

Si p est un entier a, du corps, l'tdéal a X1 est contenu dans I, car
tout produit o x élément de I, appartient a I (condition 3).

Si p est un diviseur de I'unité v, I'idéal n x I-est égal a I, car:
1T X (XD = (T X XT =1,

est contenu dans n X I, qui lui-méme contient I, de sorte qu’ils sont
égaux.
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8. 5. Idéaux conjugués.

Les définitions (constructive et axiomatique) de la conju-
gaison des idéaux canoniques g’étendent évidemment aux
1déaux fractionnaires.

DEFINITION. — Deux idéauzx fractionnaires sont appelés
conjugués, et sont désignés par une méme lettre, avec et sans
accent I et I') lorsqu’ils ont des facteurs rationnels égaux et des
facteurs canoniques conjugués:

I=gxXM=gx(m, 0—c); I =gxM = gx(m, 08— c).

Ils ont par suite des bases canoniques conjugudes (2).

Il est équivalent de dire (définition axiomatique) que deuz
idéauz (fractionnaires) conjugués sont constitués par des éléments,
du corps, respectivement conjugués (2), construits d’ailleurs avec
des coordonnées égales, relativement & des bases conjuguées.

gxm. gXxXm
o=l ylx T = ¢ =feylx T’
gx(0—0)] g X (6'—c)

Un 1déal fractionnaire est double, lorsqu’il est égal & son
conjugué. I faut et il suffit que son facteur canonique soit

double.

9. Bases arithmétiques d’un idéal.

La construction des éléments o, d’un idéal I, fractionnaire
(ou canonique), par les valeurs d’une forme, dont le couple de
générateurs est une base canonigue et dont les valeurs des
variables sont des nombres entiers est une généralisation de la
construction des entiers du corps (4), ou des éléments du
domaine E(0), qui est d’ailleurs un idéal trivial (unité).

On réalise encore ainsi une représentation propre, des éléments
de I'idéal par les couples de nombres entiers, ou par les sommets d’un
réseau de parallélogrammes. -

Si I'idéal est entier —ou contenu dans E(6)— on peut repré-
senter I'idéal par un réseau contenu dans celui qui représente E(0).
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Les parallélogrammes de ce sous-réseau (avec une frontiére convena-
blement précisée) contiennent tous le méme nombre de sommets du
réseau primitif.

On est ainsi conduit & étendre aux idéaux la notion de base
arithmétique, éventuellement libre, définie pour E(6) (4. 1).

DEFINITIONS. — On appelle base arithmétique, d’un idéal
fractionnaire I, un systéme de % éléments p;, de I, tel que tout
élément o, de 1, soit égal @ (au moins) une forme (linéaire) de ces
termes p;, pour des valeurs des variables —ou des multiplica-
teurs— égales & des nombres entiers:

e = 2z;Xp;; tdelah; z nombres entiers.

I1 est équivalent de dire que tout élément de I peut étre construit
par additions et soustractions au moyen des termes de la base.

Une base arithmétique, d’un idéal I, non nul, doit contenir au moins
deux termes, non nuls, car les éléments x X p,, construits avec un seul
terme p, non nul, ne peuvent contenir le produit 0 X p,, qui d’apres la
troisieme qualité de la définition axiomatique (8.2) doit appartenir
a I'idéal contenant p,. Cette impossibilité résulte de I'implication
déja indiquée pour E(0):

{x nombre entieret p, # 0} = 0Xpy—aXpy=(0—2) X g, # 0.

Une base arithmétique d’'un idéal I, est qualifiée libre, lors-
qu’elle définit une représentation propre des éléments o, de I,
par les sysiémes de multiplicateurs z;, qui sont encore appelés les
coordonnées des éléments p, relativement & cette base libre.

Pour un 1déal (non nul), I = ¢x (m, 6—c), on constate que les
bases arithmétiques de 2 = 2 termes, p; p,, sont encore les seules qui
soient libres. En adoptant la disposition déja indiquée pour I'idéal
trivial E(0), la construction d’un élément p, de I, défini par ses -
coordonnées x y, relativement & la base canonique, ou z, z,, relative-
ment & la nouvelle base est exprimée par les produits matriciels

qxm | ‘ P1
e = e y]x ou p =z z|x
g X (6—c) P2
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La construction de ces bases, et des coordonnées relatives, sont
les mémes que dans le cas particulier de I'idéal trivial.

TuEorEME de construction des bases arithmétiques libres. —
Pour un idéal fractionnaire, non nul, toute base arithmétique,
de deux termes, est déduite d’une base canonique par une substi-
tution (linéaire) unimodulaire; ¢’est-a-dire par multiplication par
une matrice carrée A dont les termes sont des nombres entiers
et le déterminant égal & +1 ou a —1.

Celte base est libre et les coordonnées, d’un élément de I,
relativement aux deux bases (canonique et nouvelle) sont liées par
‘la substitution (unimodulaire) contragrédiente; c’est-a-dire que
les anciennes sont obtenues en multipliant les nouvelles (en ligne,

s1 les bases sont en colonnes), par la méme matrice A:

P1 _axm _
= A X et [z y|| = |z 2|xA4
P2 X (0—c)
B 21 Yy Z1,Y1; 9y, nombres entiers;
A= YooY, = +1 ou —1.
Lo Yo

On peut aussi bien multiplier les anciennes coordonnées,
disposées en colonne (comme les bases) & gauche, par la ma-
trice A1 inverse de la transposée de A.

La démonstration de cette propriété, faite dans le cas de lidéal.

trivial E(0), reste valable pour un idéal fractionnaire quelconque,
non nul.

Il en résulte aussi, plus généralement, que deux bases arithmé-
tiques, d’un idéal, et les coordonnées d’un élément, relativement a ces
bases, sont liées par deux substitutions unimodulaires contragrédientes.

En particulier pour deux bases canoniques (m, 6—c); (m, 6'—c’)
dont les racines ont pour somme ¢--¢’ = S—hm, et pour les coordon-
nées z,y et z'.y’ d’'un méme élément relativement a ces bases, les
substitutions sont explicitement:

m 1 0] |Im ‘ 10

X ley] = |
o—c|  |h—1] [o—c 4 -

|
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On peut aisément préciser les transformations des bases
arithmétiques dans les deux opérations étudiées -ci-dessus
(8. 4 et 8. 5) sur les 1déaux fractionnaires.

9. 2. Multiplication d’un tdéal par un élément.

Si deux i1déaux fractionnaires se déduisent 'un de autre
par multiplication par un élément non nul (8. 4):

J=axI et I=puxJ; axpu=1
il en est de méme de leurs bases arithmétiques libres (de 2 termes)

p1 ps base deI = AXp; AXp, base de J
c,0, base de J = uXo; wXo,base de L

En particulier les bases arithmétiques libres d’un idéal sont
égales aux produits par son facteur rationnel des bases arithmétiques
libres de son facteur canonique. Dans ce cas les bases canoniques sont
conservées, ce qui n’est pas vrai dans le cas général d’une multipli-
cation par un élément non rationnel.

9. 3. Idéaux conjugués et base matricielle.

Pour deux idéaux fractionnaires conjugués I et I' (8.3), les
bases arithmétiques libres (de deux éléments) sont respectivement
conjuguées. Les coordonnées de deux éléments conjugués p, de I
et o’ de I’, relativement & ces bases respectives, sont égales:

P1 P,1
X el < p’=“z1z2”>< el.
P2 Pal|

p = “ZI Zg

On peut considérer simultanément des couples d’idéaux conjugués
Iet I, et les couples d’éléments conjugués p de Let o’ de I'. On appelle
alors base matricielle, du couple I, I, une matrice carrée constituée
par des bases arithmétiques libres conjuguées, éventuellement cano-
niques, des idéaux du couple.

Un couple d’éléments conjugués p de I et o' de I' est alors défini
par un couple de nombres entiers z, z,, qui sont ses coordonnées, rela-
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tivement & la base matricielle; et I'équivalence des égalités précédentes
peut étre exprimée par une seule égalité matricielle:

’,

P1 P1 gxm gxm

ool =lanlx| |=leylx|
~ P2 Py g X (6—c) g X (0"—¢)

9. 4. Bases arithmétiques surabondantes.

Relativement & une base arithmétique, dont le nombre £,
de termes, est supérieur & 2, la représentation, des éléments,
n’est plus propre et la base n’est plus libre.

On exprime les termes de la base, au moyen d’une base arithmé-
tique libre, de deux éléments, qui peut étre canonique:

0, = a;Xy,+b;Xvyy; tdelah; a;b nombresentiers.

Les propriétés usuelles des équations linéaires homogenes montrent
qu’il est possible de trouver des nombres entiers u;, non tous nuls,
tels que:

Il en résulte que si un élément p, de I'idéal est construit, au
moyen de la base avec un systeme de multiplicateurs z;, il I'est aussi
avec tous les systémes z,4Au; (A nombre entier arbitraire), car:

= 2z, Xp; = X(z,4Au)Xp; = Xz; Xp;FAX2ZU; Xp; = p.

On exprime ces propriétés en disant que: les termes —ou les
générateurs— de la base sont dépendants (il existe entre eux une
relation); ou que la base arithmétique est surabondante (on peut
construire une base d’un nombre moindre de termes).

9. 5. Construction d’une forme canonique.

On peut préciser des conditions pour que des éléments d’un
corps quadratique, en nombre 2 constituent une base arithmé-
tique d’un idéal (fractionnaire). On peut alors construire sa
forme canonique (8.1 et 8. 2) par des opérations d’arithmétique
élémentaire (sur des nombres rationnels).

TutoriME caractéristique d’une base arithmétique. —
Dans un corps quadratique R(6), dont une base des entiers
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est 1, pour qu'un systéme, de h éléments g,, soit une base arithmé-
tigue d’un idéal 1, il faut et il suffit: que les A produits p; X =
puissent étre construits, par additions et soustractions au moyen
des termes p;; c’est-a-dire qu’il existe (au moins) un systéme de
h? nombres entiers z;, tel que: ‘
piXT=2z;Xp;; JdelahdansX; égalitéstdelah.

On peut prendre 7 égal a 0, ou a 0, ou, plus généralement a

+0-e; e nombre entier arbitraire.

La condition est nécessaire: Si ensemble I, construit avec les p,
est un 1déal, il doit contenir les produits des p;, par tout entier du
corps (8. 2) et, notamment, par t.

La condition est suffisante. L’ensemble I, vérifie bien les trois
conditions de la définition axiomatique (8.2): 1° il contient les
sommes et les différences de ses éléments; 20 les facteurs rationnels
de ses éléments:

o = 2x; Xp;; x; nombres entiers;
sont limités inférieurement; ils. sont au moins égaux au p.g.c.d. des
facteurs rationnels des p;. Pour vérifier 3, il suffit de former le produit
d’un élément p par un entier arbitraire du corps a-+b7; (a,b nombres
entiers):
(Zz; X py) X (a+bt) = Z(z;a) X p;+E[E(2;bz;;)] X ;-
C’est bien une forme des % termes p;, avec des multiplicateurs:

x;a+2(x;bz;;) nombres entiers.

Le théoréme est trivial si les p, sont tous nuls, la condition est
manifestement remplie, 'idéal engendré est ’idéal nul.

Si non, on peut vérifier (& nouveau, voir 9. 1), que la base ne peut
se réduire a un seul terme: p; = r;+s;0, car en prenant le produit
par 6, la condition est exprimée par:

zri+Ns; =0
ri+s.0)x(0) = z2x(r;-+s,6) ou !
(1+1) ( ) (1+1) {rl—i—(S—Z)Sl:O.
Ces égalités considérées comme des équations linéaires et homogénes

en r; et s; ne peuvent avoir que des solutions nulles, puisque leur
déterminant

N—Z(S—z) = 22—Sz+N

ne peut étre nul, pour z égal & un nombre entier (1).
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Pour un idéal I, non nul, défini par une base arithmétique,
dont les termes, en nombre %, au moins égal & 2, sont exprimés
par leurs coordonnées r; et s;, relativement & une base canonique
du corps R(0):

p; =r;+s0; i1delah; r,s, nombres rationnels;

la forme canonique peut &tre obtenue par les constructions
suivantes.

1. Le facteur rationnel g, de I, est égal au p.g.c.d. positif
des multiplicateurs s; (deuxiémes coordonnées des p;), qui ne
sont pas tous nuls.

2. Le facteur canonique M, de I = g XM, a pour base arithmé-
tique les h quotients:
= o Xq " = a;+b0;  [a; =r;xq7!, b =s,x¢7"],
qui sont des entiers du corps.
3. Une racine ¢, de I'idéal canonique M, est obtenue, en appli-

quant aux a; (premiéres coordonnées des «;) les multiplicateurs
qui permettent de construire le p.g.c.d., au moyen des 8;:

¢ = Zu;Xs; = Zu;Xa;, =—c; u; nombres entiers.
4. La norme m, de M, est égale au p. g-c. d. positif des h
entiers rationnels, appartenant a M:
[oci—bix(f)*c)] = a;+bc; idelah.

En prenant t égal a 0, les conditions que dowent Verlﬁer leo
générateurs p; sont exprimées par:

—Ns; = 2z, Xr;
(ri+s,0)x0 = Zzij(rj+sj6) =N { 170

Les deuxiémes relations montrent que les $; ne sont pas tous nuls
si non, il en serait de méme des r; et par suite des 0;-

1. Les s; ont donc un p.g.c.d. positif ¢ (nombre rationnel) et ces
mémes relatmns montrent qu’il est diviseur des r,. En conséquence,
1l existe des systémes de nombres entiers u, et des nombres entiers a;
et b;, tels que:

ZupXs; = q; 8 = qxb, ry = gqXxa,.

L’Enseignement mathém., t. VI, fasc. 2. ‘ : 4
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Pour les éléments de I:

les multiplicateurs s sont des multiples de ¢ et le minimum de leurs
valeurs absolues est ¢, effectivement atteint, pour les valeurs u,,
des ;. C’est la construction qui a été donnée (8. 1) du facteur rationnel.

2. Les quotients:

oX g~ = Za; Xp;xq™! = 27 X oy,

constituent un ensemble d’entiers du corps, engendrés par les
h termes «;, qui vérifient les conditions du théoréme, car:

C’est donc un idéal M, facteur canonique de I = ¢xM, et qui est,
par suite, un idéal canonique.

D’ailleurs, d’apreés la construction précédente, le facteur rationnel

de M est égal au p.g.c.d. des b, = s, X ¢!, qui est égal a 1.

3. Le p.c.g.d. g, des s;, ayant été exprimé avec des multiplica-
teurs u;, on les utilise pour construire un nombre entier c,

L’6lément 6—c appartient & M et ¢ est bien une racine.

4. On peut alors former les entiers rationnels de M, en retran-
chant, de chaque élément, un élément convenable de M, de facon a
annuler le multiplicateur de 0:

2x; X (a;40,0)—2x; X b; X (0—c) = Zx; X (a;4b;c).

La norme m, de M, qui est la plus petite valeur absolue de ces entiers
est égale au p.g.c.d. positif des 2 nombres entiers a;+b;c et elle est
effectivement atteinte, pour des valeurs convenables.des z,.

On vérifie aisément qu’un changement de multiplicateurs u;, dans
'expression de ¢, et par suite de ¢, remplace cette racine par un
~ des termes de la progression c+Mm (A nombre entier), ().
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10. Bases algébriques.

Pour engendrer un idéal avec certains de ses éléments, on
peut conjuguer, & ’addition et & la soustraction, la multiplication
par des entiers du corps; ceci conduit a la définition suivante
(comparer a celle d’une base arithmétique; 9).

DEFINITION. — On appelle base algébrique, d’un idéal frac-
tionnaire I, un systéme de & élémenis o,, de I, tel que tout élément p,
de 1, soit égal d une forme (linéaire) de ces termes e;, pour des
_ valeurs des variables —ou des multiplicateurs— égaux a des
entiers du corps

p= 2 Xp;; idelah; E entiers du corps.

Une base arithmétigue dun idéal T est, a fortiori algébrique:
tout élément de I est égal & une forme, pour des multiplicateurs
entiers rationnels, donc, entiers du corps.

D’autre part, la multiplication des e; par des entiers du corps ne
donne que des éléments de I. ’

Il 0’y a pas de condition imposée aux éléments d’une base
algébrique; c¢’est ce que précise la propriété suivante.

TurorEME de la génération d’un idéal par une base algé-
brique. — Dans un corps R(0), étant donné (arbitrairement) un
systéme, d’un nombre fini A (peut &tre réduit a 1) d’éléments o,
du corps, 'ensemble des sommes, de leurs produits par des entiers
du corps;

p=2EXp; tdelah; £ entiers du COTps;
est un idéal fractionnaire, dont le systéme des p;, est une base
algébrique. ‘ ‘
Cet idéal est désigné par la notation:

I=(.,05...); (les p; éventuellement écrits nommeément);

(dont on précisera, le cas échéant, .qu’elle est une base arithmé-
tique). Elle a déja été employée pour un idéal défini par sa base
canonique (gm, ¢x (6—c)) (ci-dessus 7.1 et 8. 1)
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L’ensemble des éléments p, ainsi construit, vérifie bien les condi-
tions du théoréme caractéristique (8.2): il contient les différences

(et sommes mutuelles), obtenues par les différences des multiplica-
teurs £;, de méme indice; et les produits par tout entier o, du corps,
obtenus en multipliant les &; par . En outre les facteurs ratioanels
des éléments p sont limités inférieurement, au moins par le p.g.c.d. w
des facteurs rationnels des termes p,. Car les produits w—! xp,, ayant
des facteurs rationnels entiers, sont des entiers du corps. Alors, pour
tout élément o:

e = wx(ZE;X (w1 xp,)) = wXentier du corps;
son facteur rationnel est un multiple de w, donc lui est au moins égal.

A une base algébrique, on peut, évidemment, adjoindre
d’autres éléments de lidéal engendré, c’est-a-dire toute valeur
d’une forme des termes de la base, pour des variables, égales a
des entiers du corps.

Inversement, dans une base algébrique, définissant un idéal,
on peut supprimer un terme, s’il est égal & une forme linéaire des
autres, pour des valeurs des variables, égales a des entiers
du corps.

10. 2. Cas particuliers et opérations.

L’élément unité 1 est, & lui seul, une base algébrique de I'1déal
trivial E(0), qui est, par suite désigné par (1) et dont on a déja
dit qu’il était appelé lidéal unité (8.3), nom qui sera
ci-dessous (12) l'objet d’une justification complémentaire. On
peut adjoindre & 1 des entiers quelconques du corps et inverse-
ment une base formée d’entiers du corps et comprenant 1 engendre
Pidéal (1). '

Un élément unique o est une base algébrique de I'idéal formé
par les produits de p par tous les entiers du corps, donc du
produit par p de I'idéal unité (8. 4):

(p) = px (1), ou pxE(H);
un tel idéal est appelé principal, de base p (ci-dessous 11).

La maultiplication par un élément (8. 4) —et la conjugaison
(8. 5)— d’un idéal sont réalisées par des opérations simples
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sur une base algébrique (produits par p —et conjugués— de
ses termes):
0 X (cesfipees) = (censp X Piye);
(cer@ipers)’ = (consPyyers)-

La vérification est immédiate; éventuellement les bases restent
arithmétiques, ce qui a déja été constaté directement (9.2 et 9.3)

10. 3. Propriétés d’inclusion.

De la génération des idéaux par des bases algébriques, on
deduit immédiatement des propriétés d’inclusion dont on indique
-c1-dessous qu’elles sont aussi des propriétés de divisibilité (18 bis).

Pour qu’un idéal F contienne un tdéal I, défini par une base
algébrique, il faut et il suffit que chacun des termes o; de celte base
appartienne a F, ou que chaque idéal principal (p;) soit inclus
dans F: |

(cpip) €F = o, €F Jou(p) cF], tout i

En particulier, pour qu’un idéal I, défini par une base algébrique
soit entier (8. 3) —ou soit contenu dans I'idéal (1)— il faut et il suffit
que les termes de sa base soient des entiers du corps.

La propriété d’inclusion s’étend immédiatement & plusieurs
idéaux: pour qu’un idéal F contienne des idéaux (un ou plusieurs)
définis par des bases algébriques, il faut et il suffit qu’il contienne
tous les termes des bases. o

Cecl peut étre exprimé par la définition —ou construction—
et la propriété suivantes.

Pour un systéme (d’un nombre fini) d’idéaux, définis par des
bases algébriques:

[=(opie)y T = (o),

on appelle plus petit idéal contenant —et on appellera ci—dessous
plus grand commun diviseur— 1’idéal D, dont une base algé-

brique est constituée par la réunion des bases, des idéaux
considérés: ‘

D = (ceosPireesjeeesPpenesenn)y €N abrégé (LJ,...).
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Pour qu’un idéal F contienne des idéaux LJ...., il faut et il
suffit qu’il contienne leur plus petit idéal contenant:

{IcF et JcF, et .} < (L],..) cF.

La propriété résulte immédiatement de 1’énoncé précédent. Elle
montre que la construction de Iidéal D est indépendante des bases
choisies pour définir les idéaux considérés: un idéal D, construit
~avec d’autres bases doit étre contenu dans D, mais aussi le contenir;
ils sont donc égaux.

La construction de D est donc une opération déterminée sur les
idéaux LJ, ...; c’est une égalité dans le cas d’un seul idéal; elle est
manifestement associative et commutative.

La notation adoptée pour un idéal défini par une base algébrique
de termes p;, peut étre considérée comme I'indication de la construc-
tion du plus petit idéal contenant les idéaux principaux (p;):

(veesPisers) = (ceny(py)gees)-

Par analogie avec le vocabulaire de I’arithmétique élémen-
taire, on dit que des idéauz principauz («;), —ou leurs bases oL—
sont premiers entre eux, dans leur ensemble, lorsque leur plus
petit idéal contenant est I'idéal unité —ou lorsque le systéme
des bases «; constitue une base algébrique de ’idéal unité— :

(cenytye.) = (1).

On vérifie aisément qu’il en est ainsi si et seulement si les «; sont
des entiers du corps et s’il existe des entiers £, du corps tels que
2E Xo, = 1.

Des nombres entiers, premiers entre eux, au sens de I’arithmétique
ordinaire, considérés comme des entiers rationnels, d’un corps quadra-
tique, sont aussi premiers, au sens précédent.

10. 4. Construction d’une base arithmétique.

En modifiant une base algébrique par remplacement, ou par
adjonction de termes on peut la rendre arithmétique.

Pour un idéal I, défini par une base algébrique de % éléments o,
-on obtient une base arithmétique, de 2h éléments, en multipliant
par chaque terme p; les deux termes v, vy, d’une base arithmétique
des entiers du corps —ou de l'idéal unité— (4):

(ceosireer) = (oY1 X 04y Y2 X Py ooe)-
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On peut choisir notamment, comme il a été fait pour le
théoréme caractéristique (9.5), une base 1t, des entiers. La
modification de la base se borne alors & I’adjonction des %
termes ©Xop;: ’ '

("°7P’i7"') = ("'7Pi7°";"’7T><P’I:7 .»..)

‘Le systeme de 2k termes est encore une base algébrique de I:
d’une part tous ses termes, produits par des entiers du corps des
termes de I appartiennent & I. D’autre part I'idéal engendré par
cette nouvelle base contient tous les éléments des idéaux:

e X (Y1, Y2) = (py),

et notamment tous les termes p.; donc I'idéal I.

Reste & vérifier que cette base vérifie la condition caractéristique
d’une base arithmétique. Les produits Y; X T pouvant étre construits
avec la base arithmétique v, v,, on en conclut, pour chaque terme
de la nouvelle base:

(v;Xp) X© = e X (y;X7T) = i X (% X v1 + ¥ Xvs)
= ; X (p; X v1) +¥; X (p; X v2)

les z;,y; sont des nombres entiers, dépendant de j égal a 1 ou 2 et
de ¢ (de 1 & &). Les produits par =, des termes de la nouvelle base,
peuvent done é&tre effectivement construits par additions et sous-
tractions, au moyen de ces termes eux-mémes.

11. Idéaux principaux.

Derinition (Rappel; 10.2). — Un idéal fractionnaire est
appelé principal, lorsqu’il peut étre engendré par une base d’un
seul élément o; c’est-a-dire lorsqu’il est égal au produit par
Pélément o de I’idéal unité (1).

L’élément o est une base (sous entendu algébrique) de ’idéal
© qui est lui-méme désigné, comme il a été dit par:

(p) abréviation de ox(1), ou e X E(0). -

L’tdéal nul est un idéal principal de base 0. Pour un idéal
" principal, non nul, toutes les bases sont égales aux produits de I'une
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d’elles (arbitraire) par les diviseurs de l'unité, du corps (3), qui
peuvent se réduire & +1 et —1. Les valeurs absolues des normes
de ces bases sont égales entre elles. 3

En particulier les bases de I'idéal unité (1), ou E(6), sont les
diviseurs de 'unité.

La démonstration de cette propriété est analogue a celle qui
établit la relation entre les bases arithmétiques de deux éléments.
Pour que les idéaux principaux (p,), (pp) soient égaux, il faut et il
suffit que la base de chacun d’eux appartienne & I'autre, ce qui est
équivalent a leur inclusion réciproque:

00 = E;Xp; et p; = EXpy; &y, &, entiers du corps.

Il en résulte:

e = (E1X &) Xpy = g XE =1
L’implication est obtenue en multipliant les deux membres de la
premiére égalité par inverse de p,, supposé non nul. Les entiers &,
et £,, sont inverses I'un de I’autre, donc diviseurs de 'unité, (3). La
condition est manifestement suffisante. En outre:

[A7(91)| — ‘N(Pz) X NV ( ‘iz)l = IN(Pz)l

Un idéal principal est qualifié rationnel lorsque l'une de ses
bases est un élément rationnel ¢, du corps. Son facteur rationnel
est égal & la valeur absolue de ¢, son facteur canonique est
I'idéal unité.

11. 2. Base canonique d’un idéal principal.

D’aprés la construction générale de 10.4, on obtient des
bases arithmétiques d’un idéal principal (p), en multipliant par g
des bases arithmétiques de (1):

XYy P XY notamment: p pX7.

Ces bases ayant deux termes sont libres (Th. de construc-
tion; 9. 1). Elles sont d’ailleurs déduites de I'une d’elles par des
substitutions unimodulaires, puisqu’il en est ainsi des bases

arithmétiques de E(0).
On peut utiliser cette construction pour obtenir la forme

canonique d’un idéal principal.
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TutoriEME de la forme canonique d’un idéal principal. —
Pour un idéal principal (p), de base p, élément du corps:

1. Le facteur rationnel de Uidéal est égal au facteur rationnel de
(I'élément de) la base ¢:

(p) = (r+s6) = ¢gxM, M canonique; g = p.g.c.d. (r, ).

2. Le facteur canonique M est égal a lidéal principal (),
dont une base « est entier canonique du corps égal au quotient
de p par le facteur ¢: '

M= («); «=atbb; {a———rxq_i, b———s><q‘1}.

En explicitant la construction d’une base arithmétique avec la
base 1 v = 0—S, de (1), on obtient:

eX1l =r+s0, ox(0—S) = —(rS + sN)+r6.

Le facteur rationnel est bien égal au p.g.c.d. positif de r.s qul sont
multiplicateurs de 6.

Le facteur canonique. en résulte, sa base a+50 est un entier
canonique, puisque les multiplicateurs a,b sont premiers entre eux.

On retrouve bien ainsi la forme canonique d’un idéal principal
rationnel, de base ¢ = ¢4+0x0:.

(9) = lg|x (1, 6) = |g|x (1).

11. 3. Idéal principal canonique.

De ce théoréme, on déduit immeédiatement les propriétés
caractéristiques:

Pour qu’un idéal principal («) soit entier, il faut et il suffit que
sa base o soit un entier du corps. .

Pour qu’il soit un idéal canonigque (i fortiori entier), il faut
et 1l suffit que sa base soit un entier canonique du corps.

() canonique < « canonique.

Pour calculer une base canonique d’un idéal principal, il suffit
de chercher la norme et une racine de son facteur canonique M, qui

est un idéal canonique. En appliquant la construction générale
de 10. 3, on obtient les propriétés suivantes.
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TueEorEME de la base canonique d’un idéal principal cano-
nique. — Pour un idéal principal canenique:

(a+4b60);  a,b (nombres entiers) premiers entre eux;

1. Une racine ¢ est donnée par ’expression:
¢ = —(aa’+Sab’+Nbb');  ba'—ab’ = +1.

2. La norme m est égale a la valeur absolue de la norme de
(’élément de) la base «:

m = |[N(«)| = |a®+Sab+Nb?|.

I’existence des nombres entiers a’, b" résulte de ce que a,b sont
premiers entre eux; ces quatre nombres forment une matrice carrée
unimodulaire, qui permet de construire une base arithmétique libre
de (1): |

ab| |1 a 400" = o |

X
I

al bl 6/ a/+blel — BI
On en déduit une base arithmétique de I'idéal (o):

| axa = N(x) = a®+Sabt Nb?
() = (aXa/, aXB)
ax B = (aa'--Sab’+Nbb')-+6.

Mais cette base est canonique puisque son premier terme est un entier
rationnel et que le second est de la forme 6—c. On obtient bien les
~expressions de 1’énoncé.

En calculant la valeur F(c), pour le nombre ¢, on obtient:
F(c) = (a®+Sab—+Nb?) x (a2 Sa’b’ - Nb'2);
elle est bien divisible par m. .

On peut aussi vérifier que le nombre ¢ n’est défini qu’a I’addition
prés d’un multiple de m, les nombres o’ et b’ n’étant eux-mémes
définis qu’a addition prés d’équimultiples de a et b.

~ On aurait pu aussi utiliser une base arithmétique:

a+b0, (a+b0)x(0—S) = —(Sa+Nb)+ab;
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on obtient le valeur de ¢ par le calcul: |
(a400) X @' +-[—(Sa+Nb)+ab] X (—b') = (aa’+Sab’+Nbb') +0.
On obtient la norme en prenant le p.g.c.d. des nombres:

a X (ba'—ab')+eX b — —b' X (a2 Sab-+Nb2)
—(8a-+Nb) X (ba'—ab')+cX a = —a’ X (a1 Sab--Nb2).

Dans le cas particulier d’une base a-- 0, le calcul se simplifie
(" = 1, b) = 0), la racine est égale & —a et la norme a F(—a),
ce qui peut étre exprimé par la forme canonique:

(0—c) = ([F(¢)|, 6—c); [d’ailleurs F(c) = (6—c) X (6'—c)].

(A suivre)
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