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COMMISSION INTERNATIONALE DE IL’ENSEIGNEMENT
MATHEMATIQUE (C.I.LE.M.)

ON THE TEACHING OF GEOMETRY
IN SECONDARY SCHOOLS 1)

by George KUREPA

(Recu le 9 janvier 1960.)

1. Like in other parts of mathematics the teaching of geo-
metry has to be based upon the fundamental notions: set, function,
relation. Geometry is a very appropriate field where these
notions occur almost automatically; it was a wrong standpoint
that such a favorable situation was not sufficiently used neither
in geometry nor in other (mathematical or non mathematical)
fields. \

2. The teaching of geomelry has the aim to contribute to the
mathematical culture and education and not only to cultivate pure
geometrical ideas, methods and like that. Drawing and the
space-inspection have to be done together with calculations and
reasonings. Therefore we stress vectors considerations as a very
far-reaching tool and method. Vector considerations link
mathematical formalism and direct mathematical insights.

3. Children perceive bodies, sets, situations; afterwards they
see that many bodies have a structure: several organized parts
that are in some mutual relations as well as in some relation
with the whole. E.g. looking on a cube they perceive on it
faces, edges, vertices. Children have a certain idea of the
notion of place, position, where a body is located. - They have

1) A lecture at Montclair College, July 1959.
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an idea of the size of a body and have the opportunity to diminish
this body as well as to augment it.

3.1. One has to start with descriptions of mutual posi-
tions and relations of individual bodies e.g. by stating what is
common, what is distinct on them etc. The environment and
various phenomena are very rich in such situations.

3. 2. Afterwards comes next the step when the pupils
produce, perform such and such situation, describe them, vary
them etec. |

3. 3. Intuitive and topological items are much easier to
grasp and understand than other situations. Therefore one has
to start with intuitive and topological descriptions, situations.
Next step: qualitative situations e.g. bigger, smaller, before,
behind, many-few, all-no, at least one, round, pointed etec.
Next step: more or less precise situations like: as many as, five,
point, particular numbers, greatest, smallest and numerical approxi-
mations.

3. 4. In particular, extremality considerations are to be
favored everywhere. A fine example of such considerations are
the union (the intersection) of given sets as the minimal (maxi-
mal) set containing (contained in) each given set.

4. Fundamental concepts: interval and convexity.

4. 1. The fundamental geometrical concept is the interval
determined by two given points or position A, B: it is the shortest
way joining these points. As an experimental fact (use of ruler)
one has to accept it as well as its convexity property : For any two
points C, D of the interval AB the interval CD lies on AB.

4. 2. At the very beginning one defines convex sets as any
sett X such that X contains the whole interval, provided it
contains the end-points of the interval:

AeX, BeX > AB C X .

4. 3. If two intervals have a common interval their union
1s again an interval.

4. 4. One learns from the experience the possibility of
prolongation of any interval, of multiplication and transfer of
any interval etc. Using simple tools (like ruler or a rigid body)
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one determines whether two intervals are or are not of a same
length.

5. Vectors.

5.1. . At the very beginning one distinguishes the path
from A to B of the opposite path from B to A. And one speaks

of the vector AB, symbolically ZE’, stressing that one is dealing
here with two items a set and a direction. The opr posite vector BA

is linked with AB and is denoted too as — AB or (— 1) AB
meaning simply that they are of the same magnitude but of
-opposite direction.

5.2. Null-vector. For any point P one defines the

nullvector PP: its length is 0, its direction is undetermined.
One postulates the equality of all the nullvectors PP; it is design-

ated by 0.

5.3. One of the fundamental operations consists to
admit the possibility of a transfer of any vector v using any given
point as its new origin: the new vector has to have the same

length and the same direction as the given vector ¢. The cons- -

truction is carried out experimentally on a piece of paper or
other “ plane ” regions using compass, rigid bodies etc.

5.3.1. Central symmetry. Given a point C, for each
point P one has a unlque point C (P) such that

PC=CC(P) .

The point C is the middle point of the interval PC (P). The
point C (P) is the central image of P with respect to C as the
center of symmetry. For any set S one defines C (S) as the set
of C (P), P running over S. The symmetry center of § is each
point € such that § = C (S). For instance C is a center of
symmetry of the set § U C (S), for any set S.

5.3.2. Translation. Translation of a set S for a Vector

0 consists to find the set of all pomts X’ such that XX’ — v X
running over S.

5.4. Addution of vectors. The fundamental definition
lies in the postulational equality AB + BC — AC meaning that
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the straight moving from 4 to B and then from B to C yields the
same result as the direct straight moving from A to C. One has
to regard the previous equality more as expression for directions than
for magnitudes.

6. Sphere. The union of all intervals CX having a common
endpoint C and the same length constitutes the full sphere with
C as its center and CX as its radius.

7. Straight line.

6. 1. The straight line is defined as the union of all the
tntervals containing a given interval or two given poinis.
6.2. Children appreciate very much the jump from
1nterval to straight line which is no interval. This jump is
“evident ” here and prepares them to grasp the limit process,
to come afterwards.

6. 3. The generation of the line AB from the vector AB
is to be organized in such a way that one sees how the real
numbers occur and are formed during the process: one combines
geometrical-physical process of prolonging an interval with the
process of measurmg, countmg etc.: One constructs the interval

—_——

AC 80 that AB — BC and one writes AC = 2 AB likewise
3AB — AD etc. nAB for any positive integer > 1; one writes
AB=1.AB and — AB = (— 1) . AB — BA.

In this way one becomes aware of a basic structure, of the fun-
damental fact how the line is generated by an interval and how the
points of a line are connected with real numbers. One learns about
the straight line as well as about the number line; one becomes
acquainted with the fundamental mapping between real numbers and
points of a line.

6. 4. One becomes aware that the straight line AB is the
mintmal over-set of AB carried up in itself by the translation

.

AB. This way of generating the line is very instructive.
6.5. Oriented straight line. The choice of a vector

AB 7 0 enables us to order or to give an orientation of the
straight line AB: its point X precedes Y provided the vectors XY

and ZE have the same direction.
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6.6. Number line. Numerical notations of points of a
line. Beside the usual notations of points by means of charac-
ters one learns the numerical designation of points which is much
more convenient and appropriate. One speaks of the points 5 or
(5)7 (—_ 5)7 (O) ete.

6.7. Linearity of a line. One assumes the linear pro-
perty or linearity of any line: if a line I contains 2 points X, ¥
then it contains also the corresponding line XY.

6.8. One proves readily then that every line is deter-
mined by any two of its points.

Proor. Let I be a line and A4, B points such that I be the
union of all intervals containing A, B: we write | — 1 (A, B).
Let C, D e1(A4, B). Then

1(C,D) S1(4,B), (*)

the line being a linear set. Now, the points A, B are obtainable
starting from CD and prolonging CD; hence, A, B € 1 (CD) and
the linearity property implies 1 (4, B) S 1(C, D). This rela-
tion together with the relation (*) implies that 1 (4B) = 1 (CD).
Q.E.D.

6.9. Linearity of a set. A set X possesses the linear pro-
perty if with every two distinet points it contains the corresponding
straight line.

The linearity property is the analogue of the convexity pro-
perty. Every linear set is convex; the converse needs not hold.

6.10. It is inadmissible that one teaches everywhere
about straight line first and that an interval is defined as a part
of straight line.

7. Triangle, plane.

7. 1. The set consisting of 3 points 4, B, C is not convex.
To produce a convex set containing 4, B, C one has to adjoin
first of all the intervals AB, BC, CA; one gets in this way the
closed path AB U BC U CA. If this path is not an interval,
1t is non convex. In order to make it convex, one adjoins the
points of the intervals 4 X where X e BC, as well as the points
of the intervals BY where Y € BC and the points CZ where
ZeCA. Tt is not evident at all that the union of all these
points is convex. One postulates its conyexity. '




74 G. KUREPA

. 7.2. Definition. If A, B, C are 3 given points the corres-
ponding triangle A ABC is the minimal convex overset. The
triangle A ABC is bounded by the edges AB, BC, CA and their
union AB U BC VU CA. One assumes that this union is not
an interval; if this union is an interval, one speaks of a degener-
ated triangle. |

7.3. Here again one does not forget the fundamental
postulational equalities: AB 4+ BC = AC, BC 4+ CA = BA,
CA + AB = CB.

7.4. Any triangle A contains various subsets and is
contained in various sets. :

7,4.1. In particular, there are triangles contained
in A and containing A respectively. The union of all triangles
containing A is not a triangle; this union is called the plane.
One could define the planes in this way.

7.4.2. There are very various “ plane ” extensions of
a triangle, e.g. taking the union of all the rays AX, where
X € BC. Just this extension is very important.

Here is a particular extension: let A, be the middle point of
BC; for any point P € BA U AC let P, be the point such that

PA: = Ay P,; then the union of all the intervals PP, is a well
determined set: (cf. § 9. 5).

| 7. 4. 3. Definition. The plane defined by 3 points is
the minimal linear set containing these points.

Consequently, one postulates the linearity of every plane: if u.
1s any plane and if X, ¥ are 2 distinct points of p then
1(X,7Y) C

7.5. Interior of a triangle. The interior of a triangle is
obtained from this triangle by dropping the border line
AB Y BC Y CA. The exterior of the triangle is obtained from
the plane ABC by dropping the closed triangle ABC.

8. Circle. |

8.1. A circle is defined as common part of a plane and
a sphere. One supposes that a circle has more than one point.
Any point is considered as a degenerated circle.
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8. 2. One learns that any triangle contains (is contained)
a maximal (in a minimal) circle.

9. Parallelogram.

9.1. Parallelogram is any convex quadrangle which is
centrally symmetrical.

9.2. Fundamental construction of a parallelogram
consists of two intervals which bisect one another.

9.3. Its fundamental postulational property consists in
the fact that the sum of its edges issuing in a vertex equals the
diagonal issuing in the same vertex.

9. 4. The role of a parallelogram is to yield parallel
lines: opposite edges are parallel as well as their linear bearers.

9.5. Parallelogram and translation. In each parallelo-

gram ABCD the translation cD mapps AB onto DC. Opposite
sides are equal.

—

9.6. For vectors one has a + b = b + a (commutative
law for addition of vectors).

10. A tetrahedron is defined in a similar manner as a triangle:
it 1s the least convex set containing 4 given points. Usually one
supposes that these points—vertices—are not located in a plane.

It 1s very instructive to become aware how the tetrahedron
ABCD is generated: First of all one has the edges AB, AC, AD;
BC, BD, CD. Then one has 4 faces: ABC, ABD, ACD, BCD;
finally one has the union of edges AX where X € BCD etc.
Consequently, in connection with a four-point-set { 4, B, C, D}
we have in particular the following sets:

Edges, 6 in number,

triangles, 4 in number,

the tetrahedron as the minimal convex overset,

the space as the minimal linear overset.
minimal oversphere: sphere the border of which contains the
points A, B, C, D.

11. Angle. Rotation in a plane around a point.

11.1. In practice one is dealing not only with point-
spans or distances but also with direction-spans or angles.
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Simple tools (ruler and goniometer) enable us to measure
them.

Primarily, angles are determined by directions, rays, vec-
tors, etc. There are various definitions of an angle. We shall
indicate one based on set considerations.

11. 2. Definition. Let Oa, Ob be a given pair of coinitial -
rays that are no located on a line; the minimal convex set
containing the rays Oa, Ob is called the convex (and closed)
angle Oa, Ob and is denoted by

X (Oa, Ob) or < (0b,0a) or < (aOb). (1)

O is called the vertex; Oa, Ob are the sides of the angle (1). The
open angle corresponding to (1) is obtained from (1) by removing
the sides.

11. 2. 1. We see that (1) is the convex part of the plane
containing Oa, Ob and bordered by Oa U Ob; the other part of
the plane is called the associated open angle of (1); the closed
assoctated of (1) is the union of the open associated and of Oa, Ob.

11. 2. 2. If Oa, Ob exhaust a line [, then every plane p
containirg the line [ is the union of two open half planes and
of ; each of these open half planes is the open angle Oa, Ob; O is
the vertex. The closed angle Oa, Ob is the union of the open
angle Oa, Ob and of the sides Oa, Ob.

11.2. 3. The convex angle Oa, Oa is just the ray Oa;
the associated open angle is any plane p D Oa from which Oa
1s removed. '

11. 2. 4. Oriented angles. The oriented angle Oa, 0b,
symbolically ¥ (Oa, Ob) means the angle Oa, Ob and that Ob is
the first and Ob is the second side of the angle.

11.2. 5. If < (Oa, Ob) 1s a given angle an dif x is
any ray or vector which is || Oa, one defines also the angle
X (x, Ob). Analogously, one defines < (z, y), for every ray or
vector y such that y || Ob. |

11.2.6. In a similar way one defines the oriented
angle % (z, y). \

11. 3. Equality of angles.  Definition. Two angles are
equal if there exists an isometric transformation of one angle on to
the other angle.
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11. 3. 2. Two oriented angles are equal if there exists
an isometric mapping of one angle onto the other angle carrying
the first side and the second side of one angle onto the first side
and the second side of the other angle respectively.

11.3.3. For any ordered pair (z,y) of vectors or
rays one postulales the equality of the oriented angles % (, y),

X

¥ (@' y'), where o’ || z, y' || y.
11. 4. Rotation. Let « be any oriented angle; let p be
a plane and O a point of p; then the rotation of p around O for «

1s the isometrical transformation

P—saoaP

of the plane p onto itself such that «O = O and that for every
other point P of p one has

X (PO « (P)) = .

11.5. The number circle-line is a determined uniform
mapping of the real numbers on a circle-line: on the circle line
one determines an oriented arc equal to the radius and used as
unit arc; its endpoints are designated by 0 and 1 in such a way
that the interior of the circle is at the left when one goes from 0
to 1 the shorter way. The real numbers are used as in the case
of number-line. The difference is that to every number cor-
responds a unique point of the circle-line but conversely to every
point corresponds a set of numbers whose difference is a multiple
of 2r.  In particular, to numbers 0, 2, vy 2k7, (B =0, + 1,
+ 2, ...) is associated the same point of the circle-line.
| 11.5. 1. The locating of real numbers on the circle-
line is a fundamental transformation, say k; its inverse, say k,
associates to every point P of the circle line every number kP
which could be equivalently used as measure for the angle

$(0X, OP), where OX is the radius vector corresponding to
the first point of the unit-are.

The multivalency of measures of angles is one of the most
Intricate items in mathematics.

12. Coordinate plane. Plane and iis cartesian coordinate
systems.




78 G. KUREPA

- 12. 1. Given any ordered pair of non collinear radius

—_—

vectors OF;, OFE,, for every ordered pair (z, y) of real numbers

one has the vectors xﬁl, yai and their sum

—

20E, + yOE, . (1)

The point (r,y) whose radius vector equals (1) is well-
determined; all these points form the plane which is determined
by the points O, E;, E,. Any point P of this plane has a unique
analytic or numerical notation (z, y), where x, y are real numbers
satisfying

0P = x5§ -+ yO_E)
12.2. The simplest case is the one where OFE; | OE
and[OE |__.]0E ‘__1

One speaks then of an orthogonal cartesian coordinate system.

- >

12. 3. Analogously, if p is a plane and ry, r, are any two
orthogonal vectors of the plane of the same length, then by
chosing a point O of the plane for the pole, one gets the unique
representation of every point P of the plane just as ordered pair
(%, y) of real numbers z, y satisfying

—_—

OP = zry + yr, .

The axes of the eoordmate system ” (ry, r,) are the carriers of

the vector r'1 and r2 respectively; they are two well-determined
number lines.

Consequently, in a plane a coordinate system is given in the
first place by an ordered pair of independent (non parallel) vectors
and not by two infinite straight lines.

12. 4. Coordinate space. .

In a completely analogous way one gets the analytical
numerical representation of points P of the space by chosing an
ordered triple of independent radii-vectors or any ordered triple

—

— —
of independent vectors e;, ¢;, e, and a point O as pole: where

—_—

OP—xeo—l—ye—:—l—'z;:.

- > -

The simplest case 1s the one where ¢, e, e, are orthonormal:
each of length 1, each orthogonal to any other.
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13. Cosine and sine. For any point P lying on the number
circle-line one has the angle % XOP and its measures 4P. On
the other hand one has the coordinate system OX, OY, in which
the point P has a definite representation: the abscissa of P is
called the cosine of the angle zOP or of each number %P, the
ordinate of P is called the sine of the angle XOP or of every
number “kP and one writes P = (cos kP, sin “kP).

14. Orthogonal projections on lines, planes, vectors. Scalar
multiplication of vectors.

14. 1. Let L be a line or a plane and P a point. The
line L (P) which contains the point P and is orthogonal to L is
well determined. The point P’ in which L (P) meets the given
L 1s well determined and is called the projection of P on L.

14. 2. The projection of a set S on L is defined as the set
of projections of points of S:

projSz{pronlXeS}.

14.3. Let L be an interval or a non null-vector or a
plane piece; then the minimal linear set I containing L is well
determined; one defines the projection on L as the projection
on [L. '

14. 4. Tt is to be noticed that one distinguishes two kinds

of projecting a vector AB on a vector CD: the vector projection

_—_—

of AB on CDis the vector A" B’ where A’ and B’ are projections
of A and B on CD; the scalar projection of the vector AB on the
vector CD is the number | AB | . cos (2’—5, ZZ?).
Analogously, the vector projection and scalar projection of
a vector AB on an oriented line [ is the vector A’ B’ and the

number | AB | cos Y (I, AZ?) respectively; here A’, B’ denote
the projections on I of 4 and B.
The scalar projection of vectors is a very important operation.
14.5. The two kinds of projections of vectors are dis-
tributive with respect to the addition of vectors.
14.6.  Scalar multiplication of vectors. The scalar pro-

duct ab of the vectors a, b is the product of their magnitudes
and the cosine of their angle: |
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> >

ab = ab cos K@Z(a, b) .

One sees that ab = a b; = ag . b.
In particular, the cosine of the angle between two unit vectors
equals their scalar product.

If ¢ | bthen ab = 0 and vice versa: if ab = O then a | b.
15. Isomeiries in space: translations, rotations, symmetries

(with respect to a point, line, plane). They are defined in usual
manner. ,

G. KUREPA,
Institut de Mathématiques,
Université de Zagreb (Yougoslavie).

(A suivre)
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