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est une aléatoire t, ., ce qui permet d’éprouver I’hypothese en

question ou d’estimer {* b.

2,24, Soient f} b, ..., iX b des combinaisons estimables, linéaire-
ment indépendantes, et [;: ¥ (1 =1, ..., s) leurs estimateurs pri-
vilégiés. Sous P’hypothése ff b = ... = fX b = 0, les moyennes
des I # sont toutes nulles, et donc (1/c%) SC{(%, ..., [/} est une
aléatoire v ?; cela entraine que
* *
o SC{1f,....1; }/s
= TSCE/(n —7)

est une aléatoire F, , .. Si I'hypothese en question est fausse,
Q est, en loi, plus grande que F , . ; on éprouvera donc cette
hypothése en comparant la valeur observée de Q & F ., les
grandes valeurs de Q étant critiques.

Remarque. — Il est manifeste que, si « est un nombre certain
quelconque, on a SC{ aw*} = SC{w*}. On peut donc négliger
un facteur constant dans le calcul d’une somme de carrés. 11 n’en
est pas de méme dans le calcul de Pexpression A, du § 2, 33.

2, 3. Sous-espaces disjoints non orthogonaux.

2,31. Soient U; et U, deux sous-espaces complémentaires de
V., de dimensions ¢ et r — ¢: V, = Uy @ U;,; on ne suppose
pas que U et UX, sont mutuellement orthogonaux. On cherche
4 interpréter SC U et SC U . Pour cela, on considére, outre le
modéle initial, le modéle ou '

(* eU},) implique E*#=0, - (1)

tandis que ((* € U)) implique E(* # % 0 pour une valeur au
moins de b.

[On pourrait décrire ce modeéle ainsi: soit [f, ..., [¥ une base
de Uy, IX,, ..., [¥ une base de U, et W telle que, dans le modéle
initial,

by = [Fe., )7, Er=u8"'86=AV"n;
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Soient SCN, et SCE,_, les sommes de carrés normale et des
erreurs pour le nouveau modele, SCN, et SCE, . les sommes
homologues du modéle initial. On a

le nouveau modéle est
R 0
0 0

Exr =AW 13w, 3=

SCU), = SCE, , — SCE, _,. .

*

~gOn a

En effet, en notant U, le complément orthogonal de
SCT = ScU, + SCU}, + SCE,_,
= SCN, + SCE,__ ;
or, de quol se compose ’espace des erreurs du nouveau modéle,
Vo, nq ? il contient évidemment V,, puis un sous-espace de V*,

de dimensions r — ¢, disjoint de V; par ailleurs, U, appartient
a Vg ,,en vertu de (11), et est de dimension r — ¢; done

Vo g = Vo @ U,

en outre, V, et UX, C V, sont mutuellement orthogonaux,

donc
n_

' — *
SCE,_, = SCV, , , = SCV, + SCU}
= SCE,_,. + SCUX

r—q ?

d’ott la thése; on voit en outre que’SCN, = SCU, # SCU;.

2,32. Il est commode d’introduire la notation suivante 12):

SCT — SCE,,_, = red [U}],
SCE,, , — SCE,,_, = red [UY | Ur](+ red [U},]).
On a alors
SCT = red [U;] + red [U:_q l U(;] + SCE, _,

avec
red [UY, | Uy] = scuy,
red [Uy ] = SCU, = scuy .

Bien entendu, les relations obtenues en permutant les réles
de Uy et UX, sont aussi valables; ces roles ne sont évidemment
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pas symétriques, & moins que U} et U, ne soient mutuellement
orthogonaux; dans ce dernier cas,

red [U(;:I e red[U; \ U:_q] = SC U; ;
red [UY ] =red [US | Uy ] =SCUY, .

2,33. Ces considérations s’étendent aisément au cas ou V, est
décomposé en plus de deux sous-espaces, suivant le schéma

V,=Uf B U & ..H U,
dimUi*:ri, rnt .+ rp=pp e =r.

On doit alors considérer ¢ modéles successifs (et 'ordre dans
lequel ces modéles font intervenir les U)X est essentiel); le ™
de ces modeles est caractérisé par

t ,
. [I*e D u;} implique E!*# =0 (k=1,2,..,t—1),
k+1

le 1*™ étant le modéle initial. On note SCE,_, la somme de
carrés des erreurs attachée au £°® modeéle, et on montre sans
peine que

’

*
sc(@ u; > = SCE,_, — SCE,_, ;

k+1

on pose alors

red [Uf | = SCT — SCE,__,
red [Uf,, | Uf, ..., UJ] = SCE, , — SCE

b4

N—er+1
et on a

SCN = red [Uf] +

-1
>, red (Ur Ul LUy ], a2

avec
red [U: I Ur ) een U;J = SCU: J

cette derniere relation n’étant pas généralement vraie pour les
autres U} (exception évidente: le cas ou les U} sont mutuelle-
ment orthogonaux).

2, 4. Ecarts au modéle.

Tout ce qui précéde est valide si, réellement, E¥ = A0, il
n’en est pas nécessairement ainsi, ce qui arrive lorsque le modele
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