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62 H. BRENY

ce résultat s’étend sans peine au cas de plus de deux compo
santes, et on peut énoncer que

si U* est la somme (directe) des espaces mutuellement ortho-
gonaux Uf, ..., U}, on a

t
SCU™ = >iscu .
1

I1 en résulte un mode de calcul des sommes de carrés qui est
assez souvent plus commode que 'emploi des formules (7) et
(8). On part d’une base uf, ..., u¥ de U*; si elle n’est pas ortho-
gonale, on 'orthogonalise (par exemple, par le procédé pas a pas
de Schmidt), ce qui fournit la base orthogonale 1}, ..., X alors

on a
-8

SCU* = >} sc{w’}

1
et donc, en vertu de (9),

8
SCU™ = D' (w #)2/ (w* w,) . (11)
1
2,14. On écrit, en particulier,

SCT (somme de carrés totale) pour SCV*,
SCN (somme de carrés normale) pour SCV_,
SCE (somme de carrés des erreurs) pour SC V,.

On notera que, V, et V, étant par définition complémen-
taires et orthogonaux dans V*, on a toujours

SCT = SCN + SCE .

D’autre part, ¥, ..., ¢* forment une base orthogonale de U*, et
e x = x;; donc

n
SCT = > x7 .
1
2, 2. Distributions. Epreuves d’hypothéses.

2,21. Soit U* un sous-espace de V*, de dimension s, w*, ...,
W) une base orthogonale de U*. Chaque m* # est une variable
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’ i : * .
aléatoire normale, de moyenne w* A b et de variance (W} W) o2;
en outre, si ¢ # k,

cov (mi* ¥, m}: %) = (wi* w,) o2 =0,

de sorte que les aléatoires W # sont les composantes non corré-
lées d’un vecteur multinormal, elles sont donc indépendantes.
Dés lors, si I'on suppose que 0 est tel que Ew*# = 0
(t =1, .., 8) (cest-a-dire sous DIhypothése mw} AL = ..
wrAD = 0), les aléatoires (W* #)/c sont gaussiennes et indé-

pendantes, de sorte que
S

(1/6%) SCU* = D\ [(n} #)/c]?
1

est une aléatoire 2. |

Si, par contre, on ne suppose pas Ew x = 0, (1/02) SCU*
est une aléatoire y* décentrée & s degrés de liberté, elle est done, .
en loi, plus grande qu’une aléatoire v 2

Pr(SCU*)/o* > a] > Pr [y2 > d] .

2,22, Prenons pour U* I'espace des erreurs, V,; alors s — n — r
et les conditions Ew ¢ = 0 sont identiquement ?) satisfaites.
On a done, indépendamment de toute hypothése quant a b,
Pr[SCE > ac®] = Pr[y2 > 4],
d’ou, notamment, |
Pr{SCB/a < o* < SCE/b] = Pr[a < 42 <] ,

ce qui permet d’estimer o.

2,23. Supposons que f* b = mT AT A0, soit une combinaison

estimable et que [¥ ¥ = mT AT ¥ soit son estimateur privilégié.
Alors: - “

@) sous ’hypothése f* b — g, [([f* ¥ — a)lo V([f* [f)] est une aléa-
toire gaussienne; ‘

b) SCE/(n —r) ? est une aléatoire Y

¢) SCE et [ # sont indépendantes (car [, estimatrice, est ortho-
gonale & tous les vecteurs de V).

Done, sous I'hypothese susdite,
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*y—a 4/5CE (Fr—aVin—1

oy VI Y ) se]

est une aléatoire t, ., ce qui permet d’éprouver I’hypothese en

question ou d’estimer {* b.

2,24, Soient f} b, ..., iX b des combinaisons estimables, linéaire-
ment indépendantes, et [;: ¥ (1 =1, ..., s) leurs estimateurs pri-
vilégiés. Sous P’hypothése ff b = ... = fX b = 0, les moyennes
des I # sont toutes nulles, et donc (1/c%) SC{(%, ..., [/} est une
aléatoire v ?; cela entraine que
* *
o SC{1f,....1; }/s
= TSCE/(n —7)

est une aléatoire F, , .. Si I'hypothese en question est fausse,
Q est, en loi, plus grande que F , . ; on éprouvera donc cette
hypothése en comparant la valeur observée de Q & F ., les
grandes valeurs de Q étant critiques.

Remarque. — Il est manifeste que, si « est un nombre certain
quelconque, on a SC{ aw*} = SC{w*}. On peut donc négliger
un facteur constant dans le calcul d’une somme de carrés. 11 n’en
est pas de méme dans le calcul de Pexpression A, du § 2, 33.

2, 3. Sous-espaces disjoints non orthogonaux.

2,31. Soient U; et U, deux sous-espaces complémentaires de
V., de dimensions ¢ et r — ¢: V, = Uy @ U;,; on ne suppose
pas que U et UX, sont mutuellement orthogonaux. On cherche
4 interpréter SC U et SC U . Pour cela, on considére, outre le
modéle initial, le modéle ou '

(* eU},) implique E*#=0, - (1)

tandis que ((* € U)) implique E(* # % 0 pour une valeur au
moins de b.

[On pourrait décrire ce modeéle ainsi: soit [f, ..., [¥ une base
de Uy, IX,, ..., [¥ une base de U, et W telle que, dans le modéle
initial,

by = [Fe., )7, Er=u8"'86=AV"n;
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