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60 H. BRENY

1,4. Moindres carrés.

A partir de la relation

E v 21 iH

le théorème de Gauss-Markov conduit à introduire le vecteur-
estimateur b défini en fonction de l'observation * par la condition

que

S2(b) (ç — %b)T (ç — %b)

*
soit minimum pour b b. Or, comme

d
>

dbi,H H ' h'H '

et

S2 (6) y* f — b£ 21T y — y* 21 bH+ 21T a bH

on a

rf S2 (fe) T^-12 2(21^-2^ y)
l, ri

*
Les conditions d S2 (°) 0 conduisent donc au système

dbi,H

%T a bH siT *

identique au système normal. Il en résulte que, si r les
estimateurs de moindres carrés ne sont autres que les estimateurs
privilégiés. Si r<p,lesdeux méthodes conduisent aux mêmes
combinaisons estimables fondamentales.

2. Distributions et épreuves d'hypothèses..

2, 1. Sommes des carrés.

2,11. Soit U* un sous-espace vectoriel de V*; on appelle
« somme de carrés due à U* », et on note SCU* n), le carré
scalaire de la projection orthogonale de sur le dual U de U*. La
dimension de U* est, par définition, le «nombre de degrés de
liberté » de SC U *.
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Si les vecteurs t>*, v*(t> s) engendrent U*, on écrit,
d'ordinaire, {tif, ...,»*} pour U*; on écrira donc aussi
SC{t>*, ...; o* j. pour SCU*.

2, 12. Pour calculer effectivement SC U*, on introduit une base
quelconque de U*, soit u*, u*. La projection orthogonale
de v sur U est alors déffnie par les relations

*u 2 ' < » — > u* (v — *J 0 l, s)

d'où l'on tire
S

2 Vli* "ft "ft v Ik 1, s) (7)
i= 1

système d équations linéaires qui détermine entièrement les X?-

(en effet, les u. formant une base de U, la matrice || u* uk II est
de rang s). On a alors

scu* — (!>,«*)

2 2 *ui* %
i i

moyennant (7), ce qui entraîne

SCU*-2W*- (8,
1

Dans le cas où s 1 (U* engendré par l'unique vecteur u*)?
on a '

sc{ u* } (u* V)2/ ("* «) • (9)

2,^13. Soient U* et U* deux sous-espaces complémentaires de
U mutuellement orthogonaux, Ux et U2 leurs duals; ceux-ci
sont, dans U, deux sous-espaces complémentaires mutuellement
orthogonaux, et on a

*U *Ml + < *U2 »

ce qui entraîne

se u se u* + se u* • (io)
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ce résultat s'étend sans peine au cas de plus de deux compo
santés, et on peut énoncer que

si U est la somme (directe) des espaces mutuellement
orthogonaux U*, U*, on a

t

SCU* 2 SCU* •

1

Il en résulte un mode de calcul des sommes de carrés qui est
assez souvent plus commode que l'emploi des formules (7) et
(8). On part d'une base u*, u* de U* ; si elle n'est pas
orthogonale, on l'orthogonalise (par exemple, par le procédé pas à pas
de Schmidt), ce qui fournit la base orthogonale n>*, vo* ; alors
on a

SCU* 2sc{**}
1

et donc, en vertu de (9),
s

scu* 2 K* *)2/K* »il • (îi)
1

2, 14. On écrit, en particulier,
SCT (somme de carrés totale) pour SCV*,
SCN (somme de carrés normale) pour SC V+,
SCE (somme de carrés des erreurs) pour SC V0.

On notera que, V+ et V0 étant par définition complémentaires

et orthogonaux dans V*, on a toujours
SCT SCN + SCE

D'autre part, e*, e* forment une base orthogonale de U*, et
e* % xt; donc

SCT 2 xf
1

2, 2. Distributions. Epreuves d'hypothèses.

2,21. Soit U* un sous-espace de V*, de dimension 5, n>*,
ras* une base orthogonale de U*. Chaque n>.* * est une variable
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