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60 H. BRENY

1,4. Moindres carrés.

A partir de la relation
E¥ = Ab, ,

le théoréme de Gauss-Markov conduit & introduire le vecteur-

estimateur & défini en fonction de I'observation # par la condi-
tion que
S2(6) = (r —Ab)" (x — Ab)

) *
soit minimum pour b = b, Or, comme
d d

—_— = ¢. T _ T
dbiHBH i, H > dbiHbH—ei,H ’
et '
S2(6) = ¥ v — o ATy — ¥ wby 4+ oL uT Ao,
on a
ds®(6) .. 7. T
b - = 2(A" Aby — AT y) .

. *
Les conditions 25 (V) = 0 conduisent donc au systéme
db;
1, H

wlwby, — aTs |

identique au systéme normal. Il en résulte que, si r = p, les
estimateurs de moindres carrés ne sont autres que les estimateurs
privilégiés. Si r << p, les deux méthodes conduisent aux mémes
combinaisons estimables fondamentales.

2. DISTRIBUTIONS ET EPREUVES D HYPOTHESES.

2,1. Sommes des carrés.

2,11. Soit U™ un sous-espace vectoriel de V*; on appelle
«somme de carrés due & U », et on note SCU* 1), le carré sca-
laire de la projection orthogonale de .# sur le dual U de U*. La
dimension de U™ est, par définition, le «nombre de degrés de
liberté » de SCU™.
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Si les vecteurs v, ... 9 (¢ > s) engendrent U*, on écrit,

d’ordinaire, {vf, ..., v} pour U*; on écrira donc aussi
* * *
SC{vy, ..., v} pour SCU*.

2,12.  Pour calculer effectivement SC U*, on introduit une base
quelconque de U™, soit uj, ..., u*, La projection orthogonale #,
~de ¥ sur U est alors définie par les relations

fu:_ZXini , < %

d’ou 'on tire

U > = u}: #—wx,)=0 (k=1,..,5s)

i, = e (k=1,...,5) , (7)

e

Il
P

1

systéme d’équations linéaires qui détermine entiérement les A
(en effet, les u; formant une base de U, la matrice H wr u, H est
de rang s). On a alors |

S S
SCU* = *1: ¥, = <E 7\1'111'*> <2 Xh%)
1

1
' S S
= Z 2 )‘ixkui* Uy
1 1

moyennant (7), ce qui entraine

S

SCU™ = SV uk e . | (8)
‘ 1

Dans le cas ots = 1 (U* engendré par Punique vecteur u*),
on a

SC{ u* } = (™ #)2/ (u* u) . (9)

2,13. Soient U} et U} deux sous-espaces complémentaires de
U*, mutuellement orthogonaux, U, et U, leurs duals; ceux-ci
sont, dans U, deux sous-espaces complémentaires mutuellement
orthogonaux, et on a
* * *
Yy ¥, =¥, %, + ¥ %

Uz “uUg

\

ce qui entraine

SCU™ = scuU; + scuy . | (10)
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ce résultat s’étend sans peine au cas de plus de deux compo
santes, et on peut énoncer que

si U* est la somme (directe) des espaces mutuellement ortho-
gonaux Uf, ..., U}, on a

t
SCU™ = >iscu .
1

I1 en résulte un mode de calcul des sommes de carrés qui est
assez souvent plus commode que 'emploi des formules (7) et
(8). On part d’une base uf, ..., u¥ de U*; si elle n’est pas ortho-
gonale, on 'orthogonalise (par exemple, par le procédé pas a pas
de Schmidt), ce qui fournit la base orthogonale 1}, ..., X alors

on a
-8

SCU* = >} sc{w’}

1
et donc, en vertu de (9),

8
SCU™ = D' (w #)2/ (w* w,) . (11)
1
2,14. On écrit, en particulier,

SCT (somme de carrés totale) pour SCV*,
SCN (somme de carrés normale) pour SCV_,
SCE (somme de carrés des erreurs) pour SC V,.

On notera que, V, et V, étant par définition complémen-
taires et orthogonaux dans V*, on a toujours

SCT = SCN + SCE .

D’autre part, ¥, ..., ¢* forment une base orthogonale de U*, et
e x = x;; donc

n
SCT = > x7 .
1
2, 2. Distributions. Epreuves d’hypothéses.

2,21. Soit U* un sous-espace de V*, de dimension s, w*, ...,
W) une base orthogonale de U*. Chaque m* # est une variable
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