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60 H. BRENY

1,4. Moindres carrés.

A partir de la relation
E¥ = Ab, ,

le théoréme de Gauss-Markov conduit & introduire le vecteur-

estimateur & défini en fonction de I'observation # par la condi-
tion que
S2(6) = (r —Ab)" (x — Ab)

) *
soit minimum pour b = b, Or, comme
d d

—_— = ¢. T _ T
dbiHBH i, H > dbiHbH—ei,H ’
et '
S2(6) = ¥ v — o ATy — ¥ wby 4+ oL uT Ao,
on a
ds®(6) .. 7. T
b - = 2(A" Aby — AT y) .

. *
Les conditions 25 (V) = 0 conduisent donc au systéme
db;
1, H

wlwby, — aTs |

identique au systéme normal. Il en résulte que, si r = p, les
estimateurs de moindres carrés ne sont autres que les estimateurs
privilégiés. Si r << p, les deux méthodes conduisent aux mémes
combinaisons estimables fondamentales.

2. DISTRIBUTIONS ET EPREUVES D HYPOTHESES.

2,1. Sommes des carrés.

2,11. Soit U™ un sous-espace vectoriel de V*; on appelle
«somme de carrés due & U », et on note SCU* 1), le carré sca-
laire de la projection orthogonale de .# sur le dual U de U*. La
dimension de U™ est, par définition, le «nombre de degrés de
liberté » de SCU™.
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Si les vecteurs v, ... 9 (¢ > s) engendrent U*, on écrit,

d’ordinaire, {vf, ..., v} pour U*; on écrira donc aussi
* * *
SC{vy, ..., v} pour SCU*.

2,12.  Pour calculer effectivement SC U*, on introduit une base
quelconque de U™, soit uj, ..., u*, La projection orthogonale #,
~de ¥ sur U est alors définie par les relations

fu:_ZXini , < %

d’ou 'on tire

U > = u}: #—wx,)=0 (k=1,..,5s)

i, = e (k=1,...,5) , (7)

e

Il
P

1

systéme d’équations linéaires qui détermine entiérement les A
(en effet, les u; formant une base de U, la matrice H wr u, H est
de rang s). On a alors |

S S
SCU* = *1: ¥, = <E 7\1'111'*> <2 Xh%)
1

1
' S S
= Z 2 )‘ixkui* Uy
1 1

moyennant (7), ce qui entraine

S

SCU™ = SV uk e . | (8)
‘ 1

Dans le cas ots = 1 (U* engendré par Punique vecteur u*),
on a

SC{ u* } = (™ #)2/ (u* u) . (9)

2,13. Soient U} et U} deux sous-espaces complémentaires de
U*, mutuellement orthogonaux, U, et U, leurs duals; ceux-ci
sont, dans U, deux sous-espaces complémentaires mutuellement
orthogonaux, et on a
* * *
Yy ¥, =¥, %, + ¥ %

Uz “uUg

\

ce qui entraine

SCU™ = scuU; + scuy . | (10)
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ce résultat s’étend sans peine au cas de plus de deux compo
santes, et on peut énoncer que

si U* est la somme (directe) des espaces mutuellement ortho-
gonaux Uf, ..., U}, on a

t
SCU™ = >iscu .
1

I1 en résulte un mode de calcul des sommes de carrés qui est
assez souvent plus commode que 'emploi des formules (7) et
(8). On part d’une base uf, ..., u¥ de U*; si elle n’est pas ortho-
gonale, on 'orthogonalise (par exemple, par le procédé pas a pas
de Schmidt), ce qui fournit la base orthogonale 1}, ..., X alors

on a
-8

SCU* = >} sc{w’}

1
et donc, en vertu de (9),

8
SCU™ = D' (w #)2/ (w* w,) . (11)
1
2,14. On écrit, en particulier,

SCT (somme de carrés totale) pour SCV*,
SCN (somme de carrés normale) pour SCV_,
SCE (somme de carrés des erreurs) pour SC V,.

On notera que, V, et V, étant par définition complémen-
taires et orthogonaux dans V*, on a toujours

SCT = SCN + SCE .

D’autre part, ¥, ..., ¢* forment une base orthogonale de U*, et
e x = x;; donc

n
SCT = > x7 .
1
2, 2. Distributions. Epreuves d’hypothéses.

2,21. Soit U* un sous-espace de V*, de dimension s, w*, ...,
W) une base orthogonale de U*. Chaque m* # est une variable
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’ i : * .
aléatoire normale, de moyenne w* A b et de variance (W} W) o2;
en outre, si ¢ # k,

cov (mi* ¥, m}: %) = (wi* w,) o2 =0,

de sorte que les aléatoires W # sont les composantes non corré-
lées d’un vecteur multinormal, elles sont donc indépendantes.
Dés lors, si I'on suppose que 0 est tel que Ew*# = 0
(t =1, .., 8) (cest-a-dire sous DIhypothése mw} AL = ..
wrAD = 0), les aléatoires (W* #)/c sont gaussiennes et indé-

pendantes, de sorte que
S

(1/6%) SCU* = D\ [(n} #)/c]?
1

est une aléatoire 2. |

Si, par contre, on ne suppose pas Ew x = 0, (1/02) SCU*
est une aléatoire y* décentrée & s degrés de liberté, elle est done, .
en loi, plus grande qu’une aléatoire v 2

Pr(SCU*)/o* > a] > Pr [y2 > d] .

2,22, Prenons pour U* I'espace des erreurs, V,; alors s — n — r
et les conditions Ew ¢ = 0 sont identiquement ?) satisfaites.
On a done, indépendamment de toute hypothése quant a b,
Pr[SCE > ac®] = Pr[y2 > 4],
d’ou, notamment, |
Pr{SCB/a < o* < SCE/b] = Pr[a < 42 <] ,

ce qui permet d’estimer o.

2,23. Supposons que f* b = mT AT A0, soit une combinaison

estimable et que [¥ ¥ = mT AT ¥ soit son estimateur privilégié.
Alors: - “

@) sous ’hypothése f* b — g, [([f* ¥ — a)lo V([f* [f)] est une aléa-
toire gaussienne; ‘

b) SCE/(n —r) ? est une aléatoire Y

¢) SCE et [ # sont indépendantes (car [, estimatrice, est ortho-
gonale & tous les vecteurs de V).

Done, sous I'hypothese susdite,
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*y—a 4/5CE (Fr—aVin—1

oy VI Y ) se]

est une aléatoire t, ., ce qui permet d’éprouver I’hypothese en

question ou d’estimer {* b.

2,24, Soient f} b, ..., iX b des combinaisons estimables, linéaire-
ment indépendantes, et [;: ¥ (1 =1, ..., s) leurs estimateurs pri-
vilégiés. Sous P’hypothése ff b = ... = fX b = 0, les moyennes
des I # sont toutes nulles, et donc (1/c%) SC{(%, ..., [/} est une
aléatoire v ?; cela entraine que
* *
o SC{1f,....1; }/s
= TSCE/(n —7)

est une aléatoire F, , .. Si I'hypothese en question est fausse,
Q est, en loi, plus grande que F , . ; on éprouvera donc cette
hypothése en comparant la valeur observée de Q & F ., les
grandes valeurs de Q étant critiques.

Remarque. — Il est manifeste que, si « est un nombre certain
quelconque, on a SC{ aw*} = SC{w*}. On peut donc négliger
un facteur constant dans le calcul d’une somme de carrés. 11 n’en
est pas de méme dans le calcul de Pexpression A, du § 2, 33.

2, 3. Sous-espaces disjoints non orthogonaux.

2,31. Soient U; et U, deux sous-espaces complémentaires de
V., de dimensions ¢ et r — ¢: V, = Uy @ U;,; on ne suppose
pas que U et UX, sont mutuellement orthogonaux. On cherche
4 interpréter SC U et SC U . Pour cela, on considére, outre le
modéle initial, le modéle ou '

(* eU},) implique E*#=0, - (1)

tandis que ((* € U)) implique E(* # % 0 pour une valeur au
moins de b.

[On pourrait décrire ce modeéle ainsi: soit [f, ..., [¥ une base
de Uy, IX,, ..., [¥ une base de U, et W telle que, dans le modéle
initial,

by = [Fe., )7, Er=u8"'86=AV"n;
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|

Soient SCN, et SCE,_, les sommes de carrés normale et des
erreurs pour le nouveau modele, SCN, et SCE, . les sommes
homologues du modéle initial. On a

le nouveau modéle est
R 0
0 0

Exr =AW 13w, 3=

SCU), = SCE, , — SCE, _,. .

*

~gOn a

En effet, en notant U, le complément orthogonal de
SCT = ScU, + SCU}, + SCE,_,
= SCN, + SCE,__ ;
or, de quol se compose ’espace des erreurs du nouveau modéle,
Vo, nq ? il contient évidemment V,, puis un sous-espace de V*,

de dimensions r — ¢, disjoint de V; par ailleurs, U, appartient
a Vg ,,en vertu de (11), et est de dimension r — ¢; done

Vo g = Vo @ U,

en outre, V, et UX, C V, sont mutuellement orthogonaux,

donc
n_

' — *
SCE,_, = SCV, , , = SCV, + SCU}
= SCE,_,. + SCUX

r—q ?

d’ott la thése; on voit en outre que’SCN, = SCU, # SCU;.

2,32. Il est commode d’introduire la notation suivante 12):

SCT — SCE,,_, = red [U}],
SCE,, , — SCE,,_, = red [UY | Ur](+ red [U},]).
On a alors
SCT = red [U;] + red [U:_q l U(;] + SCE, _,

avec
red [UY, | Uy] = scuy,
red [Uy ] = SCU, = scuy .

Bien entendu, les relations obtenues en permutant les réles
de Uy et UX, sont aussi valables; ces roles ne sont évidemment

L’Enseignement mathém., t. VI, fasc. 1. 5
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pas symétriques, & moins que U} et U, ne soient mutuellement
orthogonaux; dans ce dernier cas,

red [U(;:I e red[U; \ U:_q] = SC U; ;
red [UY ] =red [US | Uy ] =SCUY, .

2,33. Ces considérations s’étendent aisément au cas ou V, est
décomposé en plus de deux sous-espaces, suivant le schéma

V,=Uf B U & ..H U,
dimUi*:ri, rnt .+ rp=pp e =r.

On doit alors considérer ¢ modéles successifs (et 'ordre dans
lequel ces modéles font intervenir les U)X est essentiel); le ™
de ces modeles est caractérisé par

t ,
. [I*e D u;} implique E!*# =0 (k=1,2,..,t—1),
k+1

le 1*™ étant le modéle initial. On note SCE,_, la somme de
carrés des erreurs attachée au £°® modeéle, et on montre sans
peine que

’

*
sc(@ u; > = SCE,_, — SCE,_, ;

k+1

on pose alors

red [Uf | = SCT — SCE,__,
red [Uf,, | Uf, ..., UJ] = SCE, , — SCE

b4

N—er+1
et on a

SCN = red [Uf] +

-1
>, red (Ur Ul LUy ], a2

avec
red [U: I Ur ) een U;J = SCU: J

cette derniere relation n’étant pas généralement vraie pour les
autres U} (exception évidente: le cas ou les U} sont mutuelle-
ment orthogonaux).

2, 4. Ecarts au modéle.

Tout ce qui précéde est valide si, réellement, E¥ = A0, il
n’en est pas nécessairement ainsi, ce qui arrive lorsque le modele
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envisagé n’est qu'un cas particulier d’'un modéle plus général
auquel on désire accorder aussi quelque considération, on peut
modifier un peu les énoncés des hypothéses & éprouver, en disant,
par exemple: «si Ex = Abet si [} 0 = ... = [*b = 0, alors ...».
Sous cette nouvelle hypothese SC{ ¥ B, ..., [* b} est encore dis-
tribuée comme czy Mais SCE nest plus distribuée comme
6% car, si E¥ — D n’est pas identiquement nulle, les vec-
teurs de V; n’ont plus une moyenne nécessairement nulle. On
est alors obligé de prendre comme espace des erreurs un sous-
espace V, de Vi, a savoir: celui des vecteurs de V* dont la
moyenne est identiquement nulle dans le modéle le plus général
que I'on considére. On peut dire que ce sous-espace existe dés
que les observations comportent au moins une paire d’observa-
tions ayant identiquement méme moyenne (dans le modeéle le
plus général). Nous noterons SCint (« somme de carrés interne »)
I'expression SCV,, et SCEM [« somme de carrés des écarts au
modéle » (sous-entendu: au modéle restreint)] I'expression
SCE — SCint (en désignant par V7 le complement orthogonal de
V, dans V,;, SCEM n’est autre que SC V). Dans les considéra-
tions du § 2, 2, SCint peut remplacer SCE, n — s remplacant
alors n — r. Les composantes de SCint sont évidemment ortho-
gonales & celles de SCN.

Remarque. — Les composantes additives de SCT (ou, plus
exactement, leurs valeurs observées) sont le plus souvent reprises
en un tableau que I'on nomme « table d’analyse de la variance ».
Cette désignation n’est guére heureuse, on devrait la réserver
aux études de « composantes de variance » (cfr. [V]); elle parait
néanmoins avoir recu la sanction de I'usage, et il semble assez
vain de vouloir la récuser. Une telle table se présente ainsi:

Somme de carrés Formules Nombre de degrés
- de liberté
SCT > a? | .on
SCN SC{AT z} r
SCE SCT — SCN n—r
[ SCint SCV u

| SCEM SCE — SCint n—r—u.
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D’ordinaire, SCN est décomposée conformément & la for-
mule (12). Si on utilise la table de la distribution F, il est utile
d’adjoindre & cette table une colonne « carrés moyens », ou sont
repris les quotients des SC par les nombres de leurs degrés de
liberté.

NOTES

1) Dans un systéme complet de notations, ce n-uple serait désigné, par exemple,
par g .
b

2) Dans un systéme complet de notations, ce n-uple serait designé par g; %2 OU

par gl’: si 1a dualité des bases va de soi. Pour des raisons de convenance typographique,
a,
. * . :
nous écrirons souvent [ay, ..., @,]  au lieu de

An,

3) Ce second usage est permis parce que 2]3 et EB* sont des bases orthonormales;
§’il n’en était pas ainsi, il conviendrait d’indiquer la transposition et la dualite par

des signes différents (T et *).

4) On notera qu’alors QIT ne représente pas I’application duale (dite aussi «trans-
posée ») de 9(; celle-ci est représentée, ici, par la méme matrice Y ; mais, dans un cas,
cette matrice pré-multiplie une colonne, dans I’autre elle post-multiplie une ligne.

5) «épreuve » au singulier, car il s’agit d’une abréviation de I’expression « catégorie
des résultats d’épreuve », qui n’a rien 4 voir avec les « épreuves répétées » dont on a
parfois voulu faire le fondement, sinon de la théorie des probabilités, du moins de ses
applications; cfr. [II].

6) On notera que la moyenne du vecteur aleatoire b est un vecteur défini sans
recours & une base (théorie de I’intégration dans les espaces vectoriels), de sorte que
la notation EMb a un sens intrinséque [il est tres heureux que (Eb), = E (b)].
1’étude intrinséque de la covariance serait un peu moins simple.

7) On dit parfois que «des variables aléatoires normales non corrélées sont indé-
pendantes ». Cet énoncé, pris dans toute sa généralité, est faux; il est vrai pour des
aléatoires (normales, nécessairement) qui sont les composantes d’une représentation
(par rapport & une base certaine) d’un vecteur multinormal.

8) Plus explicitement: [* —> [6 —> 1™ A b].
9) «Identiquement » par rapport & la variabilité de b dans B.

10) Comme on le sait, le mot «erreur » posséde, en statistique, un sens trés éloigné
de son sens vulgaire.

11) 11 s’agit 12 d’une variable aléatoire; la notation appropriée a, ce fait est malaisée
4 choisir; 1a convention adoptée ici a, & défaut d’autre mérite, celui d’étre simple.

12) O0 «red » signifie «réduction » (scil. de la somme de carrés des erreurs).

H. Breny,
Centre interdisciplinaire d’analyse stochastique
et de recherche opérationnelle
Université de Liége.

(A suiore)
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