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MODELES LINEAIRES EN ANALYSE STATISTIQUE 57
E((*%) = (* Ex = [* Ab , (4)

d’ou
G: [k (*AD . 9

€ est évidemment de rang r.

1,14. Le noyau de € (sous-espace V, de V* formé des vec-
teurs [* tels que € [* soit identiquement nul °) est appelé «espace
des erreurs » 10); il est de dimension n —rg € = n —r.

Le complément orthogonal de V, (sous-espace V, de V*
formé des vecteurs m* pour lesquels m* [ = 0 pour tout [* e V)
‘est appelé « espace des estimatrices ». Une estimatrice est done,
par définition, une fonctionnelle linéaire des observations, ortho-
gonale & toute fonctionnelle dont la moyenne est identiquement ?)
nulle. On remarquera que, V* étant somme directe de V, et V_,
a toute fonctionnelle linéaire des observations dont la moyenne
n’est pas identiquement ) nulle correspond une et une seule
fonctionnelle de V., ayant identiquement ®) méme moyenne
qu’elle.

Enfin, Pimage de € (sous-espace B, de B* formé des combi-
naisons paramétriques b* pour lesquelles il existe un vecteur
[* eV* tel que EI* ¥ = b* b) s’appelle « espace des combinai-
sons (paramétriques) estimables ». N ous noterons B, un complé-
ment quelconque de B..

On sait que la restriction de € a V, est un isomorphisme de
V. sur B,; on peut donc énoncer que -

toute combinaison estimable est la moyenne d’une et une seule

estimatrice, et réciproquement.

1, 2. Estimateurs privilégiés.

1,21. SiPon a, pour *eV* El* ¢ = f* 0 {*b est évidem-
ment une combinaison estimable, et [* ¥ en est un estimateur
fidéle (au sens de la théorie statistique de I'estimation); si
m* eV, (I* 4+ m*)# est aussi un estimateur fidele de f*b;
pour distinguer, parmi tous ces estimateurs fideles de f* b,
unique estimatrice, celle-ci est dite « estimateur privilégié de

T 0, et désignée par [* ¢ (done, par définition, E [* ¢ = f* b et
(Fev,).
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1, 22. - Théoréme. Parmi tous les estimateurs fidéles de la combi-
naison estimable {* b, I'estimateur privilégié a la variance minimum.
Soit en effet m* tel que Em* ¢ — f* b, On a, en posant
t=1t—Erz,
varm* ¢ = E[m*¥ — Em* ] [m* ¥ — Em* #]
=Em*#) ®*m)* = m* (E¥¥*)m. (5)

La définition des propriétés distributionnelles de x faisant
intervenir la base P, introduisons cette base pour un calcul
explicite:

~2 ~ o~ ~ o~
X XX X; X,
Ex¥* = Exp(¥p) = E| :
X, % . X
pd Sn 62
d’ou
var m* ¢ = (m* m) o?
Soit alors
* (% *
m* = 1 +mo,

de sorte que

on a
(*

et (m mg) o > (1] 1) o? = var I ¥,

var m* g = (

I'inégalité étant d’ailleurs stricte si mJ" = 0.

1, 3. Exécution des calculs.

1, 31. Pour 'exécution effective des calculs, il importé d’intro-
duire une base dans chacun des espaces considérés; dans ce para-
graphe, V et V* sont rapportés aux bases L et '* B et B* sont
rapportés & des bases déterminées O et H*.

1,32. Pour que !* eV, il est nécessaire et suffisant que
[*A = 0; donc
Pespace des erreurs est engendré par ceux des vecteurs de V'*
qui sont orthogonaux aux colonnes de la mairice A (plus expli-
citement : Up p). ;
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