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0, 34. Rappelons enfin que, si ’on nomme « gaussienne » toute
aléatoire normale de moyenne nulle et de variance égale a 1,
on a les énoncés suivants (cfr. [III], chap. 18):

a)

b)

la somme des carrés de p aléatoires gaussiennes indépen-
dantes est une aléatoire y2 & p degrés de liberté (en abrégé,
Xp)3

si x est une aléatoire gaussienne et u une aléatoire y? indé-
pendante de x, le quotient x/4/(u/p) est une aléatoire de
Student & p degrés de liberté (en abrégé, t,);

siu et v sont des aléatoires y2%, respectivement a m et n degrés
de liberté, indépendantes, le quotient (u/m): (v/n) est une
aléatoire F de Snedecor & (m, n) degrés de liberté (en abrégé,
F,..); 1 est souvent plus commode d’utiliser alors le fait
que v/(u + v) est une aléatoire §, , avec p = n/2, ¢ = m/2,
et de se référer aux tables de la distribution B (en général,
en effet, n > m, donc p > ¢, comme dans les tables de
Pearson [IV]); on notera que les grandes valeurs de F corres-

pondent aux petites valeurs de B.

1. MODELES LINEAIRES. ESTIMATEURS.

1, 1. Définitions.

1, 11. Considérons une expérience aléatoire dont le résultat
est un n-uple ordonné de nombres réels, toutes les valeurs a priori
possibles, de — o & 4 oo, étant en effet & prendre en considé-
ration. Structurons I’ensemble des observations possibles en
un espace vectoriel euclidien sur le corps des réels en postulant
que, sl a = (ay, ..., a,) et B = (by, ..., b,) sont deux observa-
tions, on a

pour la somme:

(Z“l' B = (a1+b1) o 2%y an_l_bn) ’ (1)

pour le produit par un scalaire:

pa = (pala e e g pan) ’ (2)

pour le produit scalaire:

<oc,B>=a,1b1—|—...—|—anbn. (3)
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L’espace des observations, ainsi structuré, sera désigné par V,
et son dual par V*; V et V* sont évidemment de dimension n.

Les n observations (1, 0, ..., 0), ..., (0, ..., 0, 1) forment évi-
demment une base de V; elle sera désignée par B, et sa-duale
par P*. La base ‘P n’a, bien entendu, aucun privilége de droit;
son lien particuliérement étroit avec la forme méme des obser-
vations lui confére cependant un privilege de fait, qui se traduit
notamment en ceci, que ¢’est par rapport & B que les relations
(1), (2), (3) explicitent la définition des opérations fondamentales
de V. Sauf mention expresse du contraire, les représentations de
vecteurs de V ouV* seront toujours censées étre faites par rapport
a P ou B*; comme la relation (3) implique que B est orthonor-
male, les conventions du § 0, 2 seront appliquées.

1,12. A coté de l'espace des observations, nous considérerons
un autre espace vectoriel, B, de dimension p < n, dit « espace
des paramétres », et son dual, B*, «espace des combinaisons
paramétriques ». Il n’existe pas, en général, de base «naturelle »
qui soit & B ce que P est & V; aussi les représentations des vec-
teurs de B seront-elles notées par un symbole rappelant la base
utilisée (la dualité des bases de B et B* allant de soi).

1,13. Le caractére aléatoire des observations a pour consé-
quence l’existence d’une catégorie d’épreuve C, munie d’une
mesure probabiliste Pr; en tant qu’éléments aléatoires, les
observations constituent un vecteur aléatoire de V (application
mesurable de C dans V). La mesure Pr est décrite d’une fagon
explicite par référence a la base B, par le postulat que les com-
posantes par rapport &  du vecteur aléatoire # représentant les
observations sont n variables aléatoires normalés, indépen-
dantes, de méme variance %, dont les moyennes sont n éléments
bien déterminés de B*:

Eel v =) [t() Prd) =¢ %6 (reV,6eB),
. |

I'application A étant de rang r (< p).

On voit donc que l'opérateur « valeur moyenne dans C»
induit une application linéaire de V* dans B*; si on la désigne
par € on a, pour tout * e V*,
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E((*%) = (* Ex = [* Ab , (4)

d’ou
G: [k (*AD . 9

€ est évidemment de rang r.

1,14. Le noyau de € (sous-espace V, de V* formé des vec-
teurs [* tels que € [* soit identiquement nul °) est appelé «espace
des erreurs » 10); il est de dimension n —rg € = n —r.

Le complément orthogonal de V, (sous-espace V, de V*
formé des vecteurs m* pour lesquels m* [ = 0 pour tout [* e V)
‘est appelé « espace des estimatrices ». Une estimatrice est done,
par définition, une fonctionnelle linéaire des observations, ortho-
gonale & toute fonctionnelle dont la moyenne est identiquement ?)
nulle. On remarquera que, V* étant somme directe de V, et V_,
a toute fonctionnelle linéaire des observations dont la moyenne
n’est pas identiquement ) nulle correspond une et une seule
fonctionnelle de V., ayant identiquement ®) méme moyenne
qu’elle.

Enfin, Pimage de € (sous-espace B, de B* formé des combi-
naisons paramétriques b* pour lesquelles il existe un vecteur
[* eV* tel que EI* ¥ = b* b) s’appelle « espace des combinai-
sons (paramétriques) estimables ». N ous noterons B, un complé-
ment quelconque de B..

On sait que la restriction de € a V, est un isomorphisme de
V. sur B,; on peut donc énoncer que -

toute combinaison estimable est la moyenne d’une et une seule

estimatrice, et réciproquement.

1, 2. Estimateurs privilégiés.

1,21. SiPon a, pour *eV* El* ¢ = f* 0 {*b est évidem-
ment une combinaison estimable, et [* ¥ en est un estimateur
fidéle (au sens de la théorie statistique de I'estimation); si
m* eV, (I* 4+ m*)# est aussi un estimateur fidele de f*b;
pour distinguer, parmi tous ces estimateurs fideles de f* b,
unique estimatrice, celle-ci est dite « estimateur privilégié de

T 0, et désignée par [* ¢ (done, par définition, E [* ¢ = f* b et
(Fev,).
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