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0, 34. Rappelons enfin que, si l'on nomme « gaussienne » toute
aléatoire normale de moyenne nulle et de variance égale à 1,

on a les énoncés suivants (cfr. [Ill], chap. 18):

a) la somme des carrés de p aléatoires gaussiennes indépen¬
dantes est une aléatoire x2 à. p degrés de liberté (en abrégé,

Xp);

b) si x est une aléatoire gaussienne et u une aléatoire Xp indé¬

pendante de x, le quotient x/-y/(u/p) est une aléatoire de

Student à p degrés de liberté (en abrégé, tp);

c) si u et v sont des aléatoires x2, respectivement à m et n degrés
de liberté, indépendantes, le quotient (u/m) : (v/n) est une
aléatoire F de Snedecor à (m, n) degrés de liberté (en abrégé,
Fmn); il est souvent plus commode d'utiliser alors le fait
que v/(u + v) est une aléatoire ßp?gr avec p nj2, q m/2,
et de se référer aux tables de la distribution ß (en général,
en effet, n > m, donc p > g, comme dans les tables de

Pearson [IV]); on notera que les grandes valeurs de F
correspondent aux petites valeurs de ß.

1. Modèles linéaires. Estimateurs.

1, 1. Définitions.

1, 11. Considérons une expérience aléatoire dont le résultat
est un muple ordonné de nombres réels, toutes les valeurs a priori
possibles, de — oo à -f- oo, étant en effet à prendre en considération.

Structurons l'ensemble des observations possibles en
un espace vectoriel euclidien sur le corps des réels en postulant
que, si a (al7 an) et ß (6X, bn) sont deux observations,

on a

pour la somme:
a + ß (a, + bu an + bn) (1)

pour le produit par un scalaire:

pce (pai, an) (2)

pour le produit scalaire:

< a, ß > ax b1 -f + an bn (3)
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L'espace des observations, ainsi structuré, sera désigné par V,
et son dual par V* ; V et V* sont évidemment de dimension n.

Les n observations (1, 0, 0), (0, 0, 1) forment
évidemment une base de V; elle sera désignée par ^3, et sa duale

par ^3*. La base ^3 n'a, bien entendu, aucun privilège de droit;
son lien particulièrement étroit avec la forme même des
observations lui confère cependant un privilège de fait, qui se traduit
notamment en ceci, que c'est par rapport à ^3 que les relations
(1), (2), (3) explicitent la définition des opérations fondamentales
de V. Sauf mention expresse du contraire, les représentations de

vecteurs de V ou V* seront toujours censées être faites par rapport
à ^3 ou ^3* ; comme la relation (3) implique que ^3 est orthonormale,

les conventions du § 0, 2 seront appliquées.

1, 12. A côté de l'espace des observations, nous considérerons

un autre espace vectoriel, B, de dimension p < n, dit « espace
des paramètres», et son dual, B*, «espace des combinaisons

paramétriques ». Il n'existe pas, en général, de base « naturelle »

qui soit à B ce que SP est à V ; aussi les représentations des

vecteurs de B seront-elles notées par un symbole rappelant la base

utilisée (la dualité des bases de B et B* allant de soi).

1, 13. Le caractère aléatoire des observations a pour
conséquence l'existence d'une catégorie d'épreuve C, munie d'une
mesure probabiliste Pr; en tant qu'éléments aléatoires, les

observations constituent un vecteur aléatoire de V (application
mesurable de C dans V). La mesure Pr est décrite d'une façon
explicite par référence à la base ^3, par le postulat que les

composantes par rapport à ^3 du vecteur aléatoire -r représentant les

observations sont n variables aléatoires normales, indépendantes,

de même variance a2, dont les moyennes sont n éléments

bien déterminés de B* :

E e* * e* Jar {x) Pr (d\) e* 21 b (ç e V. 6 e B)
C

l'application 31 étant de rang r (< p).
On voit donc que l'opérateur « valeur moyenne dans C »

induit une application linéaire de V* dans B* ; si on la désigne

par ©, on a, pour tout l* eV*,
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E (!**) l* E* l* m (4)

d'où
(S: l*-> t* Mb 8)

6 est évidemment de rang r.

1, 14. Le noyau de © (sous-espace V0 de V* formé des

vecteurs I* tels que © 1* soit identiquement nul9) est appelé «espace
des erreurs » 10) ; il est de dimension n — rg © n — r.

Le complément orthogonal de V0 (sous-espace V+ de V*
formé des vecteurs M* pour lesquels m* t 0 pour tout t* eV0)
est appelé « espace des estimatrices ». Une estimatrice est donc,

par définition, une fonctionnelle linéaire des observations,
orthogonale à toute fonctionnelle dont la moyenne est identiquement9)
nulle. On remarquera que, V* étant somme directe de V0 et V+,
à toute fonctionnelle linéaire des observations dont la moyenne
n'est pas identiquement9) nulle correspond une et une seule

fonctionnelle de V+ ayant identiquement9) même moyenne
qu'elle.

Enfin, l'image de © (sous-espace B+ de B* formé des
combinaisons paramétriques b* pour lesquelles il existe un vecteur
l* g V* tel que E l* * b* b) s'appelle « espace des combinaisons

(paramétriques) estimables ». Nous noterons B0 un complément

quelconque de B+.
On sait que la restriction de © à V+ est un isomorphisme de

V+ sur B+; on peut donc énoncer que
toute combinaison estimable est la moyenne dû une et une seule

estimatrice, et réciproquement.

1, 2. Estimateurs privilégiés.

1, 21. Si l'on a, pour I* e V*, E l* * f* b, f* b est évidemment

une combinaison estimable, et l* * en est un estimateur
fidèle (au sens de la théorie statistique de l'estimation); si
1H* e V0, (t* + nx*)-y est aussi un estimateur fidèle de f*b;
pour distinguer, parmi tous ces estimateurs fidèles de f* b,

l'unique estimatrice, celle-ci est dite « estimateur privilégié de
f* b

», et désignée par L* * (donc, par définition, E L* $ f* b et
<Nv+).
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