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0, 34. Rappelons enfin que, si l'on nomme « gaussienne » toute
aléatoire normale de moyenne nulle et de variance égale à 1,

on a les énoncés suivants (cfr. [Ill], chap. 18):

a) la somme des carrés de p aléatoires gaussiennes indépen¬
dantes est une aléatoire x2 à. p degrés de liberté (en abrégé,

Xp);

b) si x est une aléatoire gaussienne et u une aléatoire Xp indé¬

pendante de x, le quotient x/-y/(u/p) est une aléatoire de

Student à p degrés de liberté (en abrégé, tp);

c) si u et v sont des aléatoires x2, respectivement à m et n degrés
de liberté, indépendantes, le quotient (u/m) : (v/n) est une
aléatoire F de Snedecor à (m, n) degrés de liberté (en abrégé,
Fmn); il est souvent plus commode d'utiliser alors le fait
que v/(u + v) est une aléatoire ßp?gr avec p nj2, q m/2,
et de se référer aux tables de la distribution ß (en général,
en effet, n > m, donc p > g, comme dans les tables de

Pearson [IV]); on notera que les grandes valeurs de F
correspondent aux petites valeurs de ß.

1. Modèles linéaires. Estimateurs.

1, 1. Définitions.

1, 11. Considérons une expérience aléatoire dont le résultat
est un muple ordonné de nombres réels, toutes les valeurs a priori
possibles, de — oo à -f- oo, étant en effet à prendre en considération.

Structurons l'ensemble des observations possibles en
un espace vectoriel euclidien sur le corps des réels en postulant
que, si a (al7 an) et ß (6X, bn) sont deux observations,

on a

pour la somme:
a + ß (a, + bu an + bn) (1)

pour le produit par un scalaire:

pce (pai, an) (2)

pour le produit scalaire:

< a, ß > ax b1 -f + an bn (3)
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L'espace des observations, ainsi structuré, sera désigné par V,
et son dual par V* ; V et V* sont évidemment de dimension n.

Les n observations (1, 0, 0), (0, 0, 1) forment
évidemment une base de V; elle sera désignée par ^3, et sa duale

par ^3*. La base ^3 n'a, bien entendu, aucun privilège de droit;
son lien particulièrement étroit avec la forme même des
observations lui confère cependant un privilège de fait, qui se traduit
notamment en ceci, que c'est par rapport à ^3 que les relations
(1), (2), (3) explicitent la définition des opérations fondamentales
de V. Sauf mention expresse du contraire, les représentations de

vecteurs de V ou V* seront toujours censées être faites par rapport
à ^3 ou ^3* ; comme la relation (3) implique que ^3 est orthonormale,

les conventions du § 0, 2 seront appliquées.

1, 12. A côté de l'espace des observations, nous considérerons

un autre espace vectoriel, B, de dimension p < n, dit « espace
des paramètres», et son dual, B*, «espace des combinaisons

paramétriques ». Il n'existe pas, en général, de base « naturelle »

qui soit à B ce que SP est à V ; aussi les représentations des

vecteurs de B seront-elles notées par un symbole rappelant la base

utilisée (la dualité des bases de B et B* allant de soi).

1, 13. Le caractère aléatoire des observations a pour
conséquence l'existence d'une catégorie d'épreuve C, munie d'une
mesure probabiliste Pr; en tant qu'éléments aléatoires, les

observations constituent un vecteur aléatoire de V (application
mesurable de C dans V). La mesure Pr est décrite d'une façon
explicite par référence à la base ^3, par le postulat que les

composantes par rapport à ^3 du vecteur aléatoire -r représentant les

observations sont n variables aléatoires normales, indépendantes,

de même variance a2, dont les moyennes sont n éléments

bien déterminés de B* :

E e* * e* Jar {x) Pr (d\) e* 21 b (ç e V. 6 e B)
C

l'application 31 étant de rang r (< p).
On voit donc que l'opérateur « valeur moyenne dans C »

induit une application linéaire de V* dans B* ; si on la désigne

par ©, on a, pour tout l* eV*,
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E (!**) l* E* l* m (4)

d'où
(S: l*-> t* Mb 8)

6 est évidemment de rang r.

1, 14. Le noyau de © (sous-espace V0 de V* formé des

vecteurs I* tels que © 1* soit identiquement nul9) est appelé «espace
des erreurs » 10) ; il est de dimension n — rg © n — r.

Le complément orthogonal de V0 (sous-espace V+ de V*
formé des vecteurs M* pour lesquels m* t 0 pour tout t* eV0)
est appelé « espace des estimatrices ». Une estimatrice est donc,

par définition, une fonctionnelle linéaire des observations,
orthogonale à toute fonctionnelle dont la moyenne est identiquement9)
nulle. On remarquera que, V* étant somme directe de V0 et V+,
à toute fonctionnelle linéaire des observations dont la moyenne
n'est pas identiquement9) nulle correspond une et une seule

fonctionnelle de V+ ayant identiquement9) même moyenne
qu'elle.

Enfin, l'image de © (sous-espace B+ de B* formé des
combinaisons paramétriques b* pour lesquelles il existe un vecteur
l* g V* tel que E l* * b* b) s'appelle « espace des combinaisons

(paramétriques) estimables ». Nous noterons B0 un complément

quelconque de B+.
On sait que la restriction de © à V+ est un isomorphisme de

V+ sur B+; on peut donc énoncer que
toute combinaison estimable est la moyenne dû une et une seule

estimatrice, et réciproquement.

1, 2. Estimateurs privilégiés.

1, 21. Si l'on a, pour I* e V*, E l* * f* b, f* b est évidemment

une combinaison estimable, et l* * en est un estimateur
fidèle (au sens de la théorie statistique de l'estimation); si
1H* e V0, (t* + nx*)-y est aussi un estimateur fidèle de f*b;
pour distinguer, parmi tous ces estimateurs fidèles de f* b,

l'unique estimatrice, celle-ci est dite « estimateur privilégié de
f* b

», et désignée par L* * (donc, par définition, E L* $ f* b et
<Nv+).
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1, 22. Théorème. Parmi tous les estimateurs fidèles de la
combinaison estimable f * b, Vestimateur privilégié a la variance minimum.

Soit en effet m* tel que Em* * f* 6. On a, en posant
l £ — E £,

var m* -r E [m* * — Em* *] [m* -e — Em* -r]

E (m* i) (5* m)* m* (Eïî*)'m (5)

La définition des propriétés distributionnelles de X faisant
intervenir la base ^3, introduisons cette base pour un calcul
explicite :

e5ï* E?p (5p)T

*1 An

3n^2

d'Où

Soit alors

de sorte que

on a

var m* -r (m* m) a2

m* L* + m*

i* m0 m* ly 0 ;

var m* *? (l* fy) a2 + (m* m0) a2 > (1* a2 var l* -r,

l'inégalité étant d'ailleurs stricte si m o* ^0.

1, 3. Exécution des calculs.

1, 31. Pour l'exécution effective des calculs, il importe d'introduire

une base dans chacun des espaces considérés; dans ce
paragraphe, V et V* sont rapportés aux bases ^ et $ß*, B et B* sont
rapportés à des bases déterminées ip et Ê*.

1,32. Pour que t*eV0, il est nécessaire et suffisant que
l* 9t 0; donc

Vespace des erreurs est engendré par ceux des vecteurs deV*
qui sont orthogonaux aux colonnes de la matrice 31 (plus
explicitement: ^PH).
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Il en résulte immédiatement que l'espace des estimatrices
est engendré par les lignes de la matrice 2lT, donc

toute estimatrice est de la forme l* 2IT ».
Comme E 1* 3lT » l* 21T E » I* 21T 2tf>H, cet énoncé, à

son tour, entraîne celui-ci:

toute combinaison estimable est de la forme l* 2lT 21 bH et

réciproquement.

Ainsi la correspondance biunivoque entre estimatrices et
combinaisons estimables est clairement mise en évidence :

a) si fT bH est estimable, il existe nécessairement un vecteur
mj e B*tel que fT mf 2F 21;

b) l'estimateur privilégié de fT bHestalors 2lT » (de sorte
que i; ni/' 2F) ;

c) la variance de cet estimateur vaut [mT (21T 21) lit] a2.

1, 33. Supposons que r — p. 21, 21T, et 21T 21 sont alors des

matrices de rang p,et le système de dimension p en l'inconnue

2lr2(ÜH=2tT» (6)

détermine entièrement cette inconnue. Celle-ci jouit de la
précieuse propriété que voici:

Vestimateur privilégié de fT i>H n'est autre que fT bH.

En effet, soit fT mj2lT 21; on a

I* » mJ 2tT » (m J2tT21) bH fT q.e.d.

1, 34. Si r<p, le système (6) ne détermine pas univoquement
l'inconnue bH. Pourtant, il reste vrai que, quelle que soit la
détermination choisie pourbH, l'estimateur privilégié de la combinaison

estimable fr est fT bH;end'autres termes, les premiers
membres de (6) mettent en évidence r combinaisons estimables
particulières qui constituent une base de B+.

Le système (6) est dit « système normal »; il faut évidemment
se garder d'y vouloir introduire l'inverse de 2lT 21 lorsque <
(cfr. § 3).
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1,4. Moindres carrés.

A partir de la relation

E v 21 iH

le théorème de Gauss-Markov conduit à introduire le vecteur-
estimateur b défini en fonction de l'observation * par la condition

que

S2(b) (ç — %b)T (ç — %b)

*
soit minimum pour b b. Or, comme

d
>

dbi,H H ' h'H '

et

S2 (6) y* f — b£ 21T y — y* 21 bH+ 21T a bH

on a

rf S2 (fe) T^-12 2(21^-2^ y)
l, ri

*
Les conditions d S2 (°) 0 conduisent donc au système

dbi,H

%T a bH siT *

identique au système normal. Il en résulte que, si r les
estimateurs de moindres carrés ne sont autres que les estimateurs
privilégiés. Si r<p,lesdeux méthodes conduisent aux mêmes
combinaisons estimables fondamentales.

2. Distributions et épreuves d'hypothèses..

2, 1. Sommes des carrés.

2,11. Soit U* un sous-espace vectoriel de V*; on appelle
« somme de carrés due à U* », et on note SCU* n), le carré
scalaire de la projection orthogonale de sur le dual U de U*. La
dimension de U* est, par définition, le «nombre de degrés de
liberté » de SC U *.
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