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5 . H. BRENY

nous poserons |

C b, est une matrice carrée, symétrique; elle est appelée «matrice
des covariances de bp» ).

0, 3. Distributions multinormales.

0,31. Rappelons que, si b est un vecteur aléatoire multi-
normal, non dégénéré, de dimension n, si b est la matrice n x 1,
de composantes by, ..., b,, qui le représente par rapport a une
base certaine P, et si I’'on pose

on argS, =n et

Prib, <u;, :=1,..n]=

92| & |- 1/2f ]exp[ l—mp) e (g_mp)]dg.

0, 32. Par ailleurs, si b est le vecteur décrit ci-dessus, et si a
est un vecteur aléatoire lié & b par une transformation linéaire
réguliére et certaine:

a=Ak (rgA = n),

a est aussi un vecteur aléatoire multinormal non dégénéré, de
dimension n, et on a

0,33. Rappelons encore que, si b est comme ci-dessus, les
composantes by, ..., b, de b, sont des variables aléatoires nor-
males; celles-ci sont indépendantes si, et seulement si, Chp
est une matrice diagonale [ou, ce qui revient au méme, si
cov (b, b;) = 0, 1 £ 7)]. La réalisation de cette condition,
pour un b donné, dépend essentiellement du choix de . En fait,
il est toujours possible de rapporter un vecteur multinormal &
une base (certaine) telle que ses composantes soient des aléatoires
indépendantes.
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0, 34. Rappelons enfin que, si ’on nomme « gaussienne » toute
aléatoire normale de moyenne nulle et de variance égale a 1,
on a les énoncés suivants (cfr. [III], chap. 18):

a)

b)

la somme des carrés de p aléatoires gaussiennes indépen-
dantes est une aléatoire y2 & p degrés de liberté (en abrégé,
Xp)3

si x est une aléatoire gaussienne et u une aléatoire y? indé-
pendante de x, le quotient x/4/(u/p) est une aléatoire de
Student & p degrés de liberté (en abrégé, t,);

siu et v sont des aléatoires y2%, respectivement a m et n degrés
de liberté, indépendantes, le quotient (u/m): (v/n) est une
aléatoire F de Snedecor & (m, n) degrés de liberté (en abrégé,
F,..); 1 est souvent plus commode d’utiliser alors le fait
que v/(u + v) est une aléatoire §, , avec p = n/2, ¢ = m/2,
et de se référer aux tables de la distribution B (en général,
en effet, n > m, donc p > ¢, comme dans les tables de
Pearson [IV]); on notera que les grandes valeurs de F corres-

pondent aux petites valeurs de B.

1. MODELES LINEAIRES. ESTIMATEURS.

1, 1. Définitions.

1, 11. Considérons une expérience aléatoire dont le résultat
est un n-uple ordonné de nombres réels, toutes les valeurs a priori
possibles, de — o & 4 oo, étant en effet & prendre en considé-
ration. Structurons I’ensemble des observations possibles en
un espace vectoriel euclidien sur le corps des réels en postulant
que, sl a = (ay, ..., a,) et B = (by, ..., b,) sont deux observa-
tions, on a

pour la somme:

(Z“l' B = (a1+b1) o 2%y an_l_bn) ’ (1)

pour le produit par un scalaire:

pa = (pala e e g pan) ’ (2)

pour le produit scalaire:

<oc,B>=a,1b1—|—...—|—anbn. (3)
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