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68 H. BRENY

D'ordinaire, SCN est décomposée conformément à la
formule (12). Si on utilise la table de la distribution F, il est utile
d'adjoindre à cette table une colonne « carrés moyens », où sont

repris les quotients des SC par les nombres de leurs degrés de

liberté.

NOTES

1) Dans un système complet de notations, ce n-uple serait désigné, par exemple,
Par v

2) Dans un système complet de notations, ce n-uple serait désigné par ou

par £* si la dualité des bases va de soi. Pour des raisons de convenance typographique,

nous écrirons souvent [cq, &n]* au lieu de

3) Ce second usage est permis parce que ^3 et sont des bases orthonormales;
s'il n'en était pas ainsi, il conviendrait d'indiquer la transposition et la dualité par
des signes différents (3 et *).

D On notera qu'alors ne représente pas l'application duale (dite aussi « transposée

») de 91; celle-ci est représentée, ici, par la même matrice 91; mais, dans un cas,
cette matrice pré-multiplie une colonne, dans l'autre elle post-multiplie une ligne.

5) « épreuve » au singulier, car il s'agit d'une abréviation de l'expression « catégorie
des résultats d'épreuve », qui n'a rien à voir avec les « épreuves répétées » dont on a

parfois voulu faire le fondement, sinon de la théorie des probabilités, du moins de ses

applications; cfr. [II].
6) On notera que la moyenne du vecteur aléatoire b est un vecteur défini sans

recours à une base (théorie de l'intégration dans les espaces vectoriels), de sorte que
la notation E b a un sens intrinsèque fil est très heureux que (Eb)p E (ftp)].
L'étude intrinsèque de la covariance serait un peu moins simple.

7) On dit parfois que « des variables aléatoires normales non corrélées sont
indépendantes ». Cet énoncé, pris dans toute sa généralité, est faux; il est vrai pour des

aléatoires (normales, nécessairement) qui sont les composantes d'une représentation
(par rapport à une base certaine) d'un vecteur multinormal.

8) Plus explicitement: l* —* [6 —> l* $Cb].

9) « Identiquement » par rapport à la variabilité de fr dans B.
10) Comme on le sait, le mot « erreur » possède, en statistique, un sens très éloigné

de son sens vulgaire.
11) Il s'agit là d'une variable aléatoire; la notation appropriée à. ce fait est malaisée

à choisir; la convention adoptée ici a, à défaut d'autre mérite, celui d'être simple.

12) Oû « red » signifie « réduction » (seil, de la somme de carrés des erreurs).

H. Breny,
Centre interdisciplinaire d'analyse stochastique

et de recherche opérationnelle
Université de Liège.

(A suivre)



LES MODÈLES LINÉAIRES EN ANALYSE

STATISTIQUE

par H. Breny *}

0. Préliminaires.

0,1. Introduction.

La présente note a pour but d'exposer, d'une manière
rigoureusement déductive, l'état actuel (bien proche, semble-t-il, de
la perfection) de la théorie statistique des modèles linéaires (avec
« erreurs » indépendantes, normales, et homoscédastiques), en
insistant particulièrement, d'une part, sur la définition intrinsèque
des «sommes de carrés» et, d'autre part,.sur l'interprétation
des sommes de carrés attachées à des groupes non orthogonaux.
L'exposé utilise les notions élémentaires courantes d'algèbre
linéaire (cfr. [I]), avec des notations précisées ci-dessous.

0,2. Notations.

0, 21. Dans une question d'algèbre linéaire, il est, en général,
essentiel d'utiliser un système de notations qui fasse nettement
apparaître la distinction entre un vecteur (élément d'un espace
vectoriel) et la représentation de ce vecteur par rapport à une
base déterminée; il est clair, d'autre part, qu'un tel système doit,
pour être complet, multiplier les signes diacritiques (t> est un
vecteur, bp sa représentation par rapport à la base etc.). Or si,
dans un contexte donné, la base à laquelle on se réfère est définie
sans ambiguïté, il n'y a, somme toute, pas d'inconvénient à
omettre ces signes et à utiliser, pour la représentation d'un
vecteur par rapport à cette base, le même symbole que pour le
vecteur lui-même.

') ^ auteur est «Associé » du Fonds national de la Recherche scientifique (Belgique).Le texte des notes et les références bibliographiques se trouvent en fin d'article^
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0, 22. D'une manière précise, soit V un espace vectoriel réel,

euclidien, à n dimensions, £, 9, i, des vecteurs de V, < £, 9 >
le produit scalaire de £ et £ ; soit V* l'espace dual de V (ensemble

des fonctionnelles linéaires définies sur V), £* le dual de £ (c'est-

à-dire l'élément de V* défini par

ç* : e V —> < £, >)

S'il résulte clairement du contexte que V est rapporté à une base

Sß bien déterminée, que V* est rapporté à la base duale et que

ces bases sont orthonormales, la notation £ désignera, dans ce

contexte, non seulement le vecteur £ de V mais aussi le 7i-uple

de ses composantes par rapport à ft-uple écrit d'ailleurs sous

forme de colonne x); en outre, e. désigne le i-ème vecteur de

de sorte que

"1 ~0~ "< ï, ex>
0

p
» •••> n 6 : £

_ô_

De même, et toujours en supposant que le contexte empêche

toute ambiguïté, £* désigne non seulement le dual du vecteur £

mais aussi le rc-uple de ses composantes par rapport à ^P*, rc-uple

écrit d'ailleurs sous forme de ligne2). Cette ambivalence des

notations, combinée à l'usage du signe * pour désigner à la fois

le passage d'un vecteur à son dual et le passage d'une matrice

à sa transposée 3) permet d'appliquer sans peine les règles

usuelles du calcul matriciel, et d'écrire, par exemple

< ç, 9 > ï* 9 9* ç

tant pour les vecteurs que pour leurs représentations.
De même, si 31 est une application linéaire de V dans un espace

vectoriel U, et si les bases auxquelles sont rapportés ces espaces

satisfont aux trois conditions énoncées ci-dessus, la notation 31

sera aussi utilisée pour la matrice qui représente l'application 31

par rapport à ces bases 4).

0, 23. La définition usuelle du produit de deux matrices introduit

une multiplication lignes par colonnes; cette définition est

évidemment nécessaire aux applications les plus courantes des
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notations matricielles, et il n'est nullement question de la modifier.

Toutefois, en ce qui concerne les calculs numériques, cette
disposition n'est guère heureuse; on est ainsi conduit à introduire
une multiplication lignes par lignes, notée X0, et une multiplication

colonnes par colonnes, notée x°, et à utiliser les relations
3133 31 xo 33T 3tT X° 33

0, 24. Considérons une variable aléatoire, c'est-à-dire une
application mesurable d'une catégorie d'épreuve 5) (espace
probabilisé) dans l'ensemble des nombres réels; considérons
d'autre part la valeur attachée par cette application à un
élément déterminé (ou censé tel) de la catégorie d'épreuve (le
plus souvent, une « valeur observée » — ou « réalisation » — de
la variable aléatoire). Il importe de pouvoir distinguer nettement
ces deux êtres mathématiques; c'est pourquoi nous désignerons
la variable aléatoire par un symbole en caractère gias, et une
valeur observée de cette variable par le même symbole en
caractères ordinaires.

Cette convention s'étend immédiatement aux éléments
aléatoires plus généraux, tels que vecteurs ou matrices; ainsi,
x, fr, M représentent respectivement une variable, un vecteur,
et une matrice aléatoires, x, b, 21, représentent des valeurs
observées de ces mêmes éléments aléatoires.

Il sera commode, lorsque nous considérerons une matrice
aléatoire, ü, de noter Eil la matrice dont l'élément (i, /) est la
valeur moyenne de l'élément (i, /) de il:

au e* Jte3, EJl= 2 V (Ea.., e.e*
i i

Cette définition, appliquée à la représentation par une matrice
1 X nou nx 1 d'un vecteur aléatoire, est en parfait accord
avec la définition directe de la valeur moyenne d'un vecteur
aléatoire considéré comme application mesurable d'une catégorie
d'épreuve dans un espace vectoriel, pour autant que la
représentation se fasse par rapport à une base certaine de cet espace,
ce qui, pour nous, sera toujours le cas. Soit donc b un vecteur
aléatoire, J»p la matrice qui le représente par rapport à la base 5p,
de sorte que

E6p (E ;
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nous poserons

Cbp E[bP —Ebp][bp —EbP]T

C bp est une matrice carrée, symétrique; elle est appelée «matrice
des covariances de bP » 6).

0, 3. Distributions multinormales.

0, 31. Rappelons que, si b est un vecteur aléatoire
multinormal, non dégénéré, de dimension n, si bP est la matrice n X 1,
de composantes bx, bn, qui le représente par rapport à une
base certaine et si l'on pose

E bp mp, C bp — ^p j

on a rg Sp n et

Pr [bj < iq, i 1, n] —

U\ un

(2Tt)"n/2 I 6 r1/2 J... j"exp | — i (x — mp)T ©p1 (f — mp)j d%

— 00 — 00

0, 32. Par ailleurs, si b est le vecteur décrit ci-dessus, et si a

est un vecteur aléatoire lié à b par une transformation linéaire
régulière et certaine:

a %b (rg % n)

a est aussi un vecteur aléatoire multinormal non dégénéré, de

dimension ra, et on a

E ap 2tp E bp C ap % p (C bp) -

0, 33. Rappelons encore que, si b est comme ci-dessus, les

composantes bx, bn de bP sont des variables aléatoires
normales; celles-ci sont indépendantes si, et seulement si, CbP
est une matrice diagonale [ou, ce qui revient au même, si

cov (bp b?.) 0, i /7)]. La réalisation de cette condition,
pour un b donné, dépend essentiellement du choix de En fait,
il est toujours possible de rapporter un vecteur multinormal à

une base (certaine) telle que ses composantes soient des aléatoires
indépendantes.
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0, 34. Rappelons enfin que, si l'on nomme « gaussienne » toute
aléatoire normale de moyenne nulle et de variance égale à 1,

on a les énoncés suivants (cfr. [Ill], chap. 18):

a) la somme des carrés de p aléatoires gaussiennes indépen¬
dantes est une aléatoire x2 à. p degrés de liberté (en abrégé,

Xp);

b) si x est une aléatoire gaussienne et u une aléatoire Xp indé¬

pendante de x, le quotient x/-y/(u/p) est une aléatoire de

Student à p degrés de liberté (en abrégé, tp);

c) si u et v sont des aléatoires x2, respectivement à m et n degrés
de liberté, indépendantes, le quotient (u/m) : (v/n) est une
aléatoire F de Snedecor à (m, n) degrés de liberté (en abrégé,
Fmn); il est souvent plus commode d'utiliser alors le fait
que v/(u + v) est une aléatoire ßp?gr avec p nj2, q m/2,
et de se référer aux tables de la distribution ß (en général,
en effet, n > m, donc p > g, comme dans les tables de

Pearson [IV]); on notera que les grandes valeurs de F
correspondent aux petites valeurs de ß.

1. Modèles linéaires. Estimateurs.

1, 1. Définitions.

1, 11. Considérons une expérience aléatoire dont le résultat
est un muple ordonné de nombres réels, toutes les valeurs a priori
possibles, de — oo à -f- oo, étant en effet à prendre en considération.

Structurons l'ensemble des observations possibles en
un espace vectoriel euclidien sur le corps des réels en postulant
que, si a (al7 an) et ß (6X, bn) sont deux observations,

on a

pour la somme:
a + ß (a, + bu an + bn) (1)

pour le produit par un scalaire:

pce (pai, an) (2)

pour le produit scalaire:

< a, ß > ax b1 -f + an bn (3)
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L'espace des observations, ainsi structuré, sera désigné par V,
et son dual par V* ; V et V* sont évidemment de dimension n.

Les n observations (1, 0, 0), (0, 0, 1) forment
évidemment une base de V; elle sera désignée par ^3, et sa duale

par ^3*. La base ^3 n'a, bien entendu, aucun privilège de droit;
son lien particulièrement étroit avec la forme même des
observations lui confère cependant un privilège de fait, qui se traduit
notamment en ceci, que c'est par rapport à ^3 que les relations
(1), (2), (3) explicitent la définition des opérations fondamentales
de V. Sauf mention expresse du contraire, les représentations de

vecteurs de V ou V* seront toujours censées être faites par rapport
à ^3 ou ^3* ; comme la relation (3) implique que ^3 est orthonormale,

les conventions du § 0, 2 seront appliquées.

1, 12. A côté de l'espace des observations, nous considérerons

un autre espace vectoriel, B, de dimension p < n, dit « espace
des paramètres», et son dual, B*, «espace des combinaisons

paramétriques ». Il n'existe pas, en général, de base « naturelle »

qui soit à B ce que SP est à V ; aussi les représentations des

vecteurs de B seront-elles notées par un symbole rappelant la base

utilisée (la dualité des bases de B et B* allant de soi).

1, 13. Le caractère aléatoire des observations a pour
conséquence l'existence d'une catégorie d'épreuve C, munie d'une
mesure probabiliste Pr; en tant qu'éléments aléatoires, les

observations constituent un vecteur aléatoire de V (application
mesurable de C dans V). La mesure Pr est décrite d'une façon
explicite par référence à la base ^3, par le postulat que les

composantes par rapport à ^3 du vecteur aléatoire -r représentant les

observations sont n variables aléatoires normales, indépendantes,

de même variance a2, dont les moyennes sont n éléments

bien déterminés de B* :

E e* * e* Jar {x) Pr (d\) e* 21 b (ç e V. 6 e B)
C

l'application 31 étant de rang r (< p).
On voit donc que l'opérateur « valeur moyenne dans C »

induit une application linéaire de V* dans B* ; si on la désigne

par ©, on a, pour tout l* eV*,
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E (!**) l* E* l* m (4)

d'où
(S: l*-> t* Mb 8)

6 est évidemment de rang r.

1, 14. Le noyau de © (sous-espace V0 de V* formé des

vecteurs I* tels que © 1* soit identiquement nul9) est appelé «espace
des erreurs » 10) ; il est de dimension n — rg © n — r.

Le complément orthogonal de V0 (sous-espace V+ de V*
formé des vecteurs M* pour lesquels m* t 0 pour tout t* eV0)
est appelé « espace des estimatrices ». Une estimatrice est donc,

par définition, une fonctionnelle linéaire des observations,
orthogonale à toute fonctionnelle dont la moyenne est identiquement9)
nulle. On remarquera que, V* étant somme directe de V0 et V+,
à toute fonctionnelle linéaire des observations dont la moyenne
n'est pas identiquement9) nulle correspond une et une seule

fonctionnelle de V+ ayant identiquement9) même moyenne
qu'elle.

Enfin, l'image de © (sous-espace B+ de B* formé des
combinaisons paramétriques b* pour lesquelles il existe un vecteur
l* g V* tel que E l* * b* b) s'appelle « espace des combinaisons

(paramétriques) estimables ». Nous noterons B0 un complément

quelconque de B+.
On sait que la restriction de © à V+ est un isomorphisme de

V+ sur B+; on peut donc énoncer que
toute combinaison estimable est la moyenne dû une et une seule

estimatrice, et réciproquement.

1, 2. Estimateurs privilégiés.

1, 21. Si l'on a, pour I* e V*, E l* * f* b, f* b est évidemment

une combinaison estimable, et l* * en est un estimateur
fidèle (au sens de la théorie statistique de l'estimation); si
1H* e V0, (t* + nx*)-y est aussi un estimateur fidèle de f*b;
pour distinguer, parmi tous ces estimateurs fidèles de f* b,

l'unique estimatrice, celle-ci est dite « estimateur privilégié de
f* b

», et désignée par L* * (donc, par définition, E L* $ f* b et
<Nv+).
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1, 22. Théorème. Parmi tous les estimateurs fidèles de la
combinaison estimable f * b, Vestimateur privilégié a la variance minimum.

Soit en effet m* tel que Em* * f* 6. On a, en posant
l £ — E £,

var m* -r E [m* * — Em* *] [m* -e — Em* -r]

E (m* i) (5* m)* m* (Eïî*)'m (5)

La définition des propriétés distributionnelles de X faisant
intervenir la base ^3, introduisons cette base pour un calcul
explicite :

e5ï* E?p (5p)T

*1 An

3n^2

d'Où

Soit alors

de sorte que

on a

var m* -r (m* m) a2

m* L* + m*

i* m0 m* ly 0 ;

var m* *? (l* fy) a2 + (m* m0) a2 > (1* a2 var l* -r,

l'inégalité étant d'ailleurs stricte si m o* ^0.

1, 3. Exécution des calculs.

1, 31. Pour l'exécution effective des calculs, il importe d'introduire

une base dans chacun des espaces considérés; dans ce
paragraphe, V et V* sont rapportés aux bases ^ et $ß*, B et B* sont
rapportés à des bases déterminées ip et Ê*.

1,32. Pour que t*eV0, il est nécessaire et suffisant que
l* 9t 0; donc

Vespace des erreurs est engendré par ceux des vecteurs deV*
qui sont orthogonaux aux colonnes de la matrice 31 (plus
explicitement: ^PH).
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Il en résulte immédiatement que l'espace des estimatrices
est engendré par les lignes de la matrice 2lT, donc

toute estimatrice est de la forme l* 2IT ».
Comme E 1* 3lT » l* 21T E » I* 21T 2tf>H, cet énoncé, à

son tour, entraîne celui-ci:

toute combinaison estimable est de la forme l* 2lT 21 bH et

réciproquement.

Ainsi la correspondance biunivoque entre estimatrices et
combinaisons estimables est clairement mise en évidence :

a) si fT bH est estimable, il existe nécessairement un vecteur
mj e B*tel que fT mf 2F 21;

b) l'estimateur privilégié de fT bHestalors 2lT » (de sorte
que i; ni/' 2F) ;

c) la variance de cet estimateur vaut [mT (21T 21) lit] a2.

1, 33. Supposons que r — p. 21, 21T, et 21T 21 sont alors des

matrices de rang p,et le système de dimension p en l'inconnue

2lr2(ÜH=2tT» (6)

détermine entièrement cette inconnue. Celle-ci jouit de la
précieuse propriété que voici:

Vestimateur privilégié de fT i>H n'est autre que fT bH.

En effet, soit fT mj2lT 21; on a

I* » mJ 2tT » (m J2tT21) bH fT q.e.d.

1, 34. Si r<p, le système (6) ne détermine pas univoquement
l'inconnue bH. Pourtant, il reste vrai que, quelle que soit la
détermination choisie pourbH, l'estimateur privilégié de la combinaison

estimable fr est fT bH;end'autres termes, les premiers
membres de (6) mettent en évidence r combinaisons estimables
particulières qui constituent une base de B+.

Le système (6) est dit « système normal »; il faut évidemment
se garder d'y vouloir introduire l'inverse de 2lT 21 lorsque <
(cfr. § 3).
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1,4. Moindres carrés.

A partir de la relation

E v 21 iH

le théorème de Gauss-Markov conduit à introduire le vecteur-
estimateur b défini en fonction de l'observation * par la condition

que

S2(b) (ç — %b)T (ç — %b)

*
soit minimum pour b b. Or, comme

d
>

dbi,H H ' h'H '

et

S2 (6) y* f — b£ 21T y — y* 21 bH+ 21T a bH

on a

rf S2 (fe) T^-12 2(21^-2^ y)
l, ri

*
Les conditions d S2 (°) 0 conduisent donc au système

dbi,H

%T a bH siT *

identique au système normal. Il en résulte que, si r les
estimateurs de moindres carrés ne sont autres que les estimateurs
privilégiés. Si r<p,lesdeux méthodes conduisent aux mêmes
combinaisons estimables fondamentales.

2. Distributions et épreuves d'hypothèses..

2, 1. Sommes des carrés.

2,11. Soit U* un sous-espace vectoriel de V*; on appelle
« somme de carrés due à U* », et on note SCU* n), le carré
scalaire de la projection orthogonale de sur le dual U de U*. La
dimension de U* est, par définition, le «nombre de degrés de
liberté » de SC U *.
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Si les vecteurs t>*, v*(t> s) engendrent U*, on écrit,
d'ordinaire, {tif, ...,»*} pour U*; on écrira donc aussi
SC{t>*, ...; o* j. pour SCU*.

2, 12. Pour calculer effectivement SC U*, on introduit une base
quelconque de U*, soit u*, u*. La projection orthogonale
de v sur U est alors déffnie par les relations

*u 2 ' < » — > u* (v — *J 0 l, s)

d'où l'on tire
S

2 Vli* "ft "ft v Ik 1, s) (7)
i= 1

système d équations linéaires qui détermine entièrement les X?-

(en effet, les u. formant une base de U, la matrice || u* uk II est
de rang s). On a alors

scu* — (!>,«*)

2 2 *ui* %
i i

moyennant (7), ce qui entraîne

SCU*-2W*- (8,
1

Dans le cas où s 1 (U* engendré par l'unique vecteur u*)?
on a '

sc{ u* } (u* V)2/ ("* «) • (9)

2,^13. Soient U* et U* deux sous-espaces complémentaires de
U mutuellement orthogonaux, Ux et U2 leurs duals; ceux-ci
sont, dans U, deux sous-espaces complémentaires mutuellement
orthogonaux, et on a

*U *Ml + < *U2 »

ce qui entraîne

se u se u* + se u* • (io)
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ce résultat s'étend sans peine au cas de plus de deux compo
santés, et on peut énoncer que

si U est la somme (directe) des espaces mutuellement
orthogonaux U*, U*, on a

t

SCU* 2 SCU* •

1

Il en résulte un mode de calcul des sommes de carrés qui est
assez souvent plus commode que l'emploi des formules (7) et
(8). On part d'une base u*, u* de U* ; si elle n'est pas
orthogonale, on l'orthogonalise (par exemple, par le procédé pas à pas
de Schmidt), ce qui fournit la base orthogonale n>*, vo* ; alors
on a

SCU* 2sc{**}
1

et donc, en vertu de (9),
s

scu* 2 K* *)2/K* »il • (îi)
1

2, 14. On écrit, en particulier,
SCT (somme de carrés totale) pour SCV*,
SCN (somme de carrés normale) pour SC V+,
SCE (somme de carrés des erreurs) pour SC V0.

On notera que, V+ et V0 étant par définition complémentaires

et orthogonaux dans V*, on a toujours
SCT SCN + SCE

D'autre part, e*, e* forment une base orthogonale de U*, et
e* % xt; donc

SCT 2 xf
1

2, 2. Distributions. Epreuves d'hypothèses.

2,21. Soit U* un sous-espace de V*, de dimension 5, n>*,
ras* une base orthogonale de U*. Chaque n>.* * est une variable
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aléatoire normale, de moyenne tt)* 216 et de variance (n>* ro.) a2;
en outre, si i =£ k,

GOV (\V* t) (tt* \vk) a2 0

de sorte que les aléatoires vo* $ sont les composantes non corré-
lées d'un vecteur multinormal, elles sont donc indépendantes.

Dès lors, si l'on suppose que 6 est tel que E rof * 0
(i 1, s) (c'est-à-dire sous l'hypothèse îô* 216

ro*2I6 0), les aléatoires (vo* ^)ja sont gaussiennes et
indépendantes, de sorte que

s

(I/o») scu* 2 [(».*»)/«]'
1

est une aléatoire y\.
Si, par contre, on ne suppose pas E to * 0, (1/ct2) SCU*

est une aléatoire y
2 décentrée à s degrés de liberté, elle est donc,

en loi, plus grande qu'une aléatoire

Pr[(SC U*)/a2 > a] > Pr [y] >

2, 22. Prenons pour U* l'espace des erreurs, V0; alors —
et les conditions E m* * 0 sont identiquement 9) satisfaites.
On a donc, indépendamment de toute hypothèse quant à 6,

Pr [SC E > a a2] Pr > a] >

d'où, notamment,
Pr [SCE/a < a2 < SCE/6] Pr [a < <

ce qui permet d'estimer <r.

2, 23. Supposons que f* b mj 2F1 bHsoit une combinaison
estimable et que t* v mj2F » soit son estimateur privilégié.
Alors:

a) sous l'hypothèse f* b a, [(!,* r — a)/a ]/(t^)] est une aléatoire

gaussienne;

b) SCE/(n — r) g2 est une aléatoire y^_r ;

c) SCE et l fvsont indépendantes (car (*, estimatrice, est ortho¬
gonale à tous les vecteurs de V0)i

Donc, sous l'hypothèse susdite,
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I* tf — a y7SCE _
(t* * — a) V(n — r)

°Y(n-r) ~
|/[(t; g scb]

est une aléatoire tn_r, ce qui permet d'éprouver l'hypothèse en

question ou d'estimer f* b.

2, 24. Soient f* b, f * b des combinaisons estimables, linéairement

indépendantes, et t* * (i 1, s) leurs estimateurs

privilégiés. Sous l'hypothèse f* b f* b 0, les moyennes
des If. * sont toutes nulles, et donc (1/cr2) I* } est une

aléatoire yj; cela entraîne que

n
SC{1* }/s

y SCE/(n—

est une aléatoire Fs>n_r. Si l'hypothèse en question est fausse,

Q est, en loi, plus grande que Fs ; on éprouvera donc cette

hypothèse en comparant la valeur observée de Q à Fs n_r, les

grandes valeurs de Q étant critiques.

Remarque. — Il est manifeste que, si a est un nombre certain

quelconque, on a SC{ aw*} SC{ w*} On peut donc négliger

un facteur constant dans le calcul d'une somme de carrés. Il n'en
est pas de même dans le calcul de l'expression du § 2, 33.

2, 3. Sous-espaces disjoints non orthogonaux.

2, 31. Soient U* et Ur% deux sous-espaces complémentaires de

V+, de dimensions qet r — q:V+U * © U*_s; on ne suppose

pas que U* et Ur% sont mutuellement orthogonaux. On cherche

à interpréter SC Ug et SC U*ä- Pour cela, on considère, outre le

modèle initial, le modèle où

(l* 6 ur%) implique El* » 0 (11)

tandis que (1* e U*) implique El* * 0 pour une valeur au

moins de f>.

[On pourrait décrire ce modèle ainsi: soit l*, I* une base

de Ug '*+1, —, [* une base de U*_9, et 2B telle que, dans le modèle

initial,
fiH ® [l* -r I* *JT> E» it 2B"1 28 6 »SST1» ;
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le nouveau modèle est
0

0 0

Soient SCNq et SCEn_g les sommes de carrés normale et des

erreurs pour le nouveau modèle, SCNr et SCEn_r les sommes
homologues du modèle initial. On a

SCUr% SCEn_g-SCEn_r

En effet, en notant le complément orthogonal de on a

SCT - SC + SC Ur% + SCEn_r

SCNg + SCEn_g ;

or, de quoi se compose l'espace des erreurs du nouveau modèle,
Vo, n-q

Ü contient évidemment V0, puis un sous-espace de V*,
de dimensions r — q, disjoint de V0; par ailleurs, Ur% appartient
à V0 n-q en vertu de (11), et est de dimension r — q; donc

V0, n-q Vo © U *_q ;

en outre, V0 et ur% c V+ sont mutuellement orthogonaux,
donc

SCE«-a s «C VQn_q
SC V„ + SC Ur%

scEn_r + se u*
a

d'où la thèse; on voit èn outre que SCNa SC Ua SC U*.

2, 32. Il est commode d'introduire la notation suivante 12) :

SCT - SCE„_a red [U*]
SCEn_a - SCEn_r red [Ur% | U*](# red [Ur%])

On a alors
SCT red[U*] + red[U*J U*] + SCE„_r

avec

red[u*s | u*] scu^
red [U* ] se u; #scu*

Bien entendu, les relations obtenues en permutant les rôles
de U* et Ur% sont aussi valables; ces rôles ne sont évidemment

L'Enseignement mathém., t. VI, fasc. 1. 5
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pas symétriques, à moins que U* et Ur*a ne soient mutuellement
orthogonaux; dans ce dernier cas,

red [U*] red [U* | U.'J SC U *

red [Ur%] red [U* g
| U* ] SC Ur%

2, 33. Ces considérations s'étendent aisément au cas où V+ est

décomposé en plus de deux sous-espaces, suivant le schéma

J V+ U* © U* ® ® U*

| dim U* ri rx + + pfe; p(

On doit alors considérer t modèles successifs (et l'ordre dans

lequel ces modèles font intervenir les U* est essentiel); le &eme

de ces modèles est caractérisé par
t T

implique E 1* * 0 (k 1,2, t — 1)l e © U *
k+l

le teme étant le modèle initial. On note SCEn_Pjfc la somme de

carrés des erreurs attachée au keme modèle, et on montre sans

peine que

Sc(©U^ SCEn_p&-SCEn_r;
Wi /

on pose alors
red [Uf] SCT - SCEn_pi

red [Ujf+1 | Uf, U*k] =» SCE„_pj - SCE„_ps+i

et on a

SCN - red [U*] + S [U*+I | U*, U*] (12)
1

avec
red[U(* | Uf U*j] SCU*

cette dernière relation n'étant pas généralement vraie pour les

autres U* (exception évidente: le cas où les U* sont mutuellement

orthogonaux).

2, 4. Ecarts au modèle.

Tout ce qui précède est valide si, réellement, E* 21b. S'il
n'en est pas nécessairement ainsi, ce qui arrive lorsque le modèle



MODÈLES LINÉAIRES EN ANALYSE STATISTIQUE 67

envisagé n'est qu'un cas particulier d'un modèle plus général
auquel on désire accorder aussi quelque considération, on peut
modifier un peu les énoncés des hypothèses à éprouver, en disant,
par exemple: « siEt* 31b et si 1* 1' 1* t» 0, alors ».

Sous cette nouvelle hypothèse, SC{ If b, h* b} est encore
distribuée comme a2 Mais SCE n'est plus distribuée comme
a2 yn_r, car, si Et* — 31b n'est pas identiquement nulle, les
vecteurs de V0 n'ont plus une moyenne nécessairement nulle. On
est alors obligé de prendre comme espace des erreurs un sous-
espace V* de V„, a savoir: celui des vecteurs de V* dont la
moyenne est identiquement nulle dans le modèle le plus général
que l'on considère. On peut dire que ce sous-espace existe dès

que les observations comportent au moins une paire d'observations

ayant identiquement même moyenne (dans le modèle le
plus général). Nous noterons SCint (« somme de carrés interne »)

l'expression SCV*, et SCEM [«somme de carrés des écarts au
modèle» (sous-entendu: au modèle restreint)] l'expression
SCE — SCint (en désignant par V* le complément orthogonal de
V* dans V0, SCEM n'est autre que SCV*). Dans les considérations

du § 2, 2, SCint peut remplacer SCE, n — 5 remplaçant
alors n— r.Lescomposantes de SCint sont évidemment
orthogonales à celles de SCN.

Remarque. — Les composantes, additives de SCT (ou, plus
exactement, leurs valeurs observées) sont le plus souvent reprises
en un tableau que l'on nomme « table d'analyse de la variance ».
Cette désignation n'est guère heureuse, on devrait la réserver
aux études de « composantes de variance » (cfr. [V]) ; elle paraît
néanmoins avoir reçu la sanction de l'usage, et il semble assez
vain de vouloir la récuser. Une telle table se présente ainsi :

Somme de carrés Formules Nombre de degrés

SCT

SCN

SCE

| SCint *
1 SCEM SCE — SCint

2*î
SC{^X}
SCT —

de liberté

n

r
n — r
u
n — r — u „
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