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68 H. BRENY

D’ordinaire, SCN est décomposée conformément & la for-
mule (12). Si on utilise la table de la distribution F, il est utile
d’adjoindre & cette table une colonne « carrés moyens », ou sont
repris les quotients des SC par les nombres de leurs degrés de
liberté.

NOTES

1) Dans un systéme complet de notations, ce n-uple serait désigné, par exemple,
par g .
b

2) Dans un systéme complet de notations, ce n-uple serait designé par g; %2 OU

par gl’: si 1a dualité des bases va de soi. Pour des raisons de convenance typographique,
a,
. * . :
nous écrirons souvent [ay, ..., @,]  au lieu de

An,

3) Ce second usage est permis parce que 2]3 et EB* sont des bases orthonormales;
§’il n’en était pas ainsi, il conviendrait d’indiquer la transposition et la dualite par

des signes différents (T et *).

4) On notera qu’alors QIT ne représente pas I’application duale (dite aussi «trans-
posée ») de 9(; celle-ci est représentée, ici, par la méme matrice Y ; mais, dans un cas,
cette matrice pré-multiplie une colonne, dans I’autre elle post-multiplie une ligne.

5) «épreuve » au singulier, car il s’agit d’une abréviation de I’expression « catégorie
des résultats d’épreuve », qui n’a rien 4 voir avec les « épreuves répétées » dont on a
parfois voulu faire le fondement, sinon de la théorie des probabilités, du moins de ses
applications; cfr. [II].

6) On notera que la moyenne du vecteur aleatoire b est un vecteur défini sans
recours & une base (théorie de I’intégration dans les espaces vectoriels), de sorte que
la notation EMb a un sens intrinséque [il est tres heureux que (Eb), = E (b)].
1’étude intrinséque de la covariance serait un peu moins simple.

7) On dit parfois que «des variables aléatoires normales non corrélées sont indé-
pendantes ». Cet énoncé, pris dans toute sa généralité, est faux; il est vrai pour des
aléatoires (normales, nécessairement) qui sont les composantes d’une représentation
(par rapport & une base certaine) d’un vecteur multinormal.

8) Plus explicitement: [* —> [6 —> 1™ A b].
9) «Identiquement » par rapport & la variabilité de b dans B.

10) Comme on le sait, le mot «erreur » posséde, en statistique, un sens trés éloigné
de son sens vulgaire.

11) 11 s’agit 12 d’une variable aléatoire; la notation appropriée a, ce fait est malaisée
4 choisir; 1a convention adoptée ici a, & défaut d’autre mérite, celui d’étre simple.

12) O0 «red » signifie «réduction » (scil. de la somme de carrés des erreurs).

H. Breny,
Centre interdisciplinaire d’analyse stochastique
et de recherche opérationnelle
Université de Liége.

(A suiore)



LES MODELES LINEAIRES EN ANALYSE
STATISTIQUE

par H. BrRENY 1)

0. PRELIMINAIRES.

0,1. Introduction.

La présente note a pour but d’exposer, d’'une maniére rigou-
reusement déductive, 'état actuel (bien proche, semble-t-il, de
la perfection) de la théorie statistique des modéles linéaires (avec
«erreurs » indépendantes, normales, et homoscédastiques), en
insistant particulierement, d’une part, surla définition intrinséque
des « sommes de carrés» et, d’autre part,.sur I'interprétation
des sommes de carrés attachées & des groupes non orthogonaux.
L’exposé utilise les notions élémentaires courantes d’algébre
linéaire (cfr. [I]), avec des notations précisées ci-dessous.

0,2. Notations.

0,21. Dans une question d’algébre linéaire, il est, en général,

essentiel d’utiliser un systéme de notations qui fasse nettement
apparaitre la distinction entre un vecteur (élément d'un espace
vectoriel) et la représentation de ce vecteur par rapport & une
hase déterminée; il est clair, d’autre part, qu’un tel systéme doit,
pour étre complet, multiplier les signes diacritiques (0 est un
vecteur, b, sa représentation par rapport a la base B, etc.). Or si,
dans un contexte donné, la base & laquelle on se référe est définie
sans ambiguité, il n’y a, somme toute, pas d’inconvénient a
omettre ces signes et & utiliser, pour la représentation d’un

vecteur par rapport & ceite base, le méme symbole que pour le
vecteur lui-méme.

1) L’auteur est « Associé » du Fonds national de la, Recherche scientifique (Belgique).
Le texte des notes et les références bibliographiques se trouvent en fin d’article.
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0,22. D’une maniére précise, soit V un espace vectoriel réel,
euclidien, & n dimensions, &, 9, 3, ... des vecteurs de V, <&, >
le produit scalaire de t et ; soit V* I'espace dual de V (ensemble
des fonctionnelles linéaires définies sur V), £* le dual de t (c’est-
a-dire I’élément de V* défini par

t*: peV -><rp>) .

Sl résulte clairement du contexte queV est rapporté & une base
B bien déterminde, que V* est rapporté a la base duale $*, et que
ces bases sont orthonormales, la notation L désignera, dans ce
contexte, non seulement le vecteur t de V mais aussi le n-uple
de ses composantes par rapport & B, n-uple écrit d’ailleurs sous
forme de colonne 1); en outre, ¢, désigne le i-éme vecteur de B,
de sorte que |

1 0 <7, e >
0 . .

el — s wia g e,n == O , T = =
0 1 <1, e,>

De méme, et toujours en supposant que le contexte empéche
toute ambiguité, £* désigne non seulement le dual du vecteur &
mais aussi le n-uple de ses composantes par rapport a B*, n-uple
éerit d’ailleurs sous forme de ligne 2). Cette ambivalence des
notations, combinée 4 'usage du signe * pour désigner & la fois
le passage d’un vecteur & son dual et le passage d’une matrice
a sa transposée 3) permet d’appliquer sans peine les regles
usuelles du calcul matriciel, et d’écrire, par exemple

<ry>=zFy=7yp*y

tant pour les vecteurs que pour leurs représentatiohs.

De méme, si 2 est une application linéaire de V dans un espace
vectoriel U, et si les bases auxquelles sont rapportés ces espaces
satisfont aux trois conditions énoncées ci-dessus, la notation 2
sera aussi utilisée pour la matrice qui représente I'application A
par rapport a ces bases 4).

0,23. La définition usuelle du produit de deux matrices intro- -
duit une multiplication lignes par colonnes; cette définition est
évidemment nécessaire aux applications les plus courantes des
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notations matricielles, et il n’est nullement question de la modi-
fier. Toutefols, en ce qui concerne les calculs numériques, cette
disposition n’est guére heureuse; on est ainsi conduit & introduire
une multiplication lignes par lignes, notée X,, et une multipli-
cation colonnes par colonnes, notée X9, et & utiliser les relations

AR = A X BT = AT X0 B .

0,24. Considérons une variable aléatoire, clest-a-dire une-
application mesurable d’une catégorie d’épreuve 5) (espace
probabilisé) dans l’ensemble des nombres réels; considérons
d’autre part la valeur attachée par cette application & un
~ 6lément déterminé (ou censé tel) de la catégorie d’épreuve (le
plus souvent, une « valeur observée » — ou « réalisation » — de
la variable aléatoire). Il importe de pouvoir distinguer nettement
ces deux étres mathématiques; c’est pourquoi nous désignerons
la variable aléatoire par un symbole en caractére gias, et une
valeur observée de cette variable par le méme symbole en
caracteres ordinaires. |

Cette convention s’étend immédiatement aux éléments
aléatoires plus généraux, tels que vecteurs ou matrices: ainsi,
x, Ir, # représentent respectivement une variable, un vecteur,
et une matrice aléatoires, z, 0, A représentent des valeurs
observées de ces mémes éléments aléatoires.

Il sera commode, lorsque nous considérerons une matrice
aléatoire, H, de noter EH la matrice dont I’6lément (i, j) est la
valeur moyenne de I’élément (i, j) de H:

ajj=¢ Rep, ER = 3\ N (Ea; )¢ ef .
1 J
Cette définition, appliquée & la représentation par une matrice
I X nounx1 dun vecteur aléatoire, est en parfait accord
avec la définition directe de la valeur moyenne d’un vecteur
aléatoire considéré comme application mesurable d’une catégorie
d’épreuve dans un espace vectoriel, pour autant que la repré-
sentation se fasse par rapport & une base certaine de cet espace,
ce qui, pour nous, sera toujours le ‘cas. Soit donc k un vecteur
aléatoire, b la matrice qui le représente par rapport a la base

de sorte que -
Ebp, = (EB)P 2
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nous poserons |

C b, est une matrice carrée, symétrique; elle est appelée «matrice
des covariances de bp» ).

0, 3. Distributions multinormales.

0,31. Rappelons que, si b est un vecteur aléatoire multi-
normal, non dégénéré, de dimension n, si b est la matrice n x 1,
de composantes by, ..., b,, qui le représente par rapport a une
base certaine P, et si I’'on pose

on argS, =n et

Prib, <u;, :=1,..n]=

92| & |- 1/2f ]exp[ l—mp) e (g_mp)]dg.

0, 32. Par ailleurs, si b est le vecteur décrit ci-dessus, et si a
est un vecteur aléatoire lié & b par une transformation linéaire
réguliére et certaine:

a=Ak (rgA = n),

a est aussi un vecteur aléatoire multinormal non dégénéré, de
dimension n, et on a

0,33. Rappelons encore que, si b est comme ci-dessus, les
composantes by, ..., b, de b, sont des variables aléatoires nor-
males; celles-ci sont indépendantes si, et seulement si, Chp
est une matrice diagonale [ou, ce qui revient au méme, si
cov (b, b;) = 0, 1 £ 7)]. La réalisation de cette condition,
pour un b donné, dépend essentiellement du choix de . En fait,
il est toujours possible de rapporter un vecteur multinormal &
une base (certaine) telle que ses composantes soient des aléatoires
indépendantes.
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0, 34. Rappelons enfin que, si ’on nomme « gaussienne » toute
aléatoire normale de moyenne nulle et de variance égale a 1,
on a les énoncés suivants (cfr. [III], chap. 18):

a)

b)

la somme des carrés de p aléatoires gaussiennes indépen-
dantes est une aléatoire y2 & p degrés de liberté (en abrégé,
Xp)3

si x est une aléatoire gaussienne et u une aléatoire y? indé-
pendante de x, le quotient x/4/(u/p) est une aléatoire de
Student & p degrés de liberté (en abrégé, t,);

siu et v sont des aléatoires y2%, respectivement a m et n degrés
de liberté, indépendantes, le quotient (u/m): (v/n) est une
aléatoire F de Snedecor & (m, n) degrés de liberté (en abrégé,
F,..); 1 est souvent plus commode d’utiliser alors le fait
que v/(u + v) est une aléatoire §, , avec p = n/2, ¢ = m/2,
et de se référer aux tables de la distribution B (en général,
en effet, n > m, donc p > ¢, comme dans les tables de
Pearson [IV]); on notera que les grandes valeurs de F corres-

pondent aux petites valeurs de B.

1. MODELES LINEAIRES. ESTIMATEURS.

1, 1. Définitions.

1, 11. Considérons une expérience aléatoire dont le résultat
est un n-uple ordonné de nombres réels, toutes les valeurs a priori
possibles, de — o & 4 oo, étant en effet & prendre en considé-
ration. Structurons I’ensemble des observations possibles en
un espace vectoriel euclidien sur le corps des réels en postulant
que, sl a = (ay, ..., a,) et B = (by, ..., b,) sont deux observa-
tions, on a

pour la somme:

(Z“l' B = (a1+b1) o 2%y an_l_bn) ’ (1)

pour le produit par un scalaire:

pa = (pala e e g pan) ’ (2)

pour le produit scalaire:

<oc,B>=a,1b1—|—...—|—anbn. (3)
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L’espace des observations, ainsi structuré, sera désigné par V,
et son dual par V*; V et V* sont évidemment de dimension n.

Les n observations (1, 0, ..., 0), ..., (0, ..., 0, 1) forment évi-
demment une base de V; elle sera désignée par B, et sa-duale
par P*. La base ‘P n’a, bien entendu, aucun privilége de droit;
son lien particuliérement étroit avec la forme méme des obser-
vations lui confére cependant un privilege de fait, qui se traduit
notamment en ceci, que ¢’est par rapport & B que les relations
(1), (2), (3) explicitent la définition des opérations fondamentales
de V. Sauf mention expresse du contraire, les représentations de
vecteurs de V ouV* seront toujours censées étre faites par rapport
a P ou B*; comme la relation (3) implique que B est orthonor-
male, les conventions du § 0, 2 seront appliquées.

1,12. A coté de l'espace des observations, nous considérerons
un autre espace vectoriel, B, de dimension p < n, dit « espace
des paramétres », et son dual, B*, «espace des combinaisons
paramétriques ». Il n’existe pas, en général, de base «naturelle »
qui soit & B ce que P est & V; aussi les représentations des vec-
teurs de B seront-elles notées par un symbole rappelant la base
utilisée (la dualité des bases de B et B* allant de soi).

1,13. Le caractére aléatoire des observations a pour consé-
quence l’existence d’une catégorie d’épreuve C, munie d’une
mesure probabiliste Pr; en tant qu’éléments aléatoires, les
observations constituent un vecteur aléatoire de V (application
mesurable de C dans V). La mesure Pr est décrite d’une fagon
explicite par référence a la base B, par le postulat que les com-
posantes par rapport &  du vecteur aléatoire # représentant les
observations sont n variables aléatoires normalés, indépen-
dantes, de méme variance %, dont les moyennes sont n éléments
bien déterminés de B*:

Eel v =) [t() Prd) =¢ %6 (reV,6eB),
. |

I'application A étant de rang r (< p).

On voit donc que l'opérateur « valeur moyenne dans C»
induit une application linéaire de V* dans B*; si on la désigne
par € on a, pour tout * e V*,
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E((*%) = (* Ex = [* Ab , (4)

d’ou
G: [k (*AD . 9

€ est évidemment de rang r.

1,14. Le noyau de € (sous-espace V, de V* formé des vec-
teurs [* tels que € [* soit identiquement nul °) est appelé «espace
des erreurs » 10); il est de dimension n —rg € = n —r.

Le complément orthogonal de V, (sous-espace V, de V*
formé des vecteurs m* pour lesquels m* [ = 0 pour tout [* e V)
‘est appelé « espace des estimatrices ». Une estimatrice est done,
par définition, une fonctionnelle linéaire des observations, ortho-
gonale & toute fonctionnelle dont la moyenne est identiquement ?)
nulle. On remarquera que, V* étant somme directe de V, et V_,
a toute fonctionnelle linéaire des observations dont la moyenne
n’est pas identiquement ) nulle correspond une et une seule
fonctionnelle de V., ayant identiquement ®) méme moyenne
qu’elle.

Enfin, Pimage de € (sous-espace B, de B* formé des combi-
naisons paramétriques b* pour lesquelles il existe un vecteur
[* eV* tel que EI* ¥ = b* b) s’appelle « espace des combinai-
sons (paramétriques) estimables ». N ous noterons B, un complé-
ment quelconque de B..

On sait que la restriction de € a V, est un isomorphisme de
V. sur B,; on peut donc énoncer que -

toute combinaison estimable est la moyenne d’une et une seule

estimatrice, et réciproquement.

1, 2. Estimateurs privilégiés.

1,21. SiPon a, pour *eV* El* ¢ = f* 0 {*b est évidem-
ment une combinaison estimable, et [* ¥ en est un estimateur
fidéle (au sens de la théorie statistique de I'estimation); si
m* eV, (I* 4+ m*)# est aussi un estimateur fidele de f*b;
pour distinguer, parmi tous ces estimateurs fideles de f* b,
unique estimatrice, celle-ci est dite « estimateur privilégié de

T 0, et désignée par [* ¢ (done, par définition, E [* ¢ = f* b et
(Fev,).
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1, 22. - Théoréme. Parmi tous les estimateurs fidéles de la combi-
naison estimable {* b, I'estimateur privilégié a la variance minimum.
Soit en effet m* tel que Em* ¢ — f* b, On a, en posant
t=1t—Erz,
varm* ¢ = E[m*¥ — Em* ] [m* ¥ — Em* #]
=Em*#) ®*m)* = m* (E¥¥*)m. (5)

La définition des propriétés distributionnelles de x faisant
intervenir la base P, introduisons cette base pour un calcul
explicite:

~2 ~ o~ ~ o~
X XX X; X,
Ex¥* = Exp(¥p) = E| :
X, % . X
pd Sn 62
d’ou
var m* ¢ = (m* m) o?
Soit alors
* (% *
m* = 1 +mo,

de sorte que

on a
(*

et (m mg) o > (1] 1) o? = var I ¥,

var m* g = (

I'inégalité étant d’ailleurs stricte si mJ" = 0.

1, 3. Exécution des calculs.

1, 31. Pour 'exécution effective des calculs, il importé d’intro-
duire une base dans chacun des espaces considérés; dans ce para-
graphe, V et V* sont rapportés aux bases L et '* B et B* sont
rapportés & des bases déterminées O et H*.

1,32. Pour que !* eV, il est nécessaire et suffisant que
[*A = 0; donc
Pespace des erreurs est engendré par ceux des vecteurs de V'*
qui sont orthogonaux aux colonnes de la mairice A (plus expli-
citement : Up p). ;
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Il en résulte immédiatement que I’espace des estimatrices
est engendré par les lignes de la matrice A7, donec

toute estimatrice est de la forme 1* AT ¢

Comme E[* AT ¢ = [* ATE ¢ = [* AT AD, cet énoncé, a
son tour, entraine celui-ci:

toute combinaison estimable est de la forme [* AT A, et réci-
proquement. |

Ainsi la correspondance biunivoque entre estimatrices et
combinaisons estimables est clairement mise en évidence:

a) si {7 by est estimable, il existe nécessairement un vecteur
mS e B* tel que {7 = mI AT A;

b) Destimateur privilégié de {7 by est alors mI AT ¢ (de sorte
que I* = mf ATy,

¢) la variance de cet estimateur vaut [m? (AT A) m] ¢2,

1,33. Supposons que r = p. A, AT et AT A sont alors des
matrices de rang p, et le systéme de dimension p en I'inconnue b,

wT wby = uTw (6)

détermine entiérement cette inconnue. Celle-ci jouit de la pré-
cleuse propriété que voici:

Vestimateur privilégié¢ de f* b, west autre que 7 b,
En effet, soit " = mI AT A; on a

Fe=mlale = mloaT by =iThy,, qed

1,34 Sir < p, le systéme (6) ne détermine pas univoquement,
inconnue k. Pourtant, il reste vrai que, quelle que soit la déter-
mination choisie pour b, I'estimateur privilégié de la combinai-
son estimable f by est {7 by; en d’autres termes, les premiers
membres de (6) mettent en évidence r combmalsons estimables
particuliéres qui constituent une base de B,.

Le systeme (6) est dit « systéme normal »; il faut évidemment

se garder d’y vouloir introduire I'inverse de QIT A lorsque r < p
(cfr. § 3).
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1,4. Moindres carrés.

A partir de la relation
E¥ = Ab, ,

le théoréme de Gauss-Markov conduit & introduire le vecteur-

estimateur & défini en fonction de I'observation # par la condi-
tion que
S2(6) = (r —Ab)" (x — Ab)

) *
soit minimum pour b = b, Or, comme
d d

—_— = ¢. T _ T
dbiHBH i, H > dbiHbH—ei,H ’
et '
S2(6) = ¥ v — o ATy — ¥ wby 4+ oL uT Ao,
on a
ds®(6) .. 7. T
b - = 2(A" Aby — AT y) .

. *
Les conditions 25 (V) = 0 conduisent donc au systéme
db;
1, H

wlwby, — aTs |

identique au systéme normal. Il en résulte que, si r = p, les
estimateurs de moindres carrés ne sont autres que les estimateurs
privilégiés. Si r << p, les deux méthodes conduisent aux mémes
combinaisons estimables fondamentales.

2. DISTRIBUTIONS ET EPREUVES D HYPOTHESES.

2,1. Sommes des carrés.

2,11. Soit U™ un sous-espace vectoriel de V*; on appelle
«somme de carrés due & U », et on note SCU* 1), le carré sca-
laire de la projection orthogonale de .# sur le dual U de U*. La
dimension de U™ est, par définition, le «nombre de degrés de
liberté » de SCU™.
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Si les vecteurs v, ... 9 (¢ > s) engendrent U*, on écrit,

d’ordinaire, {vf, ..., v} pour U*; on écrira donc aussi
* * *
SC{vy, ..., v} pour SCU*.

2,12.  Pour calculer effectivement SC U*, on introduit une base
quelconque de U™, soit uj, ..., u*, La projection orthogonale #,
~de ¥ sur U est alors définie par les relations

fu:_ZXini , < %

d’ou 'on tire

U > = u}: #—wx,)=0 (k=1,..,5s)

i, = e (k=1,...,5) , (7)

e

Il
P

1

systéme d’équations linéaires qui détermine entiérement les A
(en effet, les u; formant une base de U, la matrice H wr u, H est
de rang s). On a alors |

S S
SCU* = *1: ¥, = <E 7\1'111'*> <2 Xh%)
1

1
' S S
= Z 2 )‘ixkui* Uy
1 1

moyennant (7), ce qui entraine

S

SCU™ = SV uk e . | (8)
‘ 1

Dans le cas ots = 1 (U* engendré par Punique vecteur u*),
on a

SC{ u* } = (™ #)2/ (u* u) . (9)

2,13. Soient U} et U} deux sous-espaces complémentaires de
U*, mutuellement orthogonaux, U, et U, leurs duals; ceux-ci
sont, dans U, deux sous-espaces complémentaires mutuellement
orthogonaux, et on a
* * *
Yy ¥, =¥, %, + ¥ %

Uz “uUg

\

ce qui entraine

SCU™ = scuU; + scuy . | (10)




62 H. BRENY

ce résultat s’étend sans peine au cas de plus de deux compo
santes, et on peut énoncer que

si U* est la somme (directe) des espaces mutuellement ortho-
gonaux Uf, ..., U}, on a

t
SCU™ = >iscu .
1

I1 en résulte un mode de calcul des sommes de carrés qui est
assez souvent plus commode que 'emploi des formules (7) et
(8). On part d’une base uf, ..., u¥ de U*; si elle n’est pas ortho-
gonale, on 'orthogonalise (par exemple, par le procédé pas a pas
de Schmidt), ce qui fournit la base orthogonale 1}, ..., X alors

on a
-8

SCU* = >} sc{w’}

1
et donc, en vertu de (9),

8
SCU™ = D' (w #)2/ (w* w,) . (11)
1
2,14. On écrit, en particulier,

SCT (somme de carrés totale) pour SCV*,
SCN (somme de carrés normale) pour SCV_,
SCE (somme de carrés des erreurs) pour SC V,.

On notera que, V, et V, étant par définition complémen-
taires et orthogonaux dans V*, on a toujours

SCT = SCN + SCE .

D’autre part, ¥, ..., ¢* forment une base orthogonale de U*, et
e x = x;; donc

n
SCT = > x7 .
1
2, 2. Distributions. Epreuves d’hypothéses.

2,21. Soit U* un sous-espace de V*, de dimension s, w*, ...,
W) une base orthogonale de U*. Chaque m* # est une variable
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’ i : * .
aléatoire normale, de moyenne w* A b et de variance (W} W) o2;
en outre, si ¢ # k,

cov (mi* ¥, m}: %) = (wi* w,) o2 =0,

de sorte que les aléatoires W # sont les composantes non corré-
lées d’un vecteur multinormal, elles sont donc indépendantes.
Dés lors, si I'on suppose que 0 est tel que Ew*# = 0
(t =1, .., 8) (cest-a-dire sous DIhypothése mw} AL = ..
wrAD = 0), les aléatoires (W* #)/c sont gaussiennes et indé-

pendantes, de sorte que
S

(1/6%) SCU* = D\ [(n} #)/c]?
1

est une aléatoire 2. |

Si, par contre, on ne suppose pas Ew x = 0, (1/02) SCU*
est une aléatoire y* décentrée & s degrés de liberté, elle est done, .
en loi, plus grande qu’une aléatoire v 2

Pr(SCU*)/o* > a] > Pr [y2 > d] .

2,22, Prenons pour U* I'espace des erreurs, V,; alors s — n — r
et les conditions Ew ¢ = 0 sont identiquement ?) satisfaites.
On a done, indépendamment de toute hypothése quant a b,
Pr[SCE > ac®] = Pr[y2 > 4],
d’ou, notamment, |
Pr{SCB/a < o* < SCE/b] = Pr[a < 42 <] ,

ce qui permet d’estimer o.

2,23. Supposons que f* b = mT AT A0, soit une combinaison

estimable et que [¥ ¥ = mT AT ¥ soit son estimateur privilégié.
Alors: - “

@) sous ’hypothése f* b — g, [([f* ¥ — a)lo V([f* [f)] est une aléa-
toire gaussienne; ‘

b) SCE/(n —r) ? est une aléatoire Y

¢) SCE et [ # sont indépendantes (car [, estimatrice, est ortho-
gonale & tous les vecteurs de V).

Done, sous I'hypothese susdite,
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*y—a 4/5CE (Fr—aVin—1

oy VI Y ) se]

est une aléatoire t, ., ce qui permet d’éprouver I’hypothese en

question ou d’estimer {* b.

2,24, Soient f} b, ..., iX b des combinaisons estimables, linéaire-
ment indépendantes, et [;: ¥ (1 =1, ..., s) leurs estimateurs pri-
vilégiés. Sous P’hypothése ff b = ... = fX b = 0, les moyennes
des I # sont toutes nulles, et donc (1/c%) SC{(%, ..., [/} est une
aléatoire v ?; cela entraine que
* *
o SC{1f,....1; }/s
= TSCE/(n —7)

est une aléatoire F, , .. Si I'hypothese en question est fausse,
Q est, en loi, plus grande que F , . ; on éprouvera donc cette
hypothése en comparant la valeur observée de Q & F ., les
grandes valeurs de Q étant critiques.

Remarque. — Il est manifeste que, si « est un nombre certain
quelconque, on a SC{ aw*} = SC{w*}. On peut donc négliger
un facteur constant dans le calcul d’une somme de carrés. 11 n’en
est pas de méme dans le calcul de Pexpression A, du § 2, 33.

2, 3. Sous-espaces disjoints non orthogonaux.

2,31. Soient U; et U, deux sous-espaces complémentaires de
V., de dimensions ¢ et r — ¢: V, = Uy @ U;,; on ne suppose
pas que U et UX, sont mutuellement orthogonaux. On cherche
4 interpréter SC U et SC U . Pour cela, on considére, outre le
modéle initial, le modéle ou '

(* eU},) implique E*#=0, - (1)

tandis que ((* € U)) implique E(* # % 0 pour une valeur au
moins de b.

[On pourrait décrire ce modeéle ainsi: soit [f, ..., [¥ une base
de Uy, IX,, ..., [¥ une base de U, et W telle que, dans le modéle
initial,

by = [Fe., )7, Er=u8"'86=AV"n;
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|

Soient SCN, et SCE,_, les sommes de carrés normale et des
erreurs pour le nouveau modele, SCN, et SCE, . les sommes
homologues du modéle initial. On a

le nouveau modéle est
R 0
0 0

Exr =AW 13w, 3=

SCU), = SCE, , — SCE, _,. .

*

~gOn a

En effet, en notant U, le complément orthogonal de
SCT = ScU, + SCU}, + SCE,_,
= SCN, + SCE,__ ;
or, de quol se compose ’espace des erreurs du nouveau modéle,
Vo, nq ? il contient évidemment V,, puis un sous-espace de V*,

de dimensions r — ¢, disjoint de V; par ailleurs, U, appartient
a Vg ,,en vertu de (11), et est de dimension r — ¢; done

Vo g = Vo @ U,

en outre, V, et UX, C V, sont mutuellement orthogonaux,

donc
n_

' — *
SCE,_, = SCV, , , = SCV, + SCU}
= SCE,_,. + SCUX

r—q ?

d’ott la thése; on voit en outre que’SCN, = SCU, # SCU;.

2,32. Il est commode d’introduire la notation suivante 12):

SCT — SCE,,_, = red [U}],
SCE,, , — SCE,,_, = red [UY | Ur](+ red [U},]).
On a alors
SCT = red [U;] + red [U:_q l U(;] + SCE, _,

avec
red [UY, | Uy] = scuy,
red [Uy ] = SCU, = scuy .

Bien entendu, les relations obtenues en permutant les réles
de Uy et UX, sont aussi valables; ces roles ne sont évidemment

L’Enseignement mathém., t. VI, fasc. 1. 5
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pas symétriques, & moins que U} et U, ne soient mutuellement
orthogonaux; dans ce dernier cas,

red [U(;:I e red[U; \ U:_q] = SC U; ;
red [UY ] =red [US | Uy ] =SCUY, .

2,33. Ces considérations s’étendent aisément au cas ou V, est
décomposé en plus de deux sous-espaces, suivant le schéma

V,=Uf B U & ..H U,
dimUi*:ri, rnt .+ rp=pp e =r.

On doit alors considérer ¢ modéles successifs (et 'ordre dans
lequel ces modéles font intervenir les U)X est essentiel); le ™
de ces modeles est caractérisé par

t ,
. [I*e D u;} implique E!*# =0 (k=1,2,..,t—1),
k+1

le 1*™ étant le modéle initial. On note SCE,_, la somme de
carrés des erreurs attachée au £°® modeéle, et on montre sans
peine que

’

*
sc(@ u; > = SCE,_, — SCE,_, ;

k+1

on pose alors

red [Uf | = SCT — SCE,__,
red [Uf,, | Uf, ..., UJ] = SCE, , — SCE

b4

N—er+1
et on a

SCN = red [Uf] +

-1
>, red (Ur Ul LUy ], a2

avec
red [U: I Ur ) een U;J = SCU: J

cette derniere relation n’étant pas généralement vraie pour les
autres U} (exception évidente: le cas ou les U} sont mutuelle-
ment orthogonaux).

2, 4. Ecarts au modéle.

Tout ce qui précéde est valide si, réellement, E¥ = A0, il
n’en est pas nécessairement ainsi, ce qui arrive lorsque le modele
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envisagé n’est qu'un cas particulier d’'un modéle plus général
auquel on désire accorder aussi quelque considération, on peut
modifier un peu les énoncés des hypothéses & éprouver, en disant,
par exemple: «si Ex = Abet si [} 0 = ... = [*b = 0, alors ...».
Sous cette nouvelle hypothese SC{ ¥ B, ..., [* b} est encore dis-
tribuée comme czy Mais SCE nest plus distribuée comme
6% car, si E¥ — D n’est pas identiquement nulle, les vec-
teurs de V; n’ont plus une moyenne nécessairement nulle. On
est alors obligé de prendre comme espace des erreurs un sous-
espace V, de Vi, a savoir: celui des vecteurs de V* dont la
moyenne est identiquement nulle dans le modéle le plus général
que I'on considére. On peut dire que ce sous-espace existe dés
que les observations comportent au moins une paire d’observa-
tions ayant identiquement méme moyenne (dans le modeéle le
plus général). Nous noterons SCint (« somme de carrés interne »)
I'expression SCV,, et SCEM [« somme de carrés des écarts au
modéle » (sous-entendu: au modéle restreint)] I'expression
SCE — SCint (en désignant par V7 le complement orthogonal de
V, dans V,;, SCEM n’est autre que SC V). Dans les considéra-
tions du § 2, 2, SCint peut remplacer SCE, n — s remplacant
alors n — r. Les composantes de SCint sont évidemment ortho-
gonales & celles de SCN.

Remarque. — Les composantes additives de SCT (ou, plus
exactement, leurs valeurs observées) sont le plus souvent reprises
en un tableau que I'on nomme « table d’analyse de la variance ».
Cette désignation n’est guére heureuse, on devrait la réserver
aux études de « composantes de variance » (cfr. [V]); elle parait
néanmoins avoir recu la sanction de I'usage, et il semble assez
vain de vouloir la récuser. Une telle table se présente ainsi:

Somme de carrés Formules Nombre de degrés
- de liberté
SCT > a? | .on
SCN SC{AT z} r
SCE SCT — SCN n—r
[ SCint SCV u

| SCEM SCE — SCint n—r—u.
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