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ON THE ZEROS OF BERNOULLI POLYNOMIALS
OF EVEN ORDER

by A. M. OsTrROWSKI 1)

(Recu le 12 avril 1960)

§ 1. It is well known that the Bernoulli polynomial By, ()
has exactly one zero r, between 0 and % NorLuND [2], p. 131,

proves that r, lies between % and% and states that r, tends

1
to a8 v>w.
In what follows we shall prove that r, tends monotonically

to —. More precisely we have

Oz.
1 1
Z_rl Z"‘—rv
. >6>———>8  (1=238.). (1)
T T vt

This follows from the relation
f 1 1 1 4 17 1 4
de ( ) _ T S B S

ev = 2TC % _rv o 2._2\;_E + 62\) 6 82\' ,102\) ,122\'
13 p
+142V,0<p<1(v=1,2, ) (2)

1 1 b4 3 4 4

a1 ev = ;‘ZV _ Zi—\‘) 62V 82\1 102\) 122\'

13p 1 '
+142v’Z6'§p<1 (\‘)='1,2,...). (3)

1) The preparation of this paper was sponsored by the U.S. Army under Contract
No. DA-11-022-ORD-2059, Mathematics Research Center, U.S. Army. I am indebted
for discussions to Mr. H. Fishman, M.S., and Dr. J. C. P. Miller, to the latter parti-

cularly also for checking many computations.
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In 1940 D. H. LeamEr [1] proved that

1
6\,<§5 (4)
and
1 1 b 1

However, obviously the monotony of the r, cannot be derived
from an asymptotic 1elation like (5), nor can a relation of this
type be used for calculating the r,. 1)

In the last part of this paper I discuss the asymptotic deve-
lopment of sin 6, into a Dirichlet series with even denominators
and integer coefficients. Some numerical computations made
by Dr. Miller suggested that these coefficients may present a
certain interest from the arithmetical point of view. We prove
indeed some congruence properties of these coefficients mod 4
and mod 8. Further, certain sequences of these coefficients can
be explicitly determined using Riemann’s {-function and the
Dirichlet’s L-function corresponding to the modulus 4.

§ 2. We will write from now on y. for 2¢ and use with Lehmer
the expression

v-1 (2m)" < 2nTmx
(—1) 1TBM(5C).=;EO*S7;—- (6)

We have from (2)
0
v = % 27’ )

where we omit for simplicity sake the index ¢ of 6. Introducing
(7) into (6) we obtain, putting the result = 0,

. - © €08 266 20)6 - sin (20 + 1) 0 ‘
sin 6 + (— 1) ) = 0. (8)
w; ; (2w + 1)*

1) Our first proof of the monotony of the r, was obtained in using the Newton-
Raphson approximation. It may be mentioned that for the numerical computation
of the values r, Dr. Miller found it particularly convenient to derive from the
formula (8) in sec. 2 an approximate quadratic equation for sin 6, with an error term

0 (2472Y).
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Put
1

c=snb, §=—, (9)
Qu

then we obtain, isolating in our equation the term sin 6 = o,

sin 36

6 <<dcos20 +
3U~

— 3% cos 40 + Z —1‘2 . (10)

§ 3. We will have to use repeatedly the inequality

Slnmx<mS1nx(m>1,O<mx<—§7E>, (11)

which follows easily directly for m = 2 and for m = 3 from
the fact that the expression

(sin mx — m sin z)" = m (cos mx — cos z)

18 negative under the conditions indicated in (11). It follows
then, since
1

'
6 = 2-n:<—/*——~—rv> <T2 = €<065
sin 30 <3¢, cos46=1-—2sin220>1— 8¢2.
Introducing this into (10) and using cos 20 = 1 — 262 we obtain

3o |
‘c<3(1—20'2)+‘éj 82 (1 — 802) Z-'_“' (12)

We will assume from now on that we have
v=5, w=10. (13)

This assumption will be dropped only in the section 12. —
Then we have

N G O o e

=46(1.01734306—-1 ——————— <0.42.
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We introduce this into (12), bring the second term to the left and
divide by 3. Thus we obtain

(1—%>0/8<1—62(2-—88)——0.583<'1——o.588.

On the other hand, we have from ¢ = 5 on

L2 0. 08
3(“) =0.02 <15

3 _ 0083 1_i>1_0.088_1—0.588

S T—sz’ T T—sz~ 1—382 °

and 1t follows
82

. |
$<1—32, s <8—. (14)

As the arc sin series,

2V—‘1\ x?,\H"l
(2v) 2v+1 ’

(o o]
arcsin x = x+——i— Z

has monotonically decreasing positive coefficients, we have easily
for 0 < 2 < 1 and convenient p with o< p<1:

3px® 1

arcsmx~x+€—l— W0 T — 2 (15)
Forx=o=sin6<8=2—1—2vit follows
c
<8(1~—)[1+—-]<8(1 (1+_).
0<3, (16)

which proves Lehmef’s inequality 6 < 3 for v =5.

§ 4. We rewrite now (8) in the form

(— 1)@H cos 2 0

(2 )" (— 1)o+t sin (20 + 1) 0 +8. (17
1 (O]

1 . , (20)—%—1)“'

_{._

D

(— 7)ot COS 2@0 i 1)@+t sin (20 +1)6 (175)
Ppunt’s (20 + 1)*
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We shall express the remainder terms in multiples of
m = 147" . (18)
For any integer n > 14 we have by (13) |
n*m = (14/n)“‘ = (14/n)®0
and therefore

1
—1—<027m —1—<0082m L<0.032m,—<0.005m.(19)
16“‘ 18% " 20 244

In our estimates we shall use the inequality

sin z « >sin (x +1) «

P T i 2T e dta<s. (0
To prove this inequality, observe that it is sufficient to prove

x+1>sin(x—}—1)oc
z sin zo -

b

that is,
(x4 1)sinzoe—zsin (z+1) o> 0.

But the expression to the left is = 0 for « = 0 and its derivative
with respect to «,

( + 1) z (cos za — cos (x + 1) «)

18 > 0 under the conditions of (20).

§ 5. We use now in the first sum of (17b) the formula
oS 200 = 1 — 2 sin2 0
and decompose S as follows

w="7

®+1

i" qu sin2 ¢ 6
=17 (2)™

n - __pe+isin 2o 41)6
ogﬂ " et .

-+




32 A. M. OSTROWSKI
Here we have by (18) and (19):

m+1

27 m — % > m (1 — (14/16)19) > (1 — 0.27) m

In what follows, we will use the letter p, with or without
indices, to denote positive numbers < 1, which need not be
otherwise specified and need not be the same.

We can therefore write

a)-l-i

i = (1—0.27p)m . (22)
w="1

Further, we have, using (11) and (14),

0 : s 1000 o
sin? & 6 1 1 1 1
(— et —— | < + = <
; (20)* gdut coZ=7 ot gul co=;001 Sl
f 1 f de _ 432 1 2000 _
23 u.—1 xu.—? 2u-—1 1600 ¥ 7 gw g 9.2000*

100 7\10 50 \5
<E< 100 (24> m < 100 (5()0) m< 0.01m.

And, again, by (11) and (19)

& | 2 5 1
; (2w +1 <§—4_‘~’Z "'—1<

o0
2 ¢ dx _ 25 1_3_5__1_<01m

o < ¢ — =
g5 gt T g g 5% 8 g0

=6 (20 + 1

w

It follows now from (21) and (22)

S=(1—0.38p)m . (23)

§ 6. We consider the second sum in (17a). We have by
(14) and (20)
sin 79_sin96 sin 110 sin 70 , 76

7w g T e P T TP w7
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Further, using sin 360 = 3¢ — 463, sin 50 = 56 — 2003 + 1605,

sin36 sin560/3 5 _ . [1 o* |
u w(@‘@“f—“[@‘ﬁ+54*
— 2P 9.02pm
24H
Therefore

5 .
e Sin (20 4 1) 6 3 5
D e T

§ 7. Consider now the first sum in (17¢). We have

Y oqen 8200 (144 11 1)
= (2 00)* 2% 4% 6% g g0t qov

g o2 sin226+sin236 sin246+sin256 sin2 60 .
QU Az 6 g 104 12 |

where by (20) and (19)

sin 26 8p’c  8p”

S; = 2p P iy = 2.2pm .
We have, therefore,
6 1)oH cos 2«)0 g q el |
Z = Y BV oseta.0mm. (25)
w=1 w=1

We have now by (23), (24) and (25) from (17a)

So(—aett 35 |
; o) (§*§>6“2302+(1-0~4p+9.2p')m. (26)

Here the last term can be written as

m(0.6+9.2p+0.4(1—p)) = (0.6 +9.6p") m

L’Enseignement, mathém., t. VI, fasc. 1.
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.§ 8. We put now, using (14),

6=38—m, 0<n<35. (27)

Then, (26) becomes

6 o+ '
—1 3 5 3 5 _
3 — =§ ( +——————<——-—) — 28(82— 28 2

Here we bring all terms containing % to the right:

i}i ‘m——+m+2s3 (0.6+9.6p)m=
— n(1——%+§;>+482n—28n2.
We put now
~gh-p: s

Then we obtain
(1——x),n—28n2=:—u——R+E,' (29)
where we have put
R— > __* = (30)

E=—1(0.64+9.6p)m. (31)
§ 9. The expression z defined by (28) is positive as follows

‘from
1 1 3\9 3\? 3\u-1 3\u~1
‘_‘2‘+E>(z>+(€)%(z> +(3) ’

In the same way, we see that R is posifive:

3\19 3\10 1\10
4>1+1+1>3(Z> +4<3-) +(§) :
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We have, therefore,

3 1 1 1
O<z<u<To01’ 17—=217 7000 °
R < —4—, zR = 12p _ 12.0.082p'm = 0.99p" m ,
64 18% .
xR

Further, by (19),
9 _10 —-
8242 = Py <9.27° (18)™ = 0.01pm

S$2 2 :
1__06x:0.02pm. (33)

The exprassioh to the right in (29) is, as R > 0, < 82, and we
have from (29) by (27) |

(«~¥Lil<2SEY+1<1mé < 1.04 82
1001) 32 S AL ' ’

10
7% < 1.18%, 28n2<5m5:23G%) pm=0.1(1—p’)m.

Using this in (29), we obtain now

1—2)n=8—R+E,, (34)

E,=—(0.5+9.7p)m . - (35)

§ 10. From (35), we have now easily

B < 11m,
E,z
laﬁix < 0.05m . (36)

Dividing now (34) by 1 — x we have

32 z2 Rz B,z
— 32+ R — 82z = s 1 '37)
M T ‘ “ -1—$+E1+1—-x’ (37)

1 —m
and from (32), (33), (35) and (36), we have for the right-hand

cxpression in (37): |

(0.02p, — py + 0.05p; — 0.5 —9.7p,— 0.05p,) = — (0.4 + 10..9) pm.
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On the other hand, we have from (28) by (19)

3 4 5 7\10 7\10
2 — | —_— —_ - -
AT (16“ " 20“) <4(8) i 5-(10> )pm'

3
Rr=——1.bpm-.
/12Ua p .

Introducing this into (37), we finally obtain

____4_ _3_ A 4 _-0.4—}—12.3])'
K A 6 - g + 104 o 124 14% (38)
By (27), we have then
s—sinb— L L & 3 & & I3p g
A 6" g 10% 124 144
. .
w0 Sp<1(v=5)
From (38), it now follows easily that
n <. (20)

§ 11. We shall apply now (15) to x = o. We have obviously
by (14) and (19)

o _ ¥ _ 1 14 _0.001 27
1—o® "1 —8 " qe%1—10% 2+ = e+~ 10°

?

_3_ od < 3m
40 1 — o? 105

Further, from (27), (40) and (19)

3¥—08 =3 82n—33+ PP <3 <3 <0.9m,

and, therefore, from (15) and (39), as 96—9< 1_?)’
| 4
S T U S I WO SO SO L B

gu 4% Y 6 g«  q0%  12%  14%

§ 12. The formulae (39) and (41) have been only derived for
0 >5. However, the direct comparison of the expressions




ZEROS OF BERNOULLI POLYNOMIALS 37

given by these formulae with the values of r, for ¢ = 1,2,3,4
given with ten decimals by Lehmer ') shows that these formulae
also hold for¢v = 1, 2, 3, 4. This proves the formulae (2) and (3).

§ 13. Lehmer’s formula (5) and our formulae (2), (3) suggest
that 0, as well as sin 0, possess asymptotic development by infi-
nite Dirichlet series. In this connection, apparently, the deve-
lopment of sin 6 gives a more natural and more interesting
result. We will now prove that there exists a Dirichlet series

o0 qn
ngi (2 n)u- (42)

with integer g, such that we have for ¢ — o0 and every positive
integer N

def . N In -
Ny = sin B, — ) = O(2N + 2)™) (v—>) ...  (43)

§ 14. It 1s obvious from (3) that (43) is true for N < 6 for
a certain Dirichlet polynomial. Assume that we have for a
certain value N the relation (43) for a certain Dirichlet poly-
nomial with N terms. Introducing (8) into (43), we have then

2N ) 3 N
. — Z ()t <cos w6v+sm (200 + 1) 6v> o Z q, n
-y (20)* (20+1)% =1 20
+ 0 [t ) | (44)
\eN o) !

Here both cos 200 and sin (20 + 1) 6 are polynomials in
o, = 8in 0, with integer coefficients. Putting these polynomials
in (44), we obtain then, denoting by M the greatest of their
degrees,

M 2N A(m) 1
cos 2w0, = a, ¢ = L —{—O(*) ,
’ x;O Y n; (2n)¥ (4N + 2)

1) These values have been checked independently of Lehmer by Dr. J. C. P. Miller.
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M 2N B;")) 1
sin (200 4+ 1) 0, = b, oF = +o(__—>,
’ xgl ngi (2n)* (4N + 2)*

cos 200,  sin (20 + 1) 6, N (@ 1
+ + o(———_) ,
(20)" (20 4 1)* = (2n)* (&N + 2)*

with integers A{”, B{*) and C{*), and therefore

Y oA ) (h5)
T = n=1(2n)“+ Q4N‘+-2V* v

with integer D. But, now it follows from (43) that

D;=Dy=..=D_ =0,

and we have, therefore, putting

¢, =D, (N <n<2N), (46)

again the relation (43) with 2N ‘instead of N.

Repeating this procedure indefinitely, the ex1stence of the
Dirichlet series (42) is proved.

Introducing the asymptotic development (42) into the
Maclaurin series for arcsin z, we obtain an asymptotic Dirichlet
development of 0, itself. However, in this development, as we
see from (2), the coefficients are no longer integers.

§ 15. In what follows, we give with the kind permission of
Dr. J. C. P. Miller the first fifty coefficients of the series (42)

which he has computed.

n 1 2 3 & 5 6 7 8 9 10
an 1 -1 5 -3 -4 -4 8 11 5 4
n 11 12 13 14 15 16 17 18 19 20
g, 12 —48 —12 -8 —16 25 —16 —4& 20 0
n 21 22 23 2 25 26 27 28 29 . 30
a4y 32 —12 2% 248 -4 12 5 —-208 -—28 16
n 31 32 33 3. 35 36 37 38 39 40
0 32 —41 48 16 —32 —400 —36 —20 —48 88
n 1 42 43 4% 45 56 47 48 49 50

qn -40 —32 44 544 —16 —-24 48 732 8 4
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Dr. Miller drew my attention to the properties of the coeffi-
cients of the series (42) which appear to be suggested by the
above values. The odd coefficients correspond exactly to the
denominators which are powers of 2, while all other nume-
rators are divisible by 4.

We will now prove that these properties are indeed true in
the general case. Beyond that, we will prove for the numerators
¢, which correspond to n = 2%, that we have

dn = (— 1)* = 2k + 1 (mod 4) (n = 2%) . (47)

“We will prove even a more precise formula

= (—1"12(k —1) —1 = 4k®+ 2k + 1 (mod 8) (n = 2%) . (48)

Further, we will determine directly all ¢, corresponding to n
non divisible by 8 by forming generating Dirichlet series for
these numerators. We will find in particular for an odd natural

9oy = — ¢, (v =1 (mod 2)) . (49)

§ 16. Expressing sin (20 4 1) 6 and cos 206 as polynomials
In ¢ = sin 6, we have, putting 20 + 1 = u, 20 = g,

sin u® = us - R, (o) , (50)
62
cos g6 —1 :—g2?+Tg(c) , (51)

where our R, (s) and T, (s) are polynomials in ¢ with integer
coefficients, which are all multiples of 4.
Indeed, this is true for o = 1. Assuming our assertions true

for a certain w, use the following relations and congruences
-mod 4:

cos (200 + 2) 6 — cos 2wH = — 2 sin 0 sin (20 +1)0=—26 20 + 1) &
= — 202 (mod 4) , '

os 20 + 2)0 =1 — 2020 — 262 =1 — 2 (0 + 1)26% (mod 4)

?

which proves our assertion (51) for w + 1, and

sin (20 + 3) 6 — sin (20 4+ 1) 0 = 26 cos 2 (o + 1) 0
=26(1 —2 (0 + 1)26%) = 26 (mod 4&)

)
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which proves our assertion (50) for o —+ 1.
Further, it follows from the identity with a natural &:

R
sin 2% 6 = 2% sin 0 JJ cos 2% 6 ,

v=1

that, developing cos 2**! 6 in powers of ¢ = sin 6, we have

3
cos 281 9 = 1 — 9%+l 42 1] cos? kv =1 (mod 2%¢*1) . (519

v=1

§ 17. Introducing the relations (50) and (51) into (8) and
solving with respect to ¢ = sin 6, we obtain

) w+1 o * )
s ) (—1)®?
21 m;1 20 + ° 2;1 (20)*
S, e (Teele)  Regy (o)
mgi( o ( (20)* i (20 + 1)*/) (52)

We introduce now the two Dirichlet series well known in
the analytical theory of numbers of which the first is not
very different from Riemann’s ¢-function while the second is
Dirichlet’s L-function corresponding to the modulus 4:

Ul = (1 ——l> )= Y= (53)

28

where the summation index u here and in what follows runs
through all positive odd integers subject to the restrictions
explicitly indicated, and

u—1

2
L(s):Z(———“T—zn ! p—1° (54&)

U u p>2 - —

where p rlins through all odd primes. Then we have for the
first three right hand terms in (52), putting:

1.

i (55)

X ==
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oo o+ 0 S, P
2 (_(22)u — oUW — Y #U W =52 U, (50
o=1 =

) (21)_4—11‘)1‘1 = Lp—1)—1, (57)
o=1

i ( 1)(’)”0) _1 o (— 1)o)+1 B

cogi (20))!1- -k cogi (20))“—2

— e U(p—2) — e U — 2 = T C U —2) . (59)

Introducing these expressions into (52) and bringing the term
“with ¢ to the left, we have

9.2 82
L(w—1)o x 2z x z

:_ 1—=2x

. Ty, (6)  Rouuig (c)>
—1 4 . 59
1 ( ) ( (2)* 2w + 1)* (59)

s

I

(O]

§ 18. We can feplace ¢ in (59) by the series (42) and

consider now (59) modulo 4, taking a Dirichlet series Z —as =0
n=1 n*

(mod 4) if all a, are = 0 (mod 4). Then the last sum in (59)
is = 0, by what has been proved in Section 16 about (50) and
(51). Further, we have mod 4:

: u—i
L(@—1)=Z( EZ%:
Ulp—2) :ZHEU(MEL(“_i) (mod &) .

It follows, therefore, from (59)

L(p—1)6= (‘”1___252 _ 2x62) L(x—1) (mod &) .

If we multiply this congruence on both sides by

p—1
L p—1) = H(l—(———_” : p>,
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we obtain
c=x—2*—2 —2t— ... — 2262 (mod %) . (60)
: 1
Since we have z* = R we see that for each n = 2*u

with and odd u > 1 the contributions to the g, come only from
the last right hand term in (60) and are therefore evcen. Putting
this into the right hand expression in (60), we see even that
q, = 0 (mod 4).

Consider now an n of the form n = 2%, k> 1. The corres-
ponding term in (42) is then ¢, z*"!. Then the right hand series
in (60) contributes — 1 to ¢,,. As to the contribution of — 2xc?
(mod 4), it is equal to — 2 times the coefficient of z* in 62, taken
(mod 2). Therefore, these ¢, are, in any case, odd and we have

But this contributes (mod 2) to 2%, 0 if &k is odd and 1 if k& is even.
The coefficient of z**! in (60) is therefore = — 1 — 2 = (— 1)*
(mod 4), if k£ is even, and = (— 1) = (— 1)* (mod 4) if k is odd.
This proves (47).

To prove (48), we extract from the series (42) the part with
the denominators which are powers of 2 and denote it by

[o.e]
By ,
*
° N w=1 2}(“ ‘ (6/1)

Then we have, obviously, g, = (— 1)**' (mod 4). We keep
now in (59) on both sides only the terms which have in the
denominators pure powers of 2 and obtain

e o]
g T 220 gz — 8% L, A
Ay g g ;1 R

since T, (o) identically vanishes. Taking this modulo 8, we
have by (519)

o* =g — 22— 2% — ... — 2z6*% (mod 8) . (62)

We put here for ¢* the expression (61) and cdmpare on both
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sides the coefﬁcieht of 27* (mod 8). Then we have, since we can
use on the right (47), for £ > 1:

—2 1
gk:—1——2 Z gxng2E——'1——-2 Z (_1)x1+x2 = [

wi+re=RkR—1 wi+ue=k—1

=—1—2(k—2) (—1* ,

and this proves (48), as ¢, = &y, -

§ 19. We are going now to write (59) in such a way as to
make possible an easy recursive computation of the coefficients
of (42). To that purpose we decompose the asymptotic expan-
sion of o, given by (42), and which we shall also denote by o,
in the following way, using (55),

Q 1 g2¥—1u
G = ’
o]
c = Z G, *° (63)
x=1
dox—1
o= Y e=1,2,.) (64)
- u

§ 2Q. On the other hand, we have in (50) and (51):

62x+1

Ru (0) = K;1 (—1)* m Sx (u) ,
S, (u) = u(u?—12) (u® — 32) ... (u®— (2x — 1)?) , (65)

®

v e} 0_2
T, (o) =x;2 (—1) T C, (g,
Cole) = g (e — 2% ... (¢ — (2% —2)7) , (66)

and, in particular, T, (6) = 0. We can now write if the sum-

mation index g is running through all even integers greater
than 2, using (66),

© . TQ@ (G) B o) y
mgz =1 (2 )™ B ;;2 =1

— G
Y (—1)e ——@ . (67)

sz
¥) |
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We introduce now the displacement operator H acting on
and diminishing p by one unit,

H™ f (u) = f (w —m) .
Then we can write for the inner sum in (67)

Y e gy y 200

W W
g9>2 g g>2 8

where C, (H) is the polynomial operator obtained from the
expression C, (g) in (66) replacing there the powers of g by the
corresponding powers of H.  Here the sum to the right is by (56)

1 222 — x

) T Uy + e,
w=2

m).u 1—=2x

and the inner sum in (67) becomes

2 ___
C. (H) 2% »

x 1—=x

Ulw + G, (Hz .

“We have, however,
Hr =2z, H?x =4z, [H2—22) 2 =0

and 1t follows from the expreséion of C,(g) in (66) that
C,(H)x = 0 for x > 2. We obtain, therefore, finally

0 o0 2% 2
Y R = Y 1 s G ) EE R U ) (68)
= n=2

1—=x

§ 21. In the same way, we obtain from (65)

o Rowit (0 & o 2xH =13 (u)

w; (— 1) So+ 1F Y (=) T ¥ ) ? »;u

w=1 u>1

Here the inner sum is
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since S, (H)1 =S, (1) = 0 for » = 1. We obtain

& o B20et (0 N e P s L. (69)
Ly = 5 e e
With (68) and (69), (59) becomes
Lp—1o= 52200 —22 =2 U —2— 0
) 942 © 62x+1
— X | () (=57 U o)) — ) (= 1) [ 77 S (H) L (o)

§ 22. We introduce now in (70) for ¢ the expression (63),
develop all powers of ¢ and compare the coefficient of each power
of x on the left and on the right. Observing that the 2nd, 3rd,
and 4th terms on the right begin respectively with 23, z* and z3,
we obtain then for ¢, and o,

Lp—="10,=0Ufw), L—1oy=—"U{(,

Ul
Lp—1) )

It follows then from (53) and (54), p running trough all odd
primes, '

p—1 |
-ﬂﬁngJQFF%?ﬁ@+ﬁ+ﬁﬁmﬂ;
:HP+Q—H5;JG+%+#+ﬁ](m

p>2 " P

We obtain then as the numerator corresponding to (p% p® ... p%x)*
the expression

px—'i

H<1—(—1)2 ) I (1 +p,)

=1 ) ( w=1

where in each factor the plus or minus sign is to be taken in such
a way that this factor is divisible by 4. We obtain, therefore,
for the numerators in ¢; and o,
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9y = — 99, = Il (1 £ p) . (73)
plu .
Comparing, on both sides, the coefficients of 23 we have, since
S, (u) = ud — u,

Lp—1)oy=—TU(w) —2; Ulu—2) + (74)
0_3
+ 5 Lp—8 —LE—1).

From this formula, we can again express o; by means of the
functions U (s), L (s) and proceeding in the same way obtain
for a general o, interpreted as a formal Dirichlet series, expres-
sions containing only oy, ..., 5,_,. However, already the expres-
sion for o5 becomes essentially more complicated than those of
o, and o,. We give here only the expression for the coefficient

. O

1 . . :
of — for an odd prime number p in oy:
pﬂ-

%((—1)3;10—1) <(——1)p—}2p—5> ((-—1)20_;1p—6> o

which is easily obtained from (74) and has been derived directly
by Dr. J. C. P. Miller. It is easy to see that this i1s always
divisible by 16.

BIBLIOGRAPHY

1. D. H. LeumEer, On the Maxima and Minima of Bernoulli Polynomials.
Am. Math. Monthly, 47 (1940), 533-538.

2. N. E. NorLu~nDp, Mémoire sur les Polynémes de Bernoulli. Acta Math.,
43 (1920), 121-196.

Mathematics Research Center of the U.S. Army,
Madison, Wisconsin.




	ON THE ZEROS OF BERNOULLI POLYNOMIALS OF EVEN ORDER
	...


