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méme corps quadratique, et on peut méme choisir » rationnel,
égal par exemple dans les cing cas cités plus haut respectivement
a0, 1/14, 0, 1/90 et 1/10. Les valeurs 1/4/5 et 1/4/8 de ¢* (£, v)
correspondent donc en fait aux deux premiéres valeurs du cas
homogeéne; mais la limite supérieure de ¢+ (&, m) est plus grande
que la troisiéme valeur de ¢ () trouvée par MARKOFF.

4. METHODE DES SUITES DE MEILLEURE APPROXIMATION.

Une méthode générale utilisée dans ces questions consiste a
. choisir parmi tous les couples d’entiers une suite de couples qui
d’une part conduise & la limite inférieure notée ¢ (&) ouct (&, 7)
selon le cas, et qui d’autre part soit suffisamment maniable par
exemple calculable par récurrence. | |

La définition d’une telle suite est susceptible de plusieurs
variantes. Dans le cas du probléme homogéne, MARKOFF s’est
servi de la suite des réduites Pnlq, du développement de ¢ en
fraction continue ordinaire, qui sont déterminées comme on sait
par

g4 =0, qo = 1
py =1, Po = a9 = [£] (plus grand entier < &)
et -
Pp = @y Dy + Ppg In = U nq + 9y (n > 1)
ol o
an = [xn _ — qn_—Q E _ pn—Q] "
TIn—1 & — Pp_y

Du point de vue de Papproximation, la qualité essentielle de
la suite (p,, ¢,) tient a la propriété suivante, valable pour tous
les couples d’entiers (p, 9):

st (p,.q) # (0,0) et |98 =P [ < |2 &E—p,|, alors 7] > 2,4 -

Cette propriété, que nous traduirons en disant que la suite (p,,

n) est une suite de meilleure approximation pour £, implique
évidemment
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Quant a la maniabilité, en introduisant

In—2

Yn = —
" qn—1

on trouve, compte tenu de | p, ¢,y — P, g, | =1,

1

p—- l.m P
¢S —— &, tu,

n— -4
avec les formules de récurrence

1 1 [ ]
xn+1 ) yn+1 ’ ap 2
Z, a a,

n yn
qui peuvent s’écrire par la notation traditionnelle des fractions
continues ’

1 B 1
1 Yn = 1

oo S a. - 1
; -1
e L @po + .o + ——al

an—#i +

Ainsi, ¢ (§) est entiérement déterminé par la donnée, a partir
d’un rang arbitraire, de la suite des entiers a,, tous positifs,
sauf peut-étre a,; cette suite est le développement de £ en fraction
continue. A toute suite infinie d’entiers positifs correspond d’ail-
leurs un irrationnel £ dont elle est le développement en fraction

continue, et les grandes valeurs de ¢ (&) [disons c(&) > %] ne

s’obtiennent que dans les cas ou les a,, sont, & partir d’un certain
rang, tous égaux a 1 ou 2, comme le montrent les inégalités

Z, > a, et —1 =y, =0.
De facon plus précise, on vérifie sans peine que si ¢ (&) > 8

17 ®
tous les a, sont, & partir d’un certain rang, égaux a 1 auquel cas
n bl p b

1 , i 1
c (&) = ‘\‘/—3‘ , ou égaux & 2 auquel cas ¢ (§) = 7? : on obtient

ainsl les deux valeurs trouvées par KORKINE et ZOLOTAREFF.
Un examen beaucoup plus détaillé, mais fondé sur une technique
analogue, a fourni & MARKOFF les résultats indiqués plus haut.

En outre, I’équivalence de deux irrationnels & et &’ se carac-
térise par 'identité de leurs développements en fraction continue,



APPROXIMATION DIOPHANTIENNE 23

a partir de rangs convenables; &, qu’on peut noter z,, est en
particulier équivalent & tous les z,. Enfin la périodicité (a partir
d’un certain rang) de la suite des a,, caractérise les irrationnels &
quadratiques. |

5. TECHNIQUE DU CAS NON HOMOGENE.

A la suite de méthodes analogues proposées par divers
auteurs (notamment Morimoro), CasseLs a utilisé pour le cas
non homogene une suite de quadruplets d’entiers (u,, ¢,, u,, ¢.)
~qu’on peut encore appeler suite de meilleure approximation du
couple (&, m) en ce sens que

c+(g,n)=inf[ lim o, |0, 8 —u,—n|, lim o O;E—u;——n”.
n— -4 o . n— 4 ©

En conservant les mémes notations que ci-dessus pour le déve-
loppement de I'irrationnel ¢ en fraction continue, et en posant
“n & — Up — 7 “n

z = et t =
n+1 gna — P, n+1 4, ’

on obtient ¢* (&, ) par

z, 1 ‘ % — [ P
et (£, n) = inf lim _nn . lim - ( 'n) (n yn)
s Fw TV ST T

avec les formules de récurrence

t

Zn+1 n+41

=z — 2z — b
n n n
Zn+1 Yn+1

Zyn—“tn—bn bn:—_[xn—-zn]\

& moins que b, , = a,_,, auquel cas ces formules de récurrence
doivent étre remplacées par

Zn-l—i tn+1
=1—z
x n

n+1 Yot

=1—1,.

Ainsi ¢* (£, n) est entiérement déterminé par la donnée, &
partir d'un rang arbitraire, de la suite des couples d’entiers
(@n, b,) (& I'exception des rangs n tels que b, , = a, ,, pour
lesquels &, n’est pas défini); cette suite est le développement du
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