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APPROXIMATION DIOPHANTIENNE 21

même corps quadratique, et on peut même choisir vj rationnel,
égal par exemple dans les cinq cas cités plus haut respectivement
à 0, 1/14, 0, 1/90 et 1/10. Les valeurs l/i/5 et 1/V8 de c+ rj)
correspondent donc en fait aux deux premières valeurs du cas
homogène* mais la limite supérieure de yj) est plus grande
que la troisième valeur de c trouvée par Markoff.

4. Méthode des suites de meilleure approximation.

Une méthode générale utilisée dans ces questions consiste à
choisir parmi tous les couples d'entiers une suite de couples qui
d'une part conduise à la limite inférieure notée c ou c+ yj)
selon le cas, et qui d'autre part soit suffisamment maniable par
exemple calculable par récurrence.

La définition d une telle suite est susceptible de plusieurs
variantes. Dans le cas du problème homogène, Markoff s'est
servi de la suite des réduites pjqn du développement de en
fraction continue ordinaire, qui sont déterminées comme on sait
par

9-1 0 q0 =i
P-1 1

> Po a0 Kl (plus grand entier < Ç)

et

Pn anPn-1 + Pn-2 9n anln-1 + In-2 (n > L
OÙ

Du point de vue de l'approximation, la qualité essentielle de
a suite (pn, qn) tient à la propriété suivante, valable pour tous

les couples d'entiers (p, q):
si (Pt.g)¥= (0, 0) et | ?ç_p|<fSBç_Pn(} alQrs |

Cette propriété, que nous traduirons en disant que la suite {pn,
qn) est une suite de meilleure approximation pour £ impliuue
évidemment ' 4

C(l) lim gn|g„s-pn|.
n -> -f oo
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Quant à la maniabilité, en introduisant

Vn— ~ («>!)-
Qn—1

on trouve, compte tenu de | pn 4 — pn.xqn\ \

lc (£) lim
n -> -j~ 00

avec les formules de récurrence

+ y.'n

yn +1 ^ «n [xn]

qui peuvent s'écrire par la notation traditionnelle des fractions
continues

Vn

an+l + 7, J— +
an-2 + ••• +

ax

Ainsi, c (Ç) est entièrement déterminé par la donnée, à partir
d'un rang arbitraire, de la suite des entiers an, tous positifs,
sauf peut-être a0; cette suite est le développement de \ en fraction
continue. A toute suite infinie d'entiers positifs correspond d'ailleurs

un irrationnel Ç dont elle est le développement en fraction

continue, et les grandes valeurs de c (Z) disons c (Ç) > -|j ne

s'obtiennent que dans les cas où les an sont, à partir d'un certain
rang, tous égaux à 1 ou 2, comme le montrent les inégalités

xn > an et — 1 — 2/n — 0

A
De façon plus précise, on vérifie sans peine que si c (£) > ~
tous les an sont, à partir d'un certain rang, égaux à 1 auquel cas

c(Ç) -7= ou égaux à 2 auquel cas c (Ç) -±= 0n obtient
ainsi les deux valeurs trouvées par Korkine et Zolotareff.
Un examen beaucoup plus détaillé, mais fondé sur une technique
analogue, a fourni à Markoff les résultats indiqués plus haut.

En outre, l'équivalence de deux irrationnels g et se caractérise

par l'identité de leurs développements en fraction continue,
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à partir de rangs convenables; qu'on peut noter x0, est en
particulier équivalent à tous les xn. Enfin la périodicité (à partir
d'un certain rang) de la suite des an caractérise les irrationnels £

quadratiques.

5. Technique du cas non homogène.

A la suite de méthodes analogues proposées par divers
auteurs (notamment Morimoto), Cassels a utilisé pour le cas
non homogène une suite de quadruplets d'entiers (un, pn, un, v'n)

qu'on peut encore appeler suite de meilleure approximation du
couple (£, 7]) en ce sens que

:+(Ç,r)) inf [ lim | g - un-y, |, _lim_ v'n \ç'n Ç - - yj |

L/2-—>-f-00 Tt —{— co

En conservant les mêmes notations que ci-dessus pour le
développement de l'irrationnel E,en fraction continue, et en posant

z
P" \71

p+n+1 ?„ - Pn n+1 '

on obtient c+ (Ç, 7]) par

c+ (5, >î) inf (* ~ (*n ~lim —— lim
+00^ yn 4- 00 xn Vn

avec les formules de récurrence

>^n + l
®n+1

~ ^ ~ n yn ~ — èn [«„ — «„]

à moins que bn_{ — an_l7 auquel cas ces formules de récurrence
doivent être remplacées par

^±i i-z!a±i4_f*n+l n *»+1

Ainsi c+ (E,yj) est entièrement déterminé par la donnée, à
partir d'un rang arbitraire, de la suite des couples d'entiers
(an> bn) l'exception des rangs n tels que — pour
lesquels bn n'est pas défini); cette suite est le développement du


	4. Méthode des suites de meilleure approximation.

