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APPROXIMATION DIOPHANTIENNE 19

ou la limite inférieure est prise pour I’ensemble de tous les couples
d’entiers p, g tels que ¢ # 0. MARKOFF a prouvé en 1879 ( Math.
Annalen) que c (£) prend, entre sa borne supérieure 1/4/5 et
sa limite supérieure 1/3 une infinité de valeurs isolées, lorsque &
décrit I’ensemble des irrationnels. Les deux premiéres de ces
valeurs isolées, 1/4/5 et 1/4/8, avaient 6té communiquées peu
auparavant par KORKINE et ZOLOTAREFF 4 MARKOFF, mais ce
dernier a fourni un procédé récurrent pour les obtenir toutes.
Elles sont de la forme

4 —_—
P mn
ou lentier m,, qui tend vers l'infini avec n, prend les valeurs
successives

1, 2, 5, 13, 29, 34, 89, 169, 194, 233, 433, ...

0| =~

Ces valeurs sont tous les entiers positifs qui, associés en triplets
convenables, constituent les solutions en nombres entiers de
Péquation '

22 4+ y? + 22 = 3zyz.

En outre, chacune des valeurs de ¢ () strictement supérieures
a 1/3 n’est obtenue que par des irrationnels £ éguivalents 4 'un
quelconque d’entre eux, c’est-a-dire déduits de ce dernier par
une transformation homographique & coefficients entiers de déter-

minant égal & + 1. Ces nombres £ sont de plus tous quadratiques. -

3. RESULTATS DANS LE CAS NON HOMOGENGE,

Dans le cas non homogene, la symétrisation de la ligne poly-
gonale n’est plus indifférente, car elle equivaut au remplacement.
de v par — =. Plus précisément, en introduisant la fonection

¢c(&m) = lim |¢ (0 —y— M) | (€ irrationnel, % réel)
v # 0

ou la limite inférieure est prise pour I'ensemble de tous les couples
d’entiers, u, ¢ tels que ¢ £ 0, et la fonction -

et (Em) = lim o pk—y n |  (Eirrationnel,  réel)
v >0
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ou on se borne aux couples d’entiers u, ¢ tels que ¢ > 0, on a
¢ (&) =inf[c* (&, m), e (&, —m)].

Lorsque & décrit ’'ensemble des irrationnels, et v celui des réels
sous la condition v == ¢ £ (mod. 1), il n’est done pas surprenant
que la borne supérieure de ¢ (&, n) soit plus petite que la borne
supérieure 1/4/5 de ¢ (§) = ¢* (&, 0). En fait, MINKOWSKI a
prouvé en 1893 que cette borne supérieure de ¢ (&, n) est égale
a 1/4, et GracE a montré en 1916 qu’elle est en méme temps la
limite supérieure de c (&, v) dans les mémes conditions, ¢’est-a-
dire qu’elle n’est pas isolée dans I’ensemble des valeurs de ¢ (&,7),
contrairement a 1/4/5 dans celui des valeurs de ¢ (¥).

(’est seulement en 1926 que KHINTCHINE, puis MoRiMOTO
ont abordé le probleme des grandes valeurs de ¢t (&, ), dans la
perspective des résultats obtenus par Markorr dans le cas
homogene. Le premier résultat « précis » spécifique de ce pro-
bléeme non-homogeéne asymétrique a été obtenu en 1954 par
CasseLs (Math. Annalen, t. 127, pp. 288-304) qui a déterminé
la plus grande valeur de ¢* (£, ) dans le cas ot n == ¢ £ (mod. 1).
En fait, la fonction ¢ (&, n) présente un comportement analogue
a celul découvert par MArRkOFF pour ¢ (£). Elle prend entre sa
borne supérieure et sa limite supérieure une infinité de valeurs
isolées | |

1 27 1 359 37
V57 28477 4/87 454/510° 104/110
que j’'ai déterminées en 1956 (Annales Ec. Norm. Sup., t. 73,
pp. 283-355) & I'exception des deux premieres, dues respective-
ment & KHINTCHINE (1935) et CasseLs (1954).
- En outre, chacune des valeurs de ¢* (&, n) strictement supé-
rieures & sa limite supérieure

773 868 — 28 5474/510 _ 0359
366 795 -

n’est obtenue que pour des couples (&, v) équivalents & 'un quel-
conque d’entre eux, ¢’est-a-dire liés & lui par des transformations
homographiques & coefficients entiers convenables. Chacun de
ces couples est constitué de deux nombres &, n appartenant & un
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méme corps quadratique, et on peut méme choisir » rationnel,
égal par exemple dans les cing cas cités plus haut respectivement
a0, 1/14, 0, 1/90 et 1/10. Les valeurs 1/4/5 et 1/4/8 de ¢* (£, v)
correspondent donc en fait aux deux premiéres valeurs du cas
homogeéne; mais la limite supérieure de ¢+ (&, m) est plus grande
que la troisiéme valeur de ¢ () trouvée par MARKOFF.

4. METHODE DES SUITES DE MEILLEURE APPROXIMATION.

Une méthode générale utilisée dans ces questions consiste a
. choisir parmi tous les couples d’entiers une suite de couples qui
d’une part conduise & la limite inférieure notée ¢ (&) ouct (&, 7)
selon le cas, et qui d’autre part soit suffisamment maniable par
exemple calculable par récurrence. | |

La définition d’une telle suite est susceptible de plusieurs
variantes. Dans le cas du probléme homogéne, MARKOFF s’est
servi de la suite des réduites Pnlq, du développement de ¢ en
fraction continue ordinaire, qui sont déterminées comme on sait
par

g4 =0, qo = 1
py =1, Po = a9 = [£] (plus grand entier < &)
et -
Pp = @y Dy + Ppg In = U nq + 9y (n > 1)
ol o
an = [xn _ — qn_—Q E _ pn—Q] "
TIn—1 & — Pp_y

Du point de vue de Papproximation, la qualité essentielle de
la suite (p,, ¢,) tient a la propriété suivante, valable pour tous
les couples d’entiers (p, 9):

st (p,.q) # (0,0) et |98 =P [ < |2 &E—p,|, alors 7] > 2,4 -

Cette propriété, que nous traduirons en disant que la suite (p,,

n) est une suite de meilleure approximation pour £, implique
évidemment
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