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APPROXIMATION DIOPHANTIENNE 19

où la limite inférieure est prise pour l'ensemble de tous les couples
d'entiers p, q tels que q ^ 0. Markoff a prouvé en 1879 (Math.
Annalen) que c (Ç) prend, entre sa borne supérieure et
sa limite supérieure 1/3 une infinité de valeurs isolées, lorsque £
décrit l'ensemble des irrationnels. Les deux premières de ces
valeurs isolées, 1/V5 et l/y^S, avaient été communiquées peu
auparavant par Korkine et Zolotareff à Markoff, mais ce
dernier a fourni un procédé récurrent pour les obtenir toutes.
Elles sont de la forme

où 1 entier mn1 qui tend vers l'infini avec n, prend les valeurs
successives

1, 2, 5, 13, 29, 34, 89, 169, 194, 233, 433,

Ces valeurs sont tous les entiers positifs qui, associés en triplets
convenables, constituent les solutions en nombres entiers de
l'équation

x2 + y* + z2 3 xy z

En outre, chacune des valeurs de c (£) strictement supérieures
à 1/3 n est obtenue que par des irrationnels £ équivalents à l'un
quelconque d'entre eux, c'est-à-dire déduits de ce dernier parune transformation homographique à coefficients entiers de
déterminant égal à ± 1. Ces nombres £ sont de plus tous quadratiques.

3. Résultats dans le cas non homogène.

Dans le cas non homogène, la symétrisation de la ligne
polygonale n'est plus indifférente, car elle équivaut au remplacement
de 7] par — 7]. Plus précisément, en introduisant la fonction

C (£, 73) lim I v (p£ u — yjj I (£ irrationnel, 73 réel)
v ^ 0 '

OÙ la limite inférieure est prise pour l'ensemble de tous les couplesd entiers, u, v tels que c ^ 0, et la fonction
C (Ç, 7)) Iim e I P — u~ 73 I {l irrationnel, 73 réel)

v > 0
;
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où on se borne aux couples d'entiers u, v tels que e > 0, on a

c (Ç, y]) inf [c+ (Ç, 7]) C+(Ç, —y))].

Lorsque £ décrit l'ensemble des irrationnels, et 73 celui des réels
sous la condition 73 ^ q \ (mod. 1), il n'est donc pas surprenant
que la borne supérieure de c (£, rj) soit plus petite que la borne
supérieure 1/V5 de c (£)' c+ (£, 0). En fait, Minkowski a
prouvé en 1893 que cette borne supérieure de c (£, 73) est égale
à 1/4, et Grâce a montré en 1916 qu'elle est en même temps la
limite supérieure de c (£, 73) dans les mêmes conditions, c'est-à-
dire qu'elle n'est pas isolée dans l'ensemble des valeurs de c (£,73),

contrairement à 1/V5 dans celui des valeurs de c (£).
C'est seulement en 1926 que Khintchine, puis Morimoto

ont abordé le problème des grandes valeurs de c+ (£, 73), dans la
perspective des résultats obtenus par Markoff dans le cas
homogène. Le premier résultat « précis » spécifique de ce
problème non-homogène asymétrique a été obtenu en 1954 par
Cassels (Math. Annalen, t. 127, pp. 288-304) qui a déterminé
la plus grande valeur de c+ (£, 73) dans le cas où 73 q £ (mod. 1).
En fait, la fonction c+ (Ç, 73) présente un comportement analogue
à celui découvert par Markoff pour c (£). Elle prend entre sa
borne supérieure et sa limite supérieure une infinité de valeurs
isolées

1 27 1 359 37

V"5 '
28

' V* ' 45\/5lÖ ' loVïîÔ '

que j'ai déterminées en 1956 (Annales Ec. Norm. Sup., t. 73,

pp. 283-355) à l'exception des deux premières, dues respectivement

à Khintchine (1935) et Cassels (1954).
En outre, chacune des valeurs de c+ (Ç, 73) strictement

supérieures à sa limite supérieure

773 868 — 28 547\/5ÏÔ 0 352
366 795

n'est obtenue que pour des couples (£, 73) équivalents à l'un
quelconque d'entre eux, c'est-à-dire liés à lui par des transformations
homographiques à coefficients entiers convenables. Chacun de

ces couples est constitué de deux nombres Ç, 73 appartenant à un
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même corps quadratique, et on peut même choisir vj rationnel,
égal par exemple dans les cinq cas cités plus haut respectivement
à 0, 1/14, 0, 1/90 et 1/10. Les valeurs l/i/5 et 1/V8 de c+ rj)
correspondent donc en fait aux deux premières valeurs du cas
homogène* mais la limite supérieure de yj) est plus grande
que la troisième valeur de c trouvée par Markoff.

4. Méthode des suites de meilleure approximation.

Une méthode générale utilisée dans ces questions consiste à
choisir parmi tous les couples d'entiers une suite de couples qui
d'une part conduise à la limite inférieure notée c ou c+ yj)
selon le cas, et qui d'autre part soit suffisamment maniable par
exemple calculable par récurrence.

La définition d une telle suite est susceptible de plusieurs
variantes. Dans le cas du problème homogène, Markoff s'est
servi de la suite des réduites pjqn du développement de en
fraction continue ordinaire, qui sont déterminées comme on sait
par

9-1 0 q0 =i
P-1 1

> Po a0 Kl (plus grand entier < Ç)

et

Pn anPn-1 + Pn-2 9n anln-1 + In-2 (n > L
OÙ

Du point de vue de l'approximation, la qualité essentielle de
a suite (pn, qn) tient à la propriété suivante, valable pour tous

les couples d'entiers (p, q):
si (Pt.g)¥= (0, 0) et | ?ç_p|<fSBç_Pn(} alQrs |

Cette propriété, que nous traduirons en disant que la suite {pn,
qn) est une suite de meilleure approximation pour £ impliuue
évidemment ' 4

C(l) lim gn|g„s-pn|.
n -> -f oo
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