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Das bedeutet aber, dass (1) existiert und dass die durch Definition

1 und 3 gegebenen R in diesem Fall übereinstimmen.
Nun werde angenommen, dass (1) existiere. Es sei K der

Kreis mit dem durch (1) gegebenen Radius jR, der C in P berührt.
Es soll zunächst gezeigt werden: Berührt ein Kreis K vom
Radius R + z(z> 0) C im Punkte P, so liegt K bei P ausserhalb

C. Wäre dies nämlich nicht der Fall, so gäbe es eine Folge

von Punkten Pt (i — 1, 2, mit Pt e G\ lim Pt P und Pt
i-+ oo

ausserhalb K. Für die Radien R (P, Pf) gälte daher

R lim R(P, X) ^ Hm R(P,Pf) ^ R + s >

X->P i-> oo

was unmöglich ist. Genau so sieht man, dass die analog definierten

Kreise Ke vom Radius R — s bei P innerhalb C liegen.
Zusammen mit der trivialen Ungleichung R ^ R erhält man
demnach für jedes positive s

R — z g R ^ R < R+ z

also R R R.

Äquivalenz der Definitionen 2 und 3 : Dass das durch (2) oder
(1) gegebene R die in Definition 2 genannte Eigenschaft hat,
wurde soeben beim Beiweis, dass (2) aus (1) folgt, dargelegt.
Liegt umgekehrt ein durch Definition 2 erklärtes R vor, so ist
offenbar sowohl R < R wie auch R > R unmöglich. Also gilt

R^ R

woraus wegen R ^ R folgt, dass R R R ist.
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