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ZUR DEFINITION DES KRUMMUNGSRADIUS . 309

Das bedeutet aber, dass (1) existiert und dass die durch Defini-
tion 1 und 3 gegebenen R in diesem Fall iibereinstimmen.

Nun werde angenommen, dass (1) existiere. Es sei K der
Kreis mit dem durch (1) gegebenen Radius R, der C in P beriihrt.
Es soll zunichst gezeigt werden: Beriihrt ein Kreis K vom
Radius R -+ ¢ (¢ > 0) C im Punkte P, so liegt K bei P ausser-
halb C. Wire dies namlich nicht der Fall, so gébe es eine Folge
von Punkten P; (1 = 1,2,...) mit P;e C, im P;= P und P;

i—> o0

ausserhalb K. Fiir die Radien R (P, P;) gilte daher

R=1mR(P,X) = lim R(P,P) = R+ ¢,
X->P i— o0
was unmoglich ist. Genau so sieht man, dass die analog definier-
ten Kreise K, vom Radius R — e bei P innerhalb C liegen.
Zusammen mit der trivialen Ungleichung R < R erhélt man
demnach fiir jedes positive ¢

R—€§B§R§R—l—8,
also R = R=R.
Aquivalenz der Definitionen 2 und 3 : Dass das durch (2) oder
(1) gegebene R die in Definition 2 genannte Eigenschaft hat,
wurde soeben beim Beiweis, dass (2) aus (1) folgt, dargelegt.

Liegt umgekehrt ein durch Definition 2 erkldrtes R vor, so ist
offenbar sowohl R < R wie auch R > R unmoglich. Also gilt

R=R=R,

woraus wegen R < R folgt, dass R = R = R ist.
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