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ZUR DEFINITION DES KRUMMUNGSRADIUS
KONVEXER KURVEN

von Helmut GroeMERr in Corvallis, Ore., U.S.A.

(Regu le & janvier 1961)

Es liege eine ebene konvexe Kurve, das heisst der Rand C
eines konvexen Bereiches €0 vor. Ist P ein Punkt von C, so gibt
es mehrere Még]iohkeiten den Kriimmungsradius von C im .
Punkte P zu erklidren. Eine der bekanntesten Definitionen ist
die folgende (siehe dazu B. Jessen [1]).

Definition 1: Ausser dem festen Punkt P werde auf C noch
ein Punkt X gewé#hlt. R (P, X) bezeichne den Radius eines
Kreises, der durch P und X geht und C in P beriihrt, das heisst C
und der Kreis haben in P eine gemeinsame Stiitzgerade. Existiert
der Grenzwert

(1) R = lim R(P, X) ,

X—>P

80 heisse R der Kriimmungsradius von € im Punkte P. (Falls
im Punkte P mehrere Stiitzgeraden hat, ist R (P, X) nicht
eindeutig definiert. Dies ist jedoch ohne Bedeutung, da sich bei
jeder Wahl R = 0 ergibt.) | SRS

Die Werte R = 0 und R = oo seien stets zulissig. Im fol-
genden soll in zwei verschiedenen F ormulierungen auf eine
weitere einfache Moglichkeit, R zu deﬁnieren, hingewiesen wer-
den. Es wird sich herausstellen, dass das durch die neue Defini-
tion gelieferte R mit (1) iibereinstimmt. Ist P ein Punkt von C
und K ein durch P gehender Kreis, so soll zunichst folgende
Ausdrucksweise eingefiihrt werden: K heisse bei P innerhalb C
liegend, wenn es eine Umgebung U von P gibt, so dass KnU = (C°
1st. K heisse bei P ausserhalb C liegend, wenn es eine Umge-
bung U von P gibt, so dass KnU mit C° — C keine Punkte
gemeinsam hat. Die entarteten Kreise vom Radius 0 oder oo
sollen nirgends ausgeschlossen sein.
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Nun kann die folgende axiomatische Definition des Kriim-
mungsradius gegeben werden.

Definition 2: Ein Zahl R heisse der Kriimmungsradius von C
im Punkte P, wenn es zu jedem R’ mit R" < R einen Kreis vom
Radius R’ gibt, der bei P innerhalb C liegt, und zu jedem R’
mit R > R einen Kreis vom Radius R’ gibt, der bei P ausser-
halb C liegt.

Eine konstruktive Fassung der Definition 2 ist die

Definition 3: Es sei R die untere Grenze der Radien aller
Kreise, die bei P ausserhalb C liegen, und R die obere Grenze
der Radien aller Kreise die bei P innerhalb C liegen. Gilt

() R=R,

so heisse dieser Wert der Krimmungsradius R von C im
Punkte P. ,

Ist R # R, so konnte man R den &usseren und R den inneren
Krummungsradms von K nennen. R und R haben viele Eigen-
schaften, die R hat und existieren immer. Die Definitionen 2
und 3 kann man auch so formulieren, dass sie fiir beliebige orien-
tierte ebene Kurven einen Sinn haben. Man braucht nur die
Begriffe ,,bei P innerhalb C* und ,,bei P ausserhalb C* in nahe-
liegender Weise durch ,,bei P links von C* und ,bei P rechts
von C* ersetzen.

Es soll nun gezeigt werden, dass die Definitionen 1, 2, 3
untereinander dquivalent sind.

Aguivalenz der Definitionen 1 und 3 : Wie schon bemerkt, kann
man voraussetzen, dass es in P genau eine Stiitzgerade von C
gibt. Angenommen (2) sei richtig. Ist ¢ > 0 vorgegeben, so gibt
es dann zwei durch P gehende Kreise K,, K, mit den Radien
R + ¢, R — ¢, derart dass fiir eine gewisse Umgebung U von P
der Teilbogen C,= C n U von C zwischen K und K liegt.
(R bedeutet natiirlich das durch (2) gegebene R.) Ist X ein
beliebiger Punkt aus C,, so muss daher der Kreis, der durch P
und X geht und C im Punkte P beriihrt, zwischen K und K liegen.
Somit gilt fiir hinreichend nahe bei P liegendes X

R—e<RP, X)<R+c.
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Das bedeutet aber, dass (1) existiert und dass die durch Defini-
tion 1 und 3 gegebenen R in diesem Fall iibereinstimmen.

Nun werde angenommen, dass (1) existiere. Es sei K der
Kreis mit dem durch (1) gegebenen Radius R, der C in P beriihrt.
Es soll zunichst gezeigt werden: Beriihrt ein Kreis K vom
Radius R -+ ¢ (¢ > 0) C im Punkte P, so liegt K bei P ausser-
halb C. Wire dies namlich nicht der Fall, so gébe es eine Folge
von Punkten P; (1 = 1,2,...) mit P;e C, im P;= P und P;

i—> o0

ausserhalb K. Fiir die Radien R (P, P;) gilte daher

R=1mR(P,X) = lim R(P,P) = R+ ¢,
X->P i— o0
was unmoglich ist. Genau so sieht man, dass die analog definier-
ten Kreise K, vom Radius R — e bei P innerhalb C liegen.
Zusammen mit der trivialen Ungleichung R < R erhélt man
demnach fiir jedes positive ¢

R—€§B§R§R—l—8,
also R = R=R.
Aquivalenz der Definitionen 2 und 3 : Dass das durch (2) oder
(1) gegebene R die in Definition 2 genannte Eigenschaft hat,
wurde soeben beim Beiweis, dass (2) aus (1) folgt, dargelegt.

Liegt umgekehrt ein durch Definition 2 erkldrtes R vor, so ist
offenbar sowohl R < R wie auch R > R unmoglich. Also gilt

R=R=R,

woraus wegen R < R folgt, dass R = R = R ist.
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