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ZUR DEFINITION DES KRÜMMUNGSRADIUS
KONVEXER KURVEN

von Helmut Groemer in Corvallis, Ore., U.S.A.

(Reçu le 5 janvier 1961

Es liege eine ebene konvexe Kurve, das heisst der Rand C
eines konvexen Bereiches C° vor. Ist ein Punkt von so gibt
es mehrere Möglichkeiten den Krümmungsradius von C im
Punkte P zu erklären. Eine der bekanntesten Definitionen ist
die folgende (siehe dazu B. Jessen [1]).

: Definition 1: Ausser dem festen Punkt P werde auf noch
ein Punkt Xgewählt. R (P, X) bezeichne den Radius eines
Kreises, der durch P und X geht und in P berührt, das heisst C
und der Kreis haben in P eine gemeinsame Stützgerade. Existiert
der Grenzwert

(1) R lim R (P, X)
x^p

so heisse R der Krümmungsradius von C im Punkte P. (Falls
im Punkte P mehrere Stützgeraden hat, ist R (P, X) nicht
eindeutig definiert. Dies ist jedoch ohne Bedeutung, da sich bei
jeder Wahl R0 ergibt.)

Die Werte R —0 und Rco seien stets zulässig. Im
folgenden soll in zwei verschiedenen Formulierungen auf eine
weitere einfache Möglichkeit, R zu definieren, hingewiesen werden.

Es wird sich herausstellen, dass das durch die neue Definition

gelieferte R mit (1) übereinstimmt. Ist P ein Punkt von C
und K ein durch P gehender Kreis, so soll zunächst folgende
Ausdrucksweise eingeführt werden : K heisse bei P innerhalb C
liegend, wenn es eine Umgebung U von P gibt, so dass KnUcC0
ist. K heisse bei P ausserhalb Cliegend,wenn es eine Umgebung

U von P gibt, so dass Kn,U mit — keine Punkte
gemeinsam hat. Die entarteten Kreise vom Radius 0 oder oo
sollen nirgends ausgeschlossen sein.
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Nun kann die folgende axiomatische Definition des

Krümmungsradius gegeben werden.

Definition 2 : Ein Zahl R heisse der Krümmungsradius yon C
im Punkte P, wenn es zu jedem R' mit Rf < R einen Kreis vom
Radius R' gibt, der bei P innerhalb C liegt, und zu jedem R"
mit R" > R einen Kreis vom Radius R" gibt, der bei P ausserhalb

C liegt.
Eine konstruktive Fassung der Definition 2 ist die

Definition 3: Es sei R die untere Grenze der Radien aller
Kreise, die bei P ausserhalb C liegen, und R die obere Grenze
der Radien aller Kreise die bei P innerhalb C liegen. Gilt

(2) R R

so heisse dieser Wert der Krümmungsradius R von C im
Punkte P.

Ist R R, so könnte man R den äusseren und R den inneren
Krümmungsradius von K nennen. R und R haben viele
Eigenschaften, die R hat und existieren immer. Die Definitionen 2

und 3 kann man auch so formulieren, dass sie für beliebige orientierte

ebene Kurven einen Sinn haben. Man braucht nur die

Begriffe „bei P innerhalb C" und „bei P ausserhalb C" in
naheliegender Weise durch „bei P links von C" und „bei P rechts
von C" ersetzen.

Es soll nun gezeigt werden, dass die Definitionen 1, 2, 3

untereinander äquivalent sind.
Äquivalenz der Definitionen 1 und 3 : Wie schon bemerkt, kann

man voraussetzen, dass es in P genau eine Stützgerade von C

gibt. Angenommen (2) sei richtig. Ist s > 0 vorgegeben, so gibt
es dann zwei durch P gehende Kreise Ks, Ke mit den Radien
R -R e, R — e, derart dass für eine gewisse Umgebung U von P
der Teilbogen Cz C c\ U von C zwischen K und K liegt.
(R bedeutet natürlich das durch (2) gegebene R.) Ist X ein

beliebiger Punkt aus C8, so muss daher der Kreis, der durch P
und X geht und C im Punkte P berührt, zwischen K und K liegen.
Somit gilt für hinreichend nahe bei P liegendes X

R — e < R(P, X) ^ R + e
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Das bedeutet aber, dass (1) existiert und dass die durch Definition

1 und 3 gegebenen R in diesem Fall übereinstimmen.
Nun werde angenommen, dass (1) existiere. Es sei K der

Kreis mit dem durch (1) gegebenen Radius jR, der C in P berührt.
Es soll zunächst gezeigt werden: Berührt ein Kreis K vom
Radius R + z(z> 0) C im Punkte P, so liegt K bei P ausserhalb

C. Wäre dies nämlich nicht der Fall, so gäbe es eine Folge

von Punkten Pt (i — 1, 2, mit Pt e G\ lim Pt P und Pt
i-+ oo

ausserhalb K. Für die Radien R (P, Pf) gälte daher

R lim R(P, X) ^ Hm R(P,Pf) ^ R + s >

X->P i-> oo

was unmöglich ist. Genau so sieht man, dass die analog definierten

Kreise Ke vom Radius R — s bei P innerhalb C liegen.
Zusammen mit der trivialen Ungleichung R ^ R erhält man
demnach für jedes positive s

R — z g R ^ R < R+ z

also R R R.

Äquivalenz der Definitionen 2 und 3 : Dass das durch (2) oder
(1) gegebene R die in Definition 2 genannte Eigenschaft hat,
wurde soeben beim Beiweis, dass (2) aus (1) folgt, dargelegt.
Liegt umgekehrt ein durch Definition 2 erklärtes R vor, so ist
offenbar sowohl R < R wie auch R > R unmöglich. Also gilt

R^ R

woraus wegen R ^ R folgt, dass R R R ist.
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