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ON THE GEOMETRY OF MINKOWSKI PLANES

by E. Asprunp and B. GRUNBAUM *)
(Regu le 19 juillet 1960.)

The following propositions of elementary Euclidean geometry
are well-known.

If D is the orthocenter of the triangle with vertices A, B, C,
then each of the points A, B, C, D is the orthocenter of the
triangle having as vertices the three other points. The circum-
circles of the four triangles have all the same diameter.

In the present note we shall show that these and other pro-
" positions of Euclidean geometry remain, to some extent, valid
also in Minkowski planes. Moreover, some of the results yield
characterizations of centrally symmetric convex curves, or of
ellipses, in terms of properties of triangles.

In the sequel C shall denote a bounded, closed, strictly convex
and smooth curve in the plane, which has the origin 0 as center
of symmetry. Any curve of the type z 4+ AC (where « is a point
and A a positive real number) derived from C by similarity and
translation, shall be called a Minkowski circle, or a circle, for
short, with center  and radius A. The union of x + AC and its
interior shall be denoted by z 4+ AD and called a disc.

The following facts are obvious for any Minkowski circle C.

1. Given any three non-collinear points there exists exactly
one circle z 4 AC containing them. o

2. If z; # x, then (z; 4+ 2, C) N (zy + A, C) contains at
most two points. .

3. Iz # z,andyq,y, € (2 + C) N (x, + C) withy, # y,,
then z; + z, = y; + ¥». ,

Using these properties we shall establish

Tueorem 1. Letp;, 1 = 1, 2, 3, 4, be poinis in the plane, no
three collinear, and let x; + N\, G, 1 = 1, 2, 3, 4, be circles such
that p; ez; + 3G for all 1 £ j. If N = 2 = Xy = 1, then
N =1

*) This research was supported by the United States Air Force through the Air
Force Office of Scientific Research of the Air Research and Development Command,
under contract No. AF49 (638)-253. Reproduction in whole or in part is permitted
for any purpose of the United States Government.
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THEOREM 2. Lel P1, P2, P3 be distinct poinis of G, and let
y;i + G j =1, 2, 3, be the three circles different from C each of

which contains two of the three points p;. Then n (y; + C) is

not empty, and consists of precisely one point (the C orthocenter
of the triangle with vertices p;, P, Ps3)- |

Since the two theorems are proved quite similarly (and also
easily deducible from each other) we shall prove only the first one.

Proof of Theorem 1. Using the property 3 stated above, 1t
follows from the assumptions of the theorem that x; + z;
= p, + ps whenever {i,j,k} ={1,2,3}. Let zy= p,+ ps
— x;. Then {p,, ps} = (%, + C) N (x, + C) and, since
Ty + 2y = py + ps, also {Pl, pst= (2, 4+ C) N (g + C). The-
refore { py, ps, Ps} C % + C; since {py, ps, Ps} S 24 + 2, C, it
follows from the above property 1 that z, = x, and 2, = 1.
This ends the proof of Theorem 1.

Remark 1. From the above equations' it follows that

%h + % Xy = % (p1 + p2 + ps)- In other words, the centroid

of the triangle with vertices p;, p,, ps belongs to the segment
determined by the center z, of the “ circumcircle ” x, -+ C and
by the intersection-point p, of the three circles obtained by
“ mirroring ” z, + G on the midpoints of the sides of the triangle;
moreover, the centroid divides this segment in the ratio 1: 2.

Remark 2. It is easily seen that each of the points py, p,,
Ps, Py is the C-orthocenter of the triangle determined by the other
three points. If C is a Euclidean circle, the C-orthocenter
coincides with the orthocenter, and the equation of Remark 1
expresses in this case the well-known relation between the
centroid, the circumcenter and the orthocenter of a triangle;
they determine Euler’s line, which may, therefore be generalized
to Minkowski planes.

Remark 3. In both the Euclidean and the Minkowski case,
the three points on Euler’s line (centroid ¢, orthocenter A, and

circumcenter r) of any triangle T may be “ completed ” by a

fourth point c* = % r+ —g)— h, which is the centroid of the asso-
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ciated triangle T*, congruent to T, whose vertices are obtained
by mirroring the circumcenter of T in the midpoints of the sides
of T. The above becomes particularly clear if the complete
symmetry of the relationship between T and T* is noted; thus
(T*)* =T, r* = h; B* =r. |
The fact that we used the central symmetry of C in the proof
of Theorem 1 is not accidental. Indeed, we have ,

TueoreM 3. A strictly convex, smooth, closed curve K has a
center of symmelry if (and only if) it has the following property.

For any three (different) translates Ky, Ky, K3 of K, no two
of which are mutually tangent and all three passing through a
" common point X, there exists a translate K, of K passing through
the three points of intersection K; N K, i#j, 1, j=1,2,3
different from x.

Proof. Given any chord of K there is a unique parallelogram
inscribed in K which has the given chord as one of its sides.
This parallelogram is degenerate exactly in the case when the
(unique) supporting lines at the end-points of the chord are
parallel. We shall show that the diagonals of a non-degenerate
parallelogram are such “ degenerate parallelograms ”. Let the
origin be in the center of the non-degenerate parallelogram, so
that we may denote its vertices by a, b,—a and — b. Suppose
that the diagonal [a, — ] is a side of another non-degenerate
parallelogram inscribed in K, whose other two vertices we may
denote bya +~cand —a +c¢c. Put K; =K, K, =K 4+ a—5b
and K; = K -+ 2a. These three translates all intersect at the
point a, and so by the conditions of the theorem there must be
a fourth translate K, passing through the points — b, 2a — b
and a + ¢, which belong respectively to K; N K,, K, N K; and
K; N K;. Thus, the translate K; = K, — a + b passes

through @, —a and b + ¢, which means that one has either
Ky = Kor Ky = K— ¢ The first case is impossible, since it
would 1mply & = a or b = — a. The second case would mean

that & + 2¢c € K. We then repeat the whole argument once
more with K; = K —a + b and K; = K — 2a instead of K,
and K; and find that also — 6 4 2¢ € K. This is absurd, hence
we have proved that the diagonals of any parallelogram inscribed
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in K are thamselves degenerate inscribed parallelograms, i.e.
that they connect the points of contact between K and two
parallel supporting lines. - Consider now two such chords in K.
Take a chord connecting an endpoint of one of the previous
chords with an endpoint of the other and construct its paralle-
logram. Then, by the above, the diagonals of this parallelogram
have the parallel tangent line property, hence they coincide with
the two original chords. But now we have proved the theorem,
since we have constructed a center of symmetry for K, namely
the common center of all its inscribed parallelograms.

Theorem 3 may be thought of as the converse of Theorem 1.
In the same way Theorem 2 has a converse, which is easily
deducible from the three preceding theorems.

TueorEM 4. Let K be a strictly convex, smooth, closed curve.
Suppose that K has the property that whenever four of its translates
K;, 1 =1, 2, 3, 4, satisfy the conditions that ’(4]1 K, is empty but

fe
jgi K, are non-empty for i = 1, 2, 3, thenjf;z4 K; is also non-
empty. Then K has a center of symmetry.

Proof. Take three translates K,, K, and K; of K that
satisfy the conditions for Theorem 3. Suppose moreover, that
the chord in K; which connects the intersection points of K,
with K, and Kj; respectively which are different from the triple
intersection, is not a chord whose endpoint tangents are parallel.
Let K, be the unique translate of K different from K, which
also contains this segment as a chord. By the conditions of
Theorem 4, K, passes through the remaining double intersection
point of K, and K,. However, the above mentioned chord in
K, i1s never of the “degenerate parallelogram ” tiype, since if it
were, we could find the desired translate K, passing through the
intersection points of K;, K, and K, outside of K: N K;NK;
by a passage to the limit. Hence Theorem 3 is applicable and
we have proved Theorem 4.

Remark 4. In distinction from theorems of a similar nature
given in [6, 7, 8], the properties used in Theorems 3 and 4 to
characterize centrally symmetric convex curves K make no
reference to the point which i1s to be shown to be the center
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of K. The characterization in [6], which may equivalently be
formulated as “ There exists a point x such that each point of K
is the vertex of an affine-regular hexagon with center z, all of
whose vertices belong to K ”, fails if the centers of the hexa-
gons are not assumed to be fixed. Indeed, the curve K (¢)
= {(sin @; cos @ + & (1 — cos 69); 0 < ¢ < 27:} 1s easily seen
to be convex for sufficiently small positive &, not to have a
center for ¢ > 0, and to allow an inscribed regular hexagon
(of side 1) to rotate in it. (Similar curves were studied in [4].)

*
* *

_ The notion of the Feuerbach (or “ nine-points ) circle of a
triangle also (partially) generalizes to Minkowski planes. The
Feuerbach circle (in a Minkowski plane) of a triangle with ver-

: . : : : 1
tlces Zy, g, &3 and circumeircle G is the circle 5 (2, + 2, + 23)

+ 5 le

THEOREM 5. In any Minkowskt plane, the Feuerbach circle
of a triangle passes through sixz “ remarkable” points; the mid-
poinis of the sides of the triangle, and the midpoints of the segments
determined by the C-orthocenter and the vertices.

Proof. The theorem may be established by an easy compu-
tation. Indeed, since z, € C, the midpoint ¢ (z; -+ @,) of the op-

posite side of the triangle satisﬁesé (2, + ) ——-—;—“(ac1 + z, + x5)

1
T2
other midpoints. On the other hand, for the midpoint % x;

Xy € % (2 + 25 + 25) + —;— C, and similarly for the two

- % (z; + 25 + x5) of the C-orthocenter and a vertex we have,

obviously, z (2, + z, + ) + 1 ; %(:)c1 + zy, + x3) + % C;
this ends the proof of the theorem

Remark 5. As in the Euclidean case, it is easﬂy established
that the four triangles derived from a given triangle T and its
C-orthocenter, have the same Feuerbach circle; it is also the
Feuerbach circle of the four triangles derived from the “ asso-
clated ” triangle and its C-orthocenter.

In Euclidean geometry the following property of the Feuer-
bach circle is easily established:
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(*) The Feuerbach circle of any triangle passes through the
three intersections of a side of the triangle with the line deter-
mined by the opposite vertex and the orthocenter.

Turorem 6. The only Minkowski planes with the: pro-
perty (*) (with C-orthocenter substituted for orthocenter) are
those whose circles are ellipses.

Proof. It is well-known ([1], p. 143) that ellipses are the
only centrally symmetric convex curves with the following
property:

(**) The midpoints of any pair of parallel chords are
collinear with the center.

We shall show that property (*) implies (**). Let y, € C,
1 = 1, 2, 3, 4, be four points such that the chord with end-
points y; and y, is parallel to that with endpoints y; and y,.
Then x; = y, + y, + y3 — 2y, for 1 = 1, 2, 3, are vertices of
a triangle with circumcenter r = y; + y, + y; and circum-
circle r + 2C, whose Feuerbach circle is C and whose C-ortho-
center is h=—r = —(y; + ¥, + y3). Now if y, is (as
assumed in (*)) the intersection of the line determined by x; and
h with that determined by z, and x, (which also contains ¥, and

1s parallel to the chord y,, y,), the collinearity of —;— (y1 + y,) and
% (ys + y4) with O follows from the fact that the lines determined

by z; and 7, by% (¥, + y5) and 0, by r and y, are parallel, and

h = —r. Thus (*) implies (**) and Theorem 6 1s proved.

A great number of theorems in the geometry of circles in the
Euclidean plane remain valid in Minkowski geometry if it is
assumed that all the circles are of the same size. As an example
we cite the following theorem, due to Miquel for Euchdean circles
'of arbitrary sizes ([3], pp. 86/87)

Tueorem 7. Let four points x; of C be given and let C,,
1 =1, 2, 3, 4, be the four translates of C (different from C) deter-
mined by pairs of neighboring points. Then there exists a translate
of C containing the four points y;, wherey;, € C; N C,.4, (C5 = C,),
but y; ¢ C.

The proof of Theorem 7 is very similar to that of Theo-
rem 1 and we omit it. The circle containing the points y, is

2, + x5 + 253 + 2, + C.
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Some results transfer verbatim from the Euclidean to the
Minkowski case (usually because the equality of size is assumed,
explicitly or implicitly, in the Euclidean case). An example of
this kind is a “ chain of theorems ” due to Coolidge [2] (repro-
duced in [3], p. 94). :

£ %

A. Florian [5] mentions, in an account of some unpublished
results of J. Molnar, the following proposition: If a circle C in
the Euclidean plane is covered by the union of three circular
dises D;, 1 = 1, 2, 3, of diameters not exceeding that of C, then
the disc D, bounded by C, is also covered by D; U D, U D,.

We shall prove for Minkowski planes

THEOREM 8. lfCCU (z, + ;D) and X, < 1 fori =1, 2,3,

thenDcU(X + A; D).

Proof. Assummg C#ax + 7C for all i, let py, p,, ps be
points of C such that p, e (x] + 2, D) N (z, + &, D) for
{i,7,k} ={1,2,3}. We define y; =p; + p, for {i, ], k}
={1,2,3}. Byproperty 2 (p.300),it follows that D N (z; + »; D)
> DN (y; + D). On the other hand, the points p;, p,, p; and
the circles C, y; + C, ¥, + G, y5 + C satisfy the condltlons of

Theorem 2. Therefore, there exists a point p € n (y; + Q).

To complete the proof we have only to show that p € D; then,
since each point of D belongs to a segment with endpoints p
and some z € C, and each such segment is contained in one of

| 3
- the discs y; + D, 1t follows that D is contained in U (y; + D),
; i=1

and thus also in _L3J1 (z; + N D), as claimed. But if p¢ D is
assumed, a contradiction is readily reached: Let L be the line -
determined by p and 0, and let p* be the point of L. N C with
the greater distance from p. Since p* e C, for a suitable i we
have p* ey, +D. But p ey, + D which is impossible since
the segment with endpoints p and p* is longer than the diameter
of D parallel to it, and therefore may not be covered by any
translate of D.

L’Enseignement mathém., t. VI, fasc. 4. 5
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This ends the proof of Theorem 8.
Obvious examples show that the restriction 2; < 1 in Theo-
rem 8 may not be omitted.

Remark 6. Tt is easily seen that Theorem 8 is valid also if
the circle C is not assumed to be sirictly convex and smooth.
The argument is completely elementary but somewhat lengthy,
and we omit it. On the other hand, Theorems 1 qnd 2 have
to be properly reformulated in order to be applicable (and valid)
for circles which are not strictly convex and smooth.

Remark 7. 1t is easily seen that Theorems 1 and 2 do not
generalize to higher-dimensional spaces. Theorem &'is probably
valid for spaces of any dimension (with n + 1 “ solid ” spheres
covering the surface of another one in the n-dimensional case),
although no proof seems to be known even in the case of Eucli-
dean spheres in three-dimensional space.

Note. After the present note was completed, the paper
“ Zur elementaren Dreicksgeometrie in der komplexen Ebene ”
(Enseign. Math., 4 (1958), 178-211), by J. E. HoFMANN, came
to our attention. In this paper the geometry of triangles in the
Euclidean plane is developed (in part) in a way closely related
to the method used in the present paper.
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