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PROBLÈMES D'APPROXIMATION DIOPHANTIENNE1

par Roger Descombes

(Reçu le 20 juillet 1960)

1. Introduction.

Considérons une circonférence de longueur un. A partir d'une
origine 0 sur cette circonférence, marquons les extrémités des
arcs dont les longueurs sont les multiples entiers positifs
successifs d'un nombre irrationnel Ç. Nous nous proposons d'étudier
de quelle façon un point fixe P quelconque de la circonférence,
d'abscisse curviligne tj, est approché par les sommets de la ligne
polygonale régulière non fermée ainsi constituée. Si P est un
sommet de la ligne polygonale, éventuellement prolongée du
côté des multiples négatifs de Ç, c'est-à-dire si ï) Ç (mod. 1)
(qentier), P est approché de la même façon que 0; nous dirons

alors qu'on a affaire au cas homogène. Si cette circonstance ne
se produit pas, nous dirons qu'il s'agit du cas non homogène.

2. Le cas homogène; rappel des résultats.

Dans le cas homogène, la symétrisation de la ligne polygonale
par rapport au diamètre passant par 0, c'est-à-dire l'introduction
des multiples qÇ,avecq entier négatif, est sans importance.
D'autre part, on sait depuis longtemps (méthode des tiroirs de
Dirichlet, 1840) que pour une infinité de couplés d'entiers p, q

0)> on a I 1(<f£ — P)I< 1. Il est donc commode d'exprimer
les résultats à l'aide de la fonction définie sur les irrationnels par

c (£) lim | q (q E,— p) | (Ç irrationnel)

i) Conférence prononcée à Grenoble dans le cadre des « Journées Mathématiques
de Grenoble », 21-22 mai 1960.
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où la limite inférieure est prise pour l'ensemble de tous les couples
d'entiers p, q tels que q ^ 0. Markoff a prouvé en 1879 (Math.
Annalen) que c (Ç) prend, entre sa borne supérieure et
sa limite supérieure 1/3 une infinité de valeurs isolées, lorsque £
décrit l'ensemble des irrationnels. Les deux premières de ces
valeurs isolées, 1/V5 et l/y^S, avaient été communiquées peu
auparavant par Korkine et Zolotareff à Markoff, mais ce
dernier a fourni un procédé récurrent pour les obtenir toutes.
Elles sont de la forme

où 1 entier mn1 qui tend vers l'infini avec n, prend les valeurs
successives

1, 2, 5, 13, 29, 34, 89, 169, 194, 233, 433,

Ces valeurs sont tous les entiers positifs qui, associés en triplets
convenables, constituent les solutions en nombres entiers de
l'équation

x2 + y* + z2 3 xy z

En outre, chacune des valeurs de c (£) strictement supérieures
à 1/3 n est obtenue que par des irrationnels £ équivalents à l'un
quelconque d'entre eux, c'est-à-dire déduits de ce dernier parune transformation homographique à coefficients entiers de
déterminant égal à ± 1. Ces nombres £ sont de plus tous quadratiques.

3. Résultats dans le cas non homogène.

Dans le cas non homogène, la symétrisation de la ligne
polygonale n'est plus indifférente, car elle équivaut au remplacement
de 7] par — 7]. Plus précisément, en introduisant la fonction

C (£, 73) lim I v (p£ u — yjj I (£ irrationnel, 73 réel)
v ^ 0 '

OÙ la limite inférieure est prise pour l'ensemble de tous les couplesd entiers, u, v tels que c ^ 0, et la fonction
C (Ç, 7)) Iim e I P — u~ 73 I {l irrationnel, 73 réel)

v > 0
;
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où on se borne aux couples d'entiers u, v tels que e > 0, on a

c (Ç, y]) inf [c+ (Ç, 7]) C+(Ç, —y))].

Lorsque £ décrit l'ensemble des irrationnels, et 73 celui des réels
sous la condition 73 ^ q \ (mod. 1), il n'est donc pas surprenant
que la borne supérieure de c (£, rj) soit plus petite que la borne
supérieure 1/V5 de c (£)' c+ (£, 0). En fait, Minkowski a
prouvé en 1893 que cette borne supérieure de c (£, 73) est égale
à 1/4, et Grâce a montré en 1916 qu'elle est en même temps la
limite supérieure de c (£, 73) dans les mêmes conditions, c'est-à-
dire qu'elle n'est pas isolée dans l'ensemble des valeurs de c (£,73),

contrairement à 1/V5 dans celui des valeurs de c (£).
C'est seulement en 1926 que Khintchine, puis Morimoto

ont abordé le problème des grandes valeurs de c+ (£, 73), dans la
perspective des résultats obtenus par Markoff dans le cas
homogène. Le premier résultat « précis » spécifique de ce
problème non-homogène asymétrique a été obtenu en 1954 par
Cassels (Math. Annalen, t. 127, pp. 288-304) qui a déterminé
la plus grande valeur de c+ (£, 73) dans le cas où 73 q £ (mod. 1).
En fait, la fonction c+ (Ç, 73) présente un comportement analogue
à celui découvert par Markoff pour c (£). Elle prend entre sa
borne supérieure et sa limite supérieure une infinité de valeurs
isolées

1 27 1 359 37

V"5 '
28

' V* ' 45\/5lÖ ' loVïîÔ '

que j'ai déterminées en 1956 (Annales Ec. Norm. Sup., t. 73,

pp. 283-355) à l'exception des deux premières, dues respectivement

à Khintchine (1935) et Cassels (1954).
En outre, chacune des valeurs de c+ (Ç, 73) strictement

supérieures à sa limite supérieure

773 868 — 28 547\/5ÏÔ 0 352
366 795

n'est obtenue que pour des couples (£, 73) équivalents à l'un
quelconque d'entre eux, c'est-à-dire liés à lui par des transformations
homographiques à coefficients entiers convenables. Chacun de

ces couples est constitué de deux nombres Ç, 73 appartenant à un
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même corps quadratique, et on peut même choisir vj rationnel,
égal par exemple dans les cinq cas cités plus haut respectivement
à 0, 1/14, 0, 1/90 et 1/10. Les valeurs l/i/5 et 1/V8 de c+ rj)
correspondent donc en fait aux deux premières valeurs du cas
homogène* mais la limite supérieure de yj) est plus grande
que la troisième valeur de c trouvée par Markoff.

4. Méthode des suites de meilleure approximation.

Une méthode générale utilisée dans ces questions consiste à
choisir parmi tous les couples d'entiers une suite de couples qui
d'une part conduise à la limite inférieure notée c ou c+ yj)
selon le cas, et qui d'autre part soit suffisamment maniable par
exemple calculable par récurrence.

La définition d une telle suite est susceptible de plusieurs
variantes. Dans le cas du problème homogène, Markoff s'est
servi de la suite des réduites pjqn du développement de en
fraction continue ordinaire, qui sont déterminées comme on sait
par

9-1 0 q0 =i
P-1 1

> Po a0 Kl (plus grand entier < Ç)

et

Pn anPn-1 + Pn-2 9n anln-1 + In-2 (n > L
OÙ

Du point de vue de l'approximation, la qualité essentielle de
a suite (pn, qn) tient à la propriété suivante, valable pour tous

les couples d'entiers (p, q):
si (Pt.g)¥= (0, 0) et | ?ç_p|<fSBç_Pn(} alQrs |

Cette propriété, que nous traduirons en disant que la suite {pn,
qn) est une suite de meilleure approximation pour £ impliuue
évidemment ' 4

C(l) lim gn|g„s-pn|.
n -> -f oo
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Quant à la maniabilité, en introduisant

Vn— ~ («>!)-
Qn—1

on trouve, compte tenu de | pn 4 — pn.xqn\ \

lc (£) lim
n -> -j~ 00

avec les formules de récurrence

+ y.'n

yn +1 ^ «n [xn]

qui peuvent s'écrire par la notation traditionnelle des fractions
continues

Vn

an+l + 7, J— +
an-2 + ••• +

ax

Ainsi, c (Ç) est entièrement déterminé par la donnée, à partir
d'un rang arbitraire, de la suite des entiers an, tous positifs,
sauf peut-être a0; cette suite est le développement de \ en fraction
continue. A toute suite infinie d'entiers positifs correspond d'ailleurs

un irrationnel Ç dont elle est le développement en fraction

continue, et les grandes valeurs de c (Z) disons c (Ç) > -|j ne

s'obtiennent que dans les cas où les an sont, à partir d'un certain
rang, tous égaux à 1 ou 2, comme le montrent les inégalités

xn > an et — 1 — 2/n — 0

A
De façon plus précise, on vérifie sans peine que si c (£) > ~
tous les an sont, à partir d'un certain rang, égaux à 1 auquel cas

c(Ç) -7= ou égaux à 2 auquel cas c (Ç) -±= 0n obtient
ainsi les deux valeurs trouvées par Korkine et Zolotareff.
Un examen beaucoup plus détaillé, mais fondé sur une technique
analogue, a fourni à Markoff les résultats indiqués plus haut.

En outre, l'équivalence de deux irrationnels g et se caractérise

par l'identité de leurs développements en fraction continue,
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à partir de rangs convenables; qu'on peut noter x0, est en
particulier équivalent à tous les xn. Enfin la périodicité (à partir
d'un certain rang) de la suite des an caractérise les irrationnels £

quadratiques.

5. Technique du cas non homogène.

A la suite de méthodes analogues proposées par divers
auteurs (notamment Morimoto), Cassels a utilisé pour le cas
non homogène une suite de quadruplets d'entiers (un, pn, un, v'n)

qu'on peut encore appeler suite de meilleure approximation du
couple (£, 7]) en ce sens que

:+(Ç,r)) inf [ lim | g - un-y, |, _lim_ v'n \ç'n Ç - - yj |

L/2-—>-f-00 Tt —{— co

En conservant les mêmes notations que ci-dessus pour le
développement de l'irrationnel E,en fraction continue, et en posant

z
P" \71

p+n+1 ?„ - Pn n+1 '

on obtient c+ (Ç, 7]) par

c+ (5, >î) inf (* ~ (*n ~lim —— lim
+00^ yn 4- 00 xn Vn

avec les formules de récurrence

>^n + l
®n+1

~ ^ ~ n yn ~ — èn [«„ — «„]

à moins que bn_{ — an_l7 auquel cas ces formules de récurrence
doivent être remplacées par

^±i i-z!a±i4_f*n+l n *»+1

Ainsi c+ (E,yj) est entièrement déterminé par la donnée, à
partir d'un rang arbitraire, de la suite des couples d'entiers
(an> bn) l'exception des rangs n tels que — pour
lesquels bn n'est pas défini); cette suite est le développement du
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couple (£, 7]) et rend des services analogues à ceux qu'on peut
attendre du développement en fraction continue de E, dans le

cas homogène. En particulier, l'équivalence évoquée plus haut
de deux couples (£, 73), (£', 73') se caractérise par Pidentité de

leurs développements à partir de rangs convenables; (Ç, 73),

qu'on peut noter (x$, zQ) est ainsi équivalent à tous les couples
(xn, zn). L'appartenance de £ et 73 à un même corps quadratique
est caractérisée par la périodicité du développement de (£, 73), à

partir d'un certain rang. L'éventualité du cas homogène
[73 q \ -f- P avec p et q entiers] se caractérise par bn an — 1

pour tout n assez grand.
Comme dans le cas homogène, les grandes valeurs de c+ (Ç, 73)

^disons c+ (£, 73) > ^ ne s'obtiennent que dans des circonstances

relativement simples: pour tout n assez grand, bn est

toujours défini, et le couple (an, bn) ne peut prendre que les

quatre valeurs (1, 0), (2, 1), (3, 1) et (4, 2). Une étude minutieuse,
mais élémentaire, de la distribution de ces valeurs dans le

développement d'un couple (Ç, 73) conduit aux résultats évoqués dans
le paragraphe 3.

6. Applications.

Des méthodes algorithmiques très analogues aux précédentes

permettent aussi un classement des valeurs de c+ (Ç, 73) ou de

c (Ç, 73) lorsque i; ou 73 restent fixes, l'autre élément du couple
variant. C'est ainsi que Davenport et quelques-uns de ses élèves

ont déterminé entre 1948 et 1952 les bornes supérieures de

c (£, 73) lorsque 73 décrit l'ensemble des réels, £ restant fixe et tel

que c (Ç) soit égal à l'une des premières valeurs trouvées par
Markoff. En sens inverse, j'ai déterminé avec Poitou, en 1954

(Bull. Soc. Math. Fr., t. 82, pp. 197-299), en fonction de 73 la
borne supérieure de c (£, 73) lorsque £ décrit l'ensemble des

irrationnels, 73 restant fixe et égal à un rationnel quelconque et,
dans les mêmes conditions, la borne supérieure de c+ (£, 73)

lorsque 73 est un rationnel de dénominateur au plus égal à 10.

De même, Davenport, Prasad et Cassels ont obtenu en
1951 (cf. par exemple Proc. Cambridge Phil. Soc., t. 48, pp. 72-86)
les inégalités suivantes, qui améliorent des résultats antérieurs de
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Khintchine et Morimoto (1926-27):

inf [sup c+ (Ç, 73) J > ^ et inf [sup c+ (Ç, 73) j >

où 7] décrit l'ensemble des réels, puis | l'ensemble des irrationnels.
Les constantes numériques des seconds membres de ces inégalités

ne sont d'ailleurs certainement pas les meilleures constantes
possibles, qui demeurent inconnues à ce jour. En revanche, on
peut, dans la dernière inégalité, remplacer c (£, tj) par

k (£, 73) inf I 9 (v Ç — U — 7)) | ^ Ç (Ç, 7])

où la borne inférieure est prise pour l'ensemble des couples
d'entiers (&, e) tels que ç ^ 0. Il revient donc au même d'énoncer
le résultat suivant: si a, ß, a7, ß7 sont quatre nombres réels
quelconques, il existe toujours deux nombres réels 73 et 73' tels que

I (ocu + ßp — 73) [cxfu + ß'p — y]') I >
I ~ a ^

pour tous les couples d'entiers u, e. De plus, on peut prouver que
si a7 et ß7 sont les conjugués de a et ß dans un corps quadratique,
il est possible de choisir pour 73 et 73' des nombres de la forme

73 ccr H- ßs 73' oc'r + ß's

où r et s sont rationnels.
L'intérêt de ce dernier raffinement est le suivant: en choisissant

pour (a, ß) une base (1, co) des entiers d'un corps quadratique
réel K, l'hypothèse que K possède un algorithme d'Euclide

se traduit par l'existence, pour tout couple de rationnels r, 5,
d'au moins un couple d'entiers ordinaires u, v tels que la valeur
absolue de la norme de u + coe — (r + m) dans K soit
inférieure à 1, ce qui s'écrit:

I u + cop — (r + cos) Jj u 4- co'p — (r -f co's) | < 1

D'après ce qui précède, cette circonstance ne peut pas se réaliser
si le discriminant D du corps K vérifie l'inégalité

(01 — uyD > 5i2.



26 R. DESCOMBES

Il n'existe donc qu'un nombre fini de corps quadratiques réels
euclidiens. Une étude beaucoup plus détaillée, due à de
nombreux auteurs et achevée en 1952, a permis d'en dresser la liste :

ce sont les corps engendrés respectivement par les racines carrées
des entiers suivants: 2, 3, 5, 6, 7, 11, 13, 17, 19, 21, 29, 33, 37,
41, 57 et 73.

Professeur R. Descombes,
Institut de Mathématiques,

Université de Lille.
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