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PROBLEMES D’APPROXIMATION DIOPHANTIENNE !

par Roger DEscomMBES -

(Regu le 20 juillet 1960)

1. INTRODUCTION.

Considérons une circonférence de longueur un. A partir d’une
origine O sur cette circonférence, marquons les extrémités des
arcs dont les longueurs sont les multiples entiers positifs suc-
cessifs d’un nombre irrationnel £. Nous nous proposons d’étudier
de quelle fagon un point fixe P quelconque de la circonférence,
d’abscisse curviligne v, est approché par les sommets de la ligne
polygonale réguliére non fermée ainsi constituée. Si P est un
sommet de la ligne polygonale, éventuellement prolongée du
coté des multiples négatifs de &, c’est-a-dire si y = q & (mod. 1)
(¢ entier), P est approché de la méme facon que O; nous dirons
alors qu’on a affaire au cas homogéne. Si cette circonstance ne
se produit pas, nous dirons qu’il s’agit du cas non homogéne.

2. LE CAS HOMOGENE; RAPPEL DES RESULTATS.

Dans le cas homogene, la symétrisation de la ligne polygonale
par rapport au diamétre passant par O, ¢’est-a-dire 'introduction
des multiples ¢&, avec ¢ entier négatif, est sans importance.
D’autre part, on sait depuis longtemps (méthode des tiroirs de
DirrcurET, 1840) que pour une infinité de couples d’entiers p, q
(¢ # 0),ona|q (g€ — p) | < 1. Il est donc commode d’exprimer
les résultats a 'aide de la fonction définie sur les irrationnels par

¢c(§)=1lm |[q(¢&—p)|  (£irrationnel)

1) Conférence prononcée a Grenoble dans le cadre des « Journées Mathématiques
de Grenoble », 21-22 mai 1960.
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ou la limite inférieure est prise pour I’ensemble de tous les couples
d’entiers p, g tels que ¢ # 0. MARKOFF a prouvé en 1879 ( Math.
Annalen) que c (£) prend, entre sa borne supérieure 1/4/5 et
sa limite supérieure 1/3 une infinité de valeurs isolées, lorsque &
décrit I’ensemble des irrationnels. Les deux premiéres de ces
valeurs isolées, 1/4/5 et 1/4/8, avaient 6té communiquées peu
auparavant par KORKINE et ZOLOTAREFF 4 MARKOFF, mais ce
dernier a fourni un procédé récurrent pour les obtenir toutes.
Elles sont de la forme

4 —_—
P mn
ou lentier m,, qui tend vers l'infini avec n, prend les valeurs
successives

1, 2, 5, 13, 29, 34, 89, 169, 194, 233, 433, ...

0| =~

Ces valeurs sont tous les entiers positifs qui, associés en triplets
convenables, constituent les solutions en nombres entiers de
Péquation '

22 4+ y? + 22 = 3zyz.

En outre, chacune des valeurs de ¢ () strictement supérieures
a 1/3 n’est obtenue que par des irrationnels £ éguivalents 4 'un
quelconque d’entre eux, c’est-a-dire déduits de ce dernier par
une transformation homographique & coefficients entiers de déter-

minant égal & + 1. Ces nombres £ sont de plus tous quadratiques. -

3. RESULTATS DANS LE CAS NON HOMOGENGE,

Dans le cas non homogene, la symétrisation de la ligne poly-
gonale n’est plus indifférente, car elle equivaut au remplacement.
de v par — =. Plus précisément, en introduisant la fonection

¢c(&m) = lim |¢ (0 —y— M) | (€ irrationnel, % réel)
v # 0

ou la limite inférieure est prise pour I'ensemble de tous les couples
d’entiers, u, ¢ tels que ¢ £ 0, et la fonction -

et (Em) = lim o pk—y n |  (Eirrationnel,  réel)
v >0
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ou on se borne aux couples d’entiers u, ¢ tels que ¢ > 0, on a
¢ (&) =inf[c* (&, m), e (&, —m)].

Lorsque & décrit ’'ensemble des irrationnels, et v celui des réels
sous la condition v == ¢ £ (mod. 1), il n’est done pas surprenant
que la borne supérieure de ¢ (&, n) soit plus petite que la borne
supérieure 1/4/5 de ¢ (§) = ¢* (&, 0). En fait, MINKOWSKI a
prouvé en 1893 que cette borne supérieure de ¢ (&, n) est égale
a 1/4, et GracE a montré en 1916 qu’elle est en méme temps la
limite supérieure de c (&, v) dans les mémes conditions, ¢’est-a-
dire qu’elle n’est pas isolée dans I’ensemble des valeurs de ¢ (&,7),
contrairement a 1/4/5 dans celui des valeurs de ¢ (¥).

(’est seulement en 1926 que KHINTCHINE, puis MoRiMOTO
ont abordé le probleme des grandes valeurs de ¢t (&, ), dans la
perspective des résultats obtenus par Markorr dans le cas
homogene. Le premier résultat « précis » spécifique de ce pro-
bléeme non-homogeéne asymétrique a été obtenu en 1954 par
CasseLs (Math. Annalen, t. 127, pp. 288-304) qui a déterminé
la plus grande valeur de ¢* (£, ) dans le cas ot n == ¢ £ (mod. 1).
En fait, la fonction ¢ (&, n) présente un comportement analogue
a celul découvert par MArRkOFF pour ¢ (£). Elle prend entre sa
borne supérieure et sa limite supérieure une infinité de valeurs
isolées | |

1 27 1 359 37
V57 28477 4/87 454/510° 104/110
que j’'ai déterminées en 1956 (Annales Ec. Norm. Sup., t. 73,
pp. 283-355) & I'exception des deux premieres, dues respective-
ment & KHINTCHINE (1935) et CasseLs (1954).
- En outre, chacune des valeurs de ¢* (&, n) strictement supé-
rieures & sa limite supérieure

773 868 — 28 5474/510 _ 0359
366 795 -

n’est obtenue que pour des couples (&, v) équivalents & 'un quel-
conque d’entre eux, ¢’est-a-dire liés & lui par des transformations
homographiques & coefficients entiers convenables. Chacun de
ces couples est constitué de deux nombres &, n appartenant & un
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méme corps quadratique, et on peut méme choisir » rationnel,
égal par exemple dans les cing cas cités plus haut respectivement
a0, 1/14, 0, 1/90 et 1/10. Les valeurs 1/4/5 et 1/4/8 de ¢* (£, v)
correspondent donc en fait aux deux premiéres valeurs du cas
homogeéne; mais la limite supérieure de ¢+ (&, m) est plus grande
que la troisiéme valeur de ¢ () trouvée par MARKOFF.

4. METHODE DES SUITES DE MEILLEURE APPROXIMATION.

Une méthode générale utilisée dans ces questions consiste a
. choisir parmi tous les couples d’entiers une suite de couples qui
d’une part conduise & la limite inférieure notée ¢ (&) ouct (&, 7)
selon le cas, et qui d’autre part soit suffisamment maniable par
exemple calculable par récurrence. | |

La définition d’une telle suite est susceptible de plusieurs
variantes. Dans le cas du probléme homogéne, MARKOFF s’est
servi de la suite des réduites Pnlq, du développement de ¢ en
fraction continue ordinaire, qui sont déterminées comme on sait
par

g4 =0, qo = 1
py =1, Po = a9 = [£] (plus grand entier < &)
et -
Pp = @y Dy + Ppg In = U nq + 9y (n > 1)
ol o
an = [xn _ — qn_—Q E _ pn—Q] "
TIn—1 & — Pp_y

Du point de vue de Papproximation, la qualité essentielle de
la suite (p,, ¢,) tient a la propriété suivante, valable pour tous
les couples d’entiers (p, 9):

st (p,.q) # (0,0) et |98 =P [ < |2 &E—p,|, alors 7] > 2,4 -

Cette propriété, que nous traduirons en disant que la suite (p,,

n) est une suite de meilleure approximation pour £, implique
évidemment
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Quant a la maniabilité, en introduisant

In—2

Yn = —
" qn—1

on trouve, compte tenu de | p, ¢,y — P, g, | =1,

1

p—- l.m P
¢S —— &, tu,

n— -4
avec les formules de récurrence

1 1 [ ]
xn+1 ) yn+1 ’ ap 2
Z, a a,

n yn
qui peuvent s’écrire par la notation traditionnelle des fractions
continues ’

1 B 1
1 Yn = 1

oo S a. - 1
; -1
e L @po + .o + ——al

an—#i +

Ainsi, ¢ (§) est entiérement déterminé par la donnée, a partir
d’un rang arbitraire, de la suite des entiers a,, tous positifs,
sauf peut-étre a,; cette suite est le développement de £ en fraction
continue. A toute suite infinie d’entiers positifs correspond d’ail-
leurs un irrationnel £ dont elle est le développement en fraction

continue, et les grandes valeurs de ¢ (&) [disons c(&) > %] ne

s’obtiennent que dans les cas ou les a,, sont, & partir d’un certain
rang, tous égaux a 1 ou 2, comme le montrent les inégalités

Z, > a, et —1 =y, =0.
De facon plus précise, on vérifie sans peine que si ¢ (&) > 8

17 ®
tous les a, sont, & partir d’un certain rang, égaux a 1 auquel cas
n bl p b

1 , i 1
c (&) = ‘\‘/—3‘ , ou égaux & 2 auquel cas ¢ (§) = 7? : on obtient

ainsl les deux valeurs trouvées par KORKINE et ZOLOTAREFF.
Un examen beaucoup plus détaillé, mais fondé sur une technique
analogue, a fourni & MARKOFF les résultats indiqués plus haut.

En outre, I’équivalence de deux irrationnels & et &’ se carac-
térise par 'identité de leurs développements en fraction continue,
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a partir de rangs convenables; &, qu’on peut noter z,, est en
particulier équivalent & tous les z,. Enfin la périodicité (a partir
d’un certain rang) de la suite des a,, caractérise les irrationnels &
quadratiques. |

5. TECHNIQUE DU CAS NON HOMOGENE.

A la suite de méthodes analogues proposées par divers
auteurs (notamment Morimoro), CasseLs a utilisé pour le cas
non homogene une suite de quadruplets d’entiers (u,, ¢,, u,, ¢.)
~qu’on peut encore appeler suite de meilleure approximation du
couple (&, m) en ce sens que

c+(g,n)=inf[ lim o, |0, 8 —u,—n|, lim o O;E—u;——n”.
n— -4 o . n— 4 ©

En conservant les mémes notations que ci-dessus pour le déve-
loppement de I'irrationnel ¢ en fraction continue, et en posant
“n & — Up — 7 “n

z = et t =
n+1 gna — P, n+1 4, ’

on obtient ¢* (&, ) par

z, 1 ‘ % — [ P
et (£, n) = inf lim _nn . lim - ( 'n) (n yn)
s Fw TV ST T

avec les formules de récurrence

t

Zn+1 n+41

=z — 2z — b
n n n
Zn+1 Yn+1

Zyn—“tn—bn bn:—_[xn—-zn]\

& moins que b, , = a,_,, auquel cas ces formules de récurrence
doivent étre remplacées par

Zn-l—i tn+1
=1—z
x n

n+1 Yot

=1—1,.

Ainsi ¢* (£, n) est entiérement déterminé par la donnée, &
partir d'un rang arbitraire, de la suite des couples d’entiers
(@n, b,) (& I'exception des rangs n tels que b, , = a, ,, pour
lesquels &, n’est pas défini); cette suite est le développement du
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couple (&, m) et rend des services analogues & ceux qu’on peut
attendre du développement en fraction continue de £ dans le
cas homogeéne. En particulier, Péquivalence évoquée plus haut
de deux couples (£, 1), (£, n') se caractérise par l'identité de
leurs développements & partir de rangs convenables; (&, u),
qu’'on peut noter (x,, z,) est ainsi équivalent & tous les couples
(z,, 2,). L’appartenance de £ et n & un méme corps quadratique
est caractérisée par la périodicité du développement de (£, 7), a
partir d’un certain rang. L’éventualité du cas homogéne
[n = ¢q & -+ p avec p et ¢ entiers] se caractérise par b, = a, — 1
pour tout n assez grand.

Comme dans le cas homogéne, les grandes valeurs de ¢ (£, v)

[disons ct (&, 1) > 2—70] ne s’obtiennent que dans des circons- =

tances relativement simples: pour tout n assez grand, b, est
toujours défini, et le couple (a,, b,) ne peut prendre que les
quatre valeurs (1, 0), (2, 1), (3, 1) et (4, 2). Une étude minutieuse,
mais élémentaire, de la distribution de ces valeurs dans le déve-
loppement d’un couple (&, n) conduit aux résultats évoqués dans

le paragraphe 3.
6. APPLICATIONS.

Des méthodes algorithmiques trés analogues aux précédentes
permettent aussi un classement des valeurs de ¢* (&, ) ou de
¢ (&, m) lorsque & ou v restent fixes, I’autre élément du couple
variant. C’est ainsi que DAVENPORT et quelques-uns de ses éléves
ont déterminé entre 1948 et 1952 les bornes supérieures de
¢ (&, m) lorsque = décrit I’ensemble des réels, & restant fixe et tel
que c (&) soit égal a I'une des premieres valeurs trouvées par
MarkorF. En sens inverse, j’al déterminé avec Poitou, en 1954
(Bull. Soc. Math. Fr., t. 82, pp. 197-299), en fonction de v la
borne supérieure de c (&, m) lorsque & décrit I’ensemble des
irrationnels, n restant fixe et égal & un rationnel quelconque et,
dans les mémes conditions, la borne supérieure de ¢ (&, 7)
lorsque 7 est un rationnel de dénominateur au plus égal a 10.

De méme, DaveEnrorT, PrasaD et CasseELs ont obtenu en
1951 (cf. par exemple Proc. Cambridge Phil. Soc., t. 48, pp. 72-86)
les inégalités suivantes, qui améliorent des résultats antérieurs de
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KHINTCHINE et Morimoro (1926-27): .

inf [ sup ¢™ (&, ] > — et  inf [sup c™ (&, n)J > —
. & [ np (& ) 32 £ " ; 91

ou n décrit Pensemble des réels, puis £ ’ensemble des irrationnels.
Les constantes numériques des seconds membres de ces inéga-
lités ne sont d’ailleurs certainement pas les meilleures constantes
possibles, qui demeurent inconnues a ce jour. En revanche, on
peut, dans la derniére inégalité, remplacer ¢ (£, n) par

k(€,n) =inf o (vE—u—mn) ] =c(&,n)

ou la borne inférieure est prise pour 'ensemble des couples
d’entiers (u, ¢) tels que ¢ £ 0. Il revient donc au méme d’énoncer
le résultat suivant: si «, B, o', B’ sont quatre nombres réels
quelconques, il existe toujours deux nombres réels v et 7’ tels que

— B
51

| (eu + Bo—m) (0w + Po—7) | > L’

pour tous les couples d’entiers u, ¢. De plus, on peut prouver que
si o’ et " sont les conjugués de « et B dans un corps quadratique,
il est possible de choisir pour v et »’ des nombres de la forme

1= oar + fs W = or + B's

ou r et s sont rationnels.

L’intérét de ce dernier raffinement est le suivant: en choisis-
sant pour («, B) une base (1, ) des entiers d’un corps quadra-
tique réel K, I'hypothése que K posséde un algorithme d’Euclide
se traduit par I'existence, pour tout couple de rationnels r, s,
d’au moins un couple d’entiers ordinaires u, ¢ tels que la valeur
absolue de la norme de u + wy — (r + ws) dans K soit infé-
rieure & 1, ce qui s’écrit:

lu + wo— (r + ws) l[u+m’v—(r+w’s)|<1.

D’aprés ce qui préceéde, cette circonstance ne peut pas se réaliser
sile discriminant D du corps K vérifie Pinégalité

(0 —)2=D > 512,
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Il n’existe donc qu’un nombre fini de corps quadratiques réels
euclidiens. Une étude beaucoup plus détaillée, due a4 de nom-
breux auteurs et achevée en 1952, a permis d’en dresser la liste:
ce sont les corps engendrés respectivement par les racines carrées
des entiers suivants: 2, 3, 5, 6, 7, 11, 13, 17, 19, 21, 29, 33, 37,
41, 57 et 73.

Professeur R. DEscoMBES,
Institut de Mathématiques,
Université de Lille.
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