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THE’ORIE DE LA RELATIVITE RESTREINTE 293
5.. Cinématique relativiste.

Appelons &, E, E" respectivemént la vitesse absolue, la vitesse
d’entrainement et la vitesse relative d’un point
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Par dérivation de (4. 2) par rapport a z,, il vient
d?_dxod ey Ed‘?'ﬁJr B
de a dxo \/1___32 : . dx(; BZ ./1_52

Or (4. 1) donne
| dx, J1—B?

dxo 1+Eg,

11 vient ainsi
5 1 B.
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Cette relation montre que o, 8 et B’ sont coplanaires. On
peut la transformer de fagon & mettre en évidence au second

membre un vecteur paralléle a 78> et un autre orthogonal & _ﬁ:
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Si B est petit, on a en premiére approximation
o= B+p.
Cest la formule classique de la composition des vitesses en
mecamque newtomenne En théorie de la relativité, la relation

(5.1 &=

entre o B, B qui donne la loi relativiste de composition des

vitesses est plus compliquée. Elle entraine plusieurs consé-
quences:

1. Le carré du vecteur vitesse résultant a pour valeur
1—pHA—p?
(148 .82
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Pour § et B’ inférieurs & 1, «®><<1. Il est donc impossible par
composition de deux vitesses inférieures a celle de la lumiére,
de dépasser celle-ci.

2. Pour 8 =1 ou P’ =1, «> = 1. On voit que quelle que
soit la vitesse d’entrainement B, on obtient a® = 1, résultat qui
est bien en accord avec le principe de constance de la vitesse
de la lumiére. L

3. Dans le cas ou B et B’ sont colinéaires, on a la relation
algébrique

B+F
X = r
1488
(’est la relation établie par EinsTeiN. On remarque que ce

résultat correspond a la composition de deux rotations dans le
plan hyperbolique. En effet

Tho + The" B+
1+ ThoThe' 1+ 88"

La loi relativiste de composition des vitesses donne une
interprétation satisfaisante de la formule de FRESNEL relative &
Iexpérience de l’entrainement partiel de la lumiére par un
milieu réfringent en mouvement, comme elle rend compte par-
faitement de ’échec de I’expérience de MicHELSON.

o = Th(p+¢') =

6. Les vecteurs vitesse unitaire et accélération d’univers.

Un point matériel M en mouvement décrit dans 'espace-
temps V, une trajectoire d’univers C. Comme sa vitesse est
inférieure & ¢, 'arc s de trajectoire est tel que ds?*>0. On dit
que sa trajectoire est une courbe orientée dans le temps.

On appelle vecteur vitesse unitaire de M le vecteur de com-
posantes contravariantes

: ’ o dxa
6.1) | u* = A
On appelle vecteur accélération de M le vecteur de composantes
contravariantes
. aut
(6.2) =
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On interpréte immédiatement ces définitions en rapportant
’espace-temps V, & un repére lorentzien. On a

ds? = dx?2 —dx? —dx? —dx? = (1 —p2) dx}

ds* = \/1—@2de = J1—p%cdt .

soit

Par suite

1 . Th ‘
W=t = (i1=1,23)

J1—p? e J1—p?

ol désignent les composantes du vecteur vitesse ordinaire dans le
" repére de Galilée correspondant. On interpréte alors le vecteur
accélération d’univers J% Pour B petit c’est-a-dire ¢ petit
devant ¢, on a en premiére approximation les définitions clas-
siques. |

III. LA DYNAMIQUE DU POINT.

7. Le principe de U'inertie.

Supposons qu'un point matériel ait une accélération d’univers
constamment nulle. De ' |

1

y0 = 4_1 __y
o ds J1—p*
on tire B* = constant; puis de
v : i v—l =0
dsc\/l_——_ﬁi

on tire ¢* = const. Dans le repére de Galilée associé, le point M
a-un mouvement rectiligne uniforme. Cette propriété traduit le
principe de l'inertie en mécanique classique d’aprés lequel un
point matériel isolé a une accélération nulle c’est-a-dire un
mouvement rectiligne uniforme. La réciproque est immédiate.
Or si J* = 0, le point M décrit une droite ou géodésique de
I'espace-temps. On postule ainsi en relativité restreinte.
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