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II. LA CINEMATIQUE DU POINT.

4. Interprétation.

Les formules (3. 4) des transformations propres spéciales de
Lorentz peuvent étre interprétées en termes clasmques d’espace
et de temps.

Supposons que le point M €V, ait une projection d’espace liée
au repére (‘e,), ¢’est-a-dire telle que les z; restent constants. On
aura en différentiant la seconde équation de (3. 4a)

dx,

—Bdxy =0 it = —
Bdx, soi 7,

: : 7
En revenant a la variable ¢ (z, = ct), on voit que p = I

désigne la vitesse d’un point lié¢ au repére de Galilée (0, ;) dans
son mouvement, par rapport au repere de Galilée (0, ¢;). Comme
Ty = Xy, Ty = X3, €5 = e, €t ¢35 = e5. Par suite le second repére
de Galilée a ses axes 0’y’ et 0’2’ de méme direction et de méme
sens que les axes Oy et Oz du premier repére. de Galilée, I’axe
O’x’ étant orienté dans le sens de Oz glisse sur Oz avec la Vltesse
constante ¢.

Pour @ petit, on obtient en premiére approximation les for-
mules des transformations de Galilée

' =t
x = x—vt
y =y
' =7z,

Des formules de la transformation spéciale de Lorentz (3. 4),

on peut déduire une formule intrinséque en langage classique.
Il est clair que

’CDJr

i ¥

e =e; = —

™

B étant le vecteur vitesse réduite. Soit 7 = OM le vecteur
d’espace de composantes z; (i = 1, 2, 3) dans le premier repére
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de Galilée et 7' = O’ M le vecteur homologue de composantes z;
dans le second repére de Galilée. Nous avons

—)/’—>
/ -~ r.p

X _-—‘_;" e
1 * 1 B

Il vient de la premiére équation (3. 4b)

_ Xy —|—7~’.§
=

puis des trois équations suivantes, en formant la combinaison

4. 1) X,

in_éi :_;' .
= ___7/+ (on+x1_ ’ >

J1—

soit }
| NS, 1 7 .B> Xq -
4. 2) r=r 4+ |———1 2BB+ B.
J1— B2 3 J1—p2
On établit de méme les formules inverses:
Xo

(4.3) | Xo =

N 1 FRN N Xo =
44 rr=r+|l-—=-—-1—45"p — ———38
<J L= p >

Les formules (4.1) et (4.2) sous forme vectorielle ne
dépendent pas des rotations spatiales portant sur 'un ou I'autre
repére de Galilée. Elles constituent donc linterprétation en
termes classiques de la transformation propre la plus générale
de Lorentz. On notera cependant que cette interprétation est
faite dans la variété numérique V, non organisée, I'espace seul
est ’espace euclidien, le temps est un paramétre scalaire.

Les formules de transformation propre de Lorentz permettent
de calculer I'espace et le temps définis dans un repére de Galilée
par le principe de constance de vitesse, lorsqu’on connait son
mouvement par rapport & un autre repére de Galilée et ’espace
et le temps définis dans celui-ci.
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