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II. LA CINÉMATIQUE DU POINT.

4. Interprétation.
Les formules (3. 4) des transformations propres spéciales de

Lorentz peuvent être interprétées en termes classiques d'espace
et de temps.

Supposons que le point M eV4 ait une projection d'espace liée
au repère (e'a), c'est-à-dire telle que les restent constants. On
aura en difîérentiant la seconde équation de (3. 4a)

dx»
d*i — ß^*0 0 soit ß —

dxQ

En revenant à la variable t (xQ et), on voit que ß -, ç

désigne la vitesse d'un point lié au repère de Galilée (0', ~e[) dans
son mouvement par rapport au repère de Galilée (0,"e*). Gomme
x2 x2, x3 x3,~e2 ~e2 et~e3 ~e3. Par suite le second repère
de Galilée a ses axes O'?/' et OY de même direction et de même
sens que les axes Oy et Oz du premier repère de Galilée, l'axe
OY' étant orienté dans le sens de Ox glisse sur Ox avec la vitesse
constante e.

Pour ß petit, on obtient en première approximation les
formules des transformations de Galilée

t' t
x x — vt.

y' y

Des formules de la transformation spéciale de Lorentz (3. 4),
on peut déduire une formule intrinsèque en langage classique.
Il est clair que

- ß
ei= ei — —

ß

ß étant le vecteur vitesse réduite. Soit ~r OM le vecteur
d'espace de composantes xt (i 1, 2, 3) dans le premier repère
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de Galilée et ~r' 0'M le vecteur homologue de composantes x\
dans le second repère de Galilée. Nous avons

?.ß
Xl =r .ex

ß

Il vient de la première équation (3. 4b)

x0 + r • ß
(4. 1) x0

x/l-ß2
puis des trois équations suivantes, en formant la combinaison

I xt et — 7 :

Wi-ß2 /
soit

-* -* / 1 \ "r'• ß ^ x'0
(4.2) 7-=?+ l-T=-l —fß+ ,-^-ß.

W1—ß2 / ß yi-ß2
On établit de même les formules inverses :

*o - " ~r
(4.3) x0

V1 -ß2

^ r-' + (7r=7-')V?-
Les formules (4. 1) et (4. 2) sous forme vectorielle ne

dépendent pas des rotations spatiales portant sur l'un ou l'autre
repère de Galilée. Elles constituent donc l'interprétation en
termes classiques de la transformation propre la plus générale
de Lorentz. On notera cependant que cette interprétation est
faite dans la variété numérique V4 non organisée, l'espace seul

est l'espace euclidien, le temps est un paramètre scalaire.
Les formules de transformation propre de Lorentz permettent

de calculer l'espace et le temps définis dans un repère de Galilée

par le principe de constance de vitesse, lorsqu'on connaît son

mouvement par rapport à un autre repère de Galilée et l'espace
et le temps définis dans celui-ci.
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