Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 6 (1960)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: INTRODUCTION A LA THÉORIE DE LA RELATIVITÉ RESTREINTE

Autor: Quan, Pham Mau

Kapitel: II. La cinématique du point.

DOI: https://doi.org/10.5169/seals-36343

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 04.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

II. LA CINÉMATIQUE DU POINT.

4. Interprétation.

Les formules (3. 4) des transformations propres spéciales de Lorentz peuvent être interprétées en termes classiques d'espace et de temps.

Supposons que le point $M \in V_4$ ait une projection d'espace liée au repère $(\stackrel{\rightarrow}{e}'_{\alpha})$, c'est-à-dire telle que les x'_i restent constants. On aura en différentiant la seconde équation de (3. 4a)

$$dx_1 - \beta dx_0 = 0 \quad \text{soit} \quad \beta = \frac{dx_1}{dx_0}$$

En revenant à la variable t $(x_0 = ct)$, on voit que $\beta = \frac{\rho}{c}$, ρ désigne la vitesse d'un point lié au repère de Galilée $(0', \vec{e}_i')$ dans son mouvement par rapport au repère de Galilée $(0, \vec{e}_i)$. Comme $x_2' = x_2, x_3' = x_3, \vec{e}_2' = \vec{e}_2$ et $\vec{e}_3' = \vec{e}_3$. Par suite le second repère de Galilée a ses axes O'y' et O'z' de même direction et de même sens que les axes Oy et Oz du premier repère de Galilée, l'axe O'x' étant orienté dans le sens de Ox glisse sur Ox avec la vitesse constante ρ .

Pour β petit, on obtient en première approximation les formules des transformations de Galilée

$$t' = t$$

$$x' = x - vt$$

$$y' = y$$

$$z' = z$$

Des formules de la transformation spéciale de Lorentz (3. 4), on peut déduire une formule intrinsèque en langage classique. Il est clair que

$$\vec{e}_1 = \vec{e}_1' = \frac{\vec{\beta}}{\beta}$$

 β étant le vecteur vitesse réduite. Soit $\vec{r} = \overrightarrow{OM}$ le vecteur d'espace de composantes x_i (i = 1, 2, 3) dans le premier repère

de Galilée et $\overrightarrow{r}' = \overrightarrow{O'M}$ le vecteur homologue de composantes x'_i dans le second repère de Galilée. Nous avons

$$x_1' = \overrightarrow{r}' \cdot \overrightarrow{e}_1 = \frac{\overrightarrow{r}' \cdot \overrightarrow{\beta}}{\beta}$$

Il vient de la première équation (3.4b)

$$(4.1) x_0 = \frac{x_0' + \overrightarrow{r}' \cdot \overrightarrow{\beta}}{\sqrt{1 - \beta^2}}$$

puis des trois équations suivantes, en formant la combinaison $\sum x_i \stackrel{\rightarrow}{e}_i = \stackrel{\rightarrow}{r}$:

$$\vec{r} = \vec{r}' + \left(\frac{\beta x_0' + x_1'}{\sqrt{1 - \beta^2}} - x_1'\right) \vec{e}^1$$

soit

$$(4.2) \qquad \overrightarrow{r} = \overrightarrow{r}' + \left(\frac{1}{\sqrt{1-\beta^2}} - 1\right) \frac{\overrightarrow{r}' \cdot \overrightarrow{\beta}}{\beta^2} \overrightarrow{\beta} + \frac{x_0'}{\sqrt{1-\beta^2}} \overrightarrow{\beta}.$$

On établit de même les formules inverses:

(4.3)
$$x'_0 = \frac{x_0 - \vec{\beta} \cdot \vec{r}}{\sqrt{1 - \beta^2}}$$

$$(4.4) \quad \vec{r}' = \vec{r} + \left(\frac{1}{\sqrt{1-\beta^2}} - 1\right) \frac{\vec{r} \cdot \vec{\beta}}{\beta^2} \vec{\beta} - \frac{x_0}{\sqrt{1-\beta^2}} \vec{\beta}$$

Les formules (4.1) et (4.2) sous forme vectorielle ne dépendent pas des rotations spatiales portant sur l'un ou l'autre repère de Galilée. Elles constituent donc l'interprétation en termes classiques de la transformation propre la plus générale de Lorentz. On notera cependant que cette interprétation est faite dans la variété numérique V_4 non organisée, l'espace seul est l'espace euclidien, le temps est un paramètre scalaire.

Les formules de transformation propre de Lorentz permettent de calculer l'espace et le temps définis dans un repère de Galilée par le principe de constance de vitesse, lorsqu'on connaît son mouvement par rapport à un autre repère de Galilée et l'espace et le temps définis dans celui-ci.

5. Cinématique relativiste.

Appelons $\vec{\alpha}$, $\vec{\beta}$, $\vec{\beta}$ ' respectivement la vitesse absolue, la vitesse d'entraînement et la vitesse relative d'un point

$$\vec{\alpha} = \frac{d\vec{r}}{dx_0}$$
 $\vec{\beta} = \frac{d\vec{0}}{dx_0}$ $\vec{\beta}' = \frac{d\vec{r}'}{dx_0'}$.

Par dérivation de (4.2) par rapport à x_0 , il vient

$$\frac{\overrightarrow{dr}}{dx_0} = \frac{dx_0'}{dx_0} \left\{ \frac{\overrightarrow{dr'}}{dx_0'} + \left(\frac{1}{\sqrt{1-\beta^2}} - 1 \right) \left(\overrightarrow{\beta} \cdot \frac{\overrightarrow{dr'}}{dx_0'} \right) \frac{\overrightarrow{\beta}}{\beta^2} + \frac{\overrightarrow{\beta}}{\sqrt{1-\beta^2}} \right\}$$

Or (4.1) donne

$$\frac{dx_0'}{dx_0} = \frac{\sqrt{1-\beta^2}}{1+\vec{\beta}\cdot\vec{\beta}'}$$

Il vient ainsi

$$(5. 1) \quad \vec{\alpha} = \frac{1}{1 + \vec{\beta} \cdot \vec{\beta}'} \left\{ \sqrt{1 - \beta^2} \, \vec{\beta}' + (1 - \sqrt{1 - \beta^2}) \, \frac{\vec{\beta} \cdot \vec{\beta}'}{\beta^2} \, \vec{\beta} + \vec{\beta} \right\}$$

Cette relation montre que $\vec{\alpha}$, $\vec{\beta}$ et $\vec{\beta}$ sont coplanaires. On peut la transformer de façon à mettre en évidence au second membre un vecteur parallèle à $\vec{\beta}$ et un autre orthogonal à $\vec{\beta}$:

$$(5.1') \quad \vec{\alpha} = \frac{1}{1 + \vec{\beta} \cdot \vec{\beta}'} \left\{ \left(1 + \frac{\vec{\beta} \cdot \vec{\beta}'}{\beta^2} \right) \vec{\beta} + \sqrt{1 - \beta^2} \left[\vec{\beta}' - \left(\frac{\vec{\beta} \cdot \vec{\beta}'}{\beta^2} \right) \vec{\beta} \right] \right\}$$

Si β est petit, on a en première approximation

$$\vec{\alpha} = \vec{\beta} + \vec{\beta}'$$
.

C'est la formule classique de la composition des vitesses en mécanique newtonienne. En théorie de la relativité, la relation entre $\vec{\alpha}$ $\vec{\beta}$, $\vec{\beta}$ qui donne la loi relativiste de composition des vitesses est plus compliquée. Elle entraı̂ne plusieurs conséquences:

1. Le carré du vecteur vitesse résultant a pour valeur

$$\alpha^{2} = 1 - \frac{(1 - \beta^{2})(1 - \beta'^{2})}{(1 + \beta \cdot \beta')^{2}}$$

Pour β et β ' inférieurs à 1, $\alpha^2 < 1$. Il est donc impossible par composition de deux vitesses inférieures à celle de la lumière, de dépasser celle-ci.

- 2. Pour $\beta = 1$ ou $\beta' = 1$, $\alpha^2 = 1$. On voit que quelle que soit la vitesse d'entraînement β , on obtient $\alpha^2 = 1$, résultat qui est bien en accord avec le principe de constance de la vitesse de la lumière.
- 3. Dans le cas où $\vec{\beta}$ et $\vec{\beta}$ ' sont colinéaires, on a la relation algébrique

$$\alpha = \frac{\beta + \beta'}{1 + \beta\beta'}$$

C'est la relation établie par Einstein. On remarque que ce résultat correspond à la composition de deux rotations dans le plan hyperbolique. En effet

$$lpha = Th(\varphi+\varphi') = rac{Th\varphi+Th\varphi'}{1+Th\varphi\,Th\varphi'} = rac{eta+eta'}{1+etaeta'} \ .$$

La loi relativiste de composition des vitesses donne une interprétation satisfaisante de la formule de Fresnel relative à l'expérience de l'entraînement partiel de la lumière par un milieu réfringent en mouvement, comme elle rend compte parfaitement de l'échec de l'expérience de Michelson.

6. Les vecteurs vitesse unitaire et accélération d'univers.

Un point matériel M en mouvement décrit dans l'espacetemps V_4 une trajectoire d'univers C. Comme sa vitesse est inférieure à c, l'arc s de trajectoire est tel que $ds^2>0$. On dit que sa trajectoire est une courbe orientée dans le temps.

On appelle vecteur vitesse unitaire de M le vecteur de composantes contravariantes

$$(6. 1) u^{\alpha} = \frac{dx^{\alpha}}{ds}$$

On appelle vecteur accélération de M le vecteur de composantes contravariantes

$$(6.2) J^{\alpha} = \frac{du^{\alpha}}{ds}.$$

On interprète immédiatement ces définitions en rapportant l'espace-temps V_4 à un repère lorentzien. On a

$$ds^{2} = dx_{0}^{2} - dx_{1}^{2} - dx_{2}^{2} - dx_{3}^{2} = (1 - \beta^{2}) dx_{0}^{2}$$

soit

$$ds^2 = \sqrt{1 - \beta^2} \, dx_0 = \sqrt{1 - \beta^2} \, cdt$$
.

Par suite

$$u^{0} = \frac{1}{\sqrt{1-\beta^{2}}}$$
 $u^{i} = \frac{v^{i}}{c\sqrt{1-\beta^{2}}}$ $(i = 1, 2, 3)$

 v^1 désignent les composantes du vecteur vitesse ordinaire dans le repère de Galilée correspondant. On interprète alors le vecteur accélération d'univers J^{α} . Pour β petit c'est-à-dire v petit devant c, on a en première approximation les définitions classiques.

III. LA DYNAMIQUE DU POINT.

7. Le principe de l'inertie.

Supposons qu'un point matériel ait une accélération d'univers constamment nulle. De

$$\gamma^0 = \frac{d}{ds} \frac{1}{\sqrt{1 - \beta^2}} = 0$$

on tire $\beta^2 = constant$; puis de

$$\gamma^i = \frac{d}{ds} \frac{v^i}{c\sqrt{1-\beta^2}} = 0$$

on tire $v^i = \text{const.}$ Dans le repère de Galilée associé, le point M a un mouvement rectiligne uniforme. Cette propriété traduit le principe de l'inertie en mécanique classique d'après lequel un point matériel isolé a une accélération nulle c'est-à-dire un mouvement rectiligne uniforme. La réciproque est immédiate.

Or si $J^{\alpha} = 0$, le point M décrit une droite ou géodésique de l'espace-temps. On postule ainsi en relativité restreinte.