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288 PAHM MAU QUAN

Principe II. — Aucune expérience physique, mécanique ou élec-
tromagnétique, faite .a Uintérieur d’un repére de Galilée, ne
doit permetire de mettre en évidence le mouvement de ce repére
de Galilée par rapport a un autre.

Ce sont les conséquences mathématiques de ces deux prin-
cipes qui constituent la théorie de la relativité restreinte. Le
premier principe montre que I’espace et le temps possédent un
caractere relatif, et conduit a définir & partir de I’existence du
groupe de Lorentz, une structure géométrique pour la variété
espace-temps a quatre dimensions. Le second principe conduit
& donner aux équations de la mécanique et de I’électromagné-
tisme une forme géométrique indépendante de tout systéme de
coordonnées choisi pour rapporter 'espace-temps, de facon a ce
qu’elles restent en particulier invariantes par les transformations
de Lorentz.

2. L’espace-temps de MINKOWSKI.

L’espace-temps est une variété différentiable a quatre dimen-
sions V, sur laquelle est définie une métrique improprement
euclidienne de signature hyperbolique normale (+ — — —).
Rapportée a des coordonnées orthonormales (z,), cette métrique
a la forme

2.1 ds® = dx}— dx? — dx? — dx?

ou zo = ct, t étant la variable temps classique et ¢ la vitesse de
la lumiére dans le vide.

(est I'espace-temps de MiNnkowskI. Les coordonnées ortho-
normales (z,) sont appelées coordonnées lorentziennes. Le repére
associé s’appelle repeére lorentzien. L’axe des z, est axe de temps
et le 3-plan (z, z,, ;) 'espace associé. Nous réservons le terme
«repere galiléen » & tout repére du 3-plan espace en mouvement
de tranclation rectiligne uniforme au sens classique. Les variables
(2, 2y, o, x3) sont dites coordonnées galiléennes.

Il résulte de ces définitions et des principes I et II les énoncés
suivants.

1. Les changements de coordonnées loreniziennes permis sont
ceur qui laissent invariante la forme quadratique fondamentale
(2. 1). Ils forment le groupe de Lorentz.
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L’espace et le temﬂps sont relatifs & chaque repére lorentzien
et:diﬁérent d’un repeére a un autre. Leurs relations sont définies
par les formules de transformations de Lorentz.

2. Le déplacement d’une onde lumineuse est telle que ds? = 0.
Sa vitesse est donc invariante par changement de repére (c’est c).

Toute vitesse réelle est inférieure 4 celle de la lumiére, done
telle que ds?>0.

3. Le principe II entraine que toute loi mécanique ou électro-
magnétique s’exprime par une équation invariante par changement
de repére (ou indépendante du choix des coordonnées de V,) et
‘afortioriinvariante par les transformations. du groupe de Lorentz.
C’est ce qui conduit & Pexpression tensorielle des grandeurs en
relativité.

3. Le groupe de transformations de Lorentz.

Les transformations de Lorentz laissent invariante la forme
quadratique fondamentale dzg — dz? — dzi — dz?. On démontre
qu’a une translation prés, ce sont des transformations linéaires
de matrice a = (a,,)

X, =Ya,.x, ou x =ax
telles que
‘X' nx" = Yax)n (ax) = x'anax = 'xnx,
soit |
(3. 1) - ‘ana =,

ou v = (n,p) est la matrice d’éléments noo = 41, 0y = Mgy =
N33 = —1, Ny = 0 81 # .

Ces transformations forment le groupe dit général de Lorentz.
En fait on se limite & des transformations propres qui conservent
Porientation du temps et I'orientation de Iespace: elles sont
telles que ~

(3.2) gy =1 et deta=— 1.
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