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4. Une interprétation du principe de Thomson.

4. 1. Modifions d'une autre façon le problème physique
initial (§ 2): Découpons en lanières G3- la plaque homogène (fig. 5).

Ce découpage provoque
évidemment une diminution de

l'intensité. Quand Vintensité est-elle

inchangée Lorsque, initialement,
-»

aucun courant i grad <p ne
traversait les coupures, c'est-à-
dire si toutes les coupures sont des

lignes de flux de grad 9 (§ 2).

Appelons w (x, y) le potentiel

pour le problème modifié, Fig. 5

I l'intensité totale et J la chaleur
de Joule dégagée par seconde. On a w 0 sur T0, w 1 sur I\,

0 sur les coupures, A w — 0 dans chaque G3-.

On a encore J V • I I, donc D (cp) J I > I
J D (w).
Notre plaque se comporte à présent comme un système de

résistances Ri, Raj Rm connectées en parallèle :

m m
î S t S w.<car v !)•

1=1 3=1 1

Appelons la restriction de w à G,- ;

~ p à w
Ji D(^-> J

Fij

où ri}- est la partie de I\ qui borde G3.

4. 2. Considérons le cas limite où les lanières G}- sont de
largeur infinitésimale. Le découpage de G est alors équivalent à

un choixdes lignes de flux d'un champ vectoriel. Soit p un tel
champ, de divergence nulle;la direction de est déterminée en
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tout point; sa grandeur p p (s) est fonction de l'arc sur la
ligne de flux. L'équation div p 0 est donc équivalente à une
équation différentielle ordinaire, linéaire et homogène, pour p (5) ;

une solution est grad w (c'est-à-dire: grad dans la bande
infinitésimale G^); donc, dans G3-, p tj grad (tj est constante
dans Gj). Il s'ensuit, par l'inégalité de Schwarz, que

((f P-nds\

JJ p2 dxdy 2S D K' i
G 3

— D(w) I<I J= D (9),

nous avons donc bien une interprétation du principe de Thomson.

5. Un passage Thomson Dirichlet,
à l'aide des lignes de niveau y d'une fonction c

concurrente pour Dirichlet.

Dans le principe de Thomson ci-dessus, normons p en imposant

(j) nds 1 pour toute courbe fermée y séparant T0

Y

de I\; pour ces champs concurrents /?, on a

D (9) Max-> p2 dxdy

Admettons maintenant davantage de champs concurrents:

imposons la condition (j) p n ds 1 pour les seules lignes de

—
Y

niveau y de c; le maximum devient plus grand, et nous avons

D (9) < Max-> p2 dxdy'y1 ;

on peut montrer que le maximum à droite est maintenant égal
à D (u) (cf. § 3. 1), donc D (9) < D (u) < D (c), et nous retrouvons

bien le principe de Dirichlet.
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