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3. Une interprétation du principe de Dirichlet.

3. 1. Modifions le problème
physique du § 2 en introduisant
dans le domaine G des conducteurs
parfaits-Ylt Ya>-> ïn-t (% 2).
J'écrirai y0 T0, yn= I\. Cette
modification provoque évidemment

une augmentation de
l'intensité. Quand Vintensité est-elle

inchangée? Lorsque aucun courant Fi g. 2

ne parcourt les conducteurs yi5
c'est-à-dire si toutes les courbes yi sont des lignes de niveau
de 9 (.§ 2).

Appelons u (x, y) le potentiel pour le problème modifié,
I l'intensité et J la chaleur de Joule dégagée par seconde. On
a u const u{ sur la courbe y^ ; dans chaque bande Gf (entre
yi_! et yi), u (x, y) s'obtient à partir de ui_i et u{ en résolvant
un problème de Dirichlet (i — 1,2,..., n) ; les inconnues un_l
sont déterminées par les n — 1 conditions de conservation de

]a charge:

Flux à travers Flux à travers Gi + 1

(i 1, 2, n — 1).

On a encore J V • I »= I, donc

D (9) J I < T j D (u)

Notre plaque se comporte à

présent comme un système de n
résistances R? Rv. v. connectées

1 n- in
en série (fig. 3) :

y R R1 + R2 + ...+ Rn

3. 2. Modifions de nouveau le problème physique: Au lieu
de laisser des potentiels « naturels » s'établir librement sur les

Fig 3
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conducteurs y7-, nous imposons des potentiels arbitraires En
d'autres termes, nous connectons à la batterie toutes les extrémités

des résistances partielles
Ri (%• .4). r

Appelons ç (x, y) la solution Rn| zg: yn
du nouveau problème physique } n"v2-vn_1pi OC 2 _ u
(obtenue par résolution, dans =^i v2

chaque bande Gi? d'un problème p | "J'v^
de Dirichlet), et J la chaleur de j
Joule maintenant dégagée par

°ï0

seconde. Fig. 4

Il est intuitif que J > J ;

quand a-t-on Végalité Lorsque aucun courant ne parcourt les
conducteurs ajoutés ax, a2, ocn_1, c'est-à-dire si les potentiels
intermédiaires imposés vi sont égaux aux potentiels « naturels » u^.
La démonstration est simple et repose sur l'inégalité de Schwarz:

posons

2 Vi-1;
i

" Vi(2V,f _ _

V.
on a l'égalité si const, c'est-à-dire si l'intensité est la même

dans chaque G^: c'est précisément la condition qui, au § 3. 1,

déterminait les ut. On a donc

D (ç) > D (u) > D (9)

3. 3. Le principe de Dirichlet exprime précisément l'inégalité
DM > D (9) dans le cas limite où l'on a imposé toutes les lignes
de niveau de v et leur potentiel, c'est-à-dire lorsqu'on a imposé
la fonction v elle-même 1). On n'a l'égalité que si v 9.

i) A l'aide de toutes les lignes de niveau d'une fonction admissible v, on peut
construire une borne supérieure D (u) pour D (cp), meilleure que D (v): cf. O. Pôlya
et Gr. Szegö: Isoperimetric Inequalities in Mathematical Physics (Princeton University
Press, 1951), p. 47.
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