Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 5 (1959)

Heft: 4: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: SUR QUELQUES PRINCIPES EXTRÉMAUX DE LA PHYSIQUE

MATHÉMATIQUE

Autor: Hersch, Joseph

Kapitel: 3. Une interprétation du principe de Dirichlet

DOI: https://doi.org/10.5169/seals-35495

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

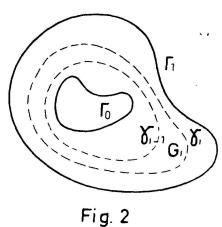
Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 16.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

- 3. Une interprétation du principe de Dirichlet.
- Modifions le problème physique du § 2 en introduisant dans le domaine G des conducteurs parfaits γ_1 , γ_2 ,..., γ_{n-1} (fig. 2). J'écrirai $\gamma_0 = \Gamma_0, \gamma_n = \Gamma_1$. Cette modification provoque évidemment une augmentation de l'in-, tensité. Quand l'intensité est-elle inchangée? Lorsque aucun courant ne parcourt les conducteurs γ_i ,



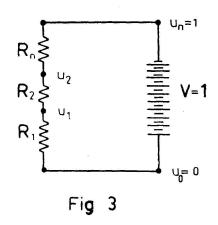
c'est-à-dire si toutes les courbes γ_i sont des lignes de niveau $de \varphi (\S 2).$

Appelons u(x, y) le potentiel pour le problème modifié, I l'intensité et J la chaleur de Joule dégagée par seconde. On a $u = \text{const} = u_i$ sur la courbe γ_i ; dans chaque bande G_i (entre γ_{i-1} et γ_i), u(x, y) s'obtient à partir de u_{i-1} et u_i en résolvant un problème de Dirichlet (i = 1, 2, ..., n); les inconnues $u_1, ..., u_{n-1}$ sont déterminées par les n — 1 conditions de conservation de la charge:

Flux à travers $G_i = Flux$ à travers G_{i+1} $(i = 1, 2, \ldots, n - 1).$

On a encore
$$\overline{J} = V \cdot \overline{I} = \overline{I}$$
, donc
 $D(\varphi) = J = I \leqslant \overline{I} = \overline{J} = D(u)$.

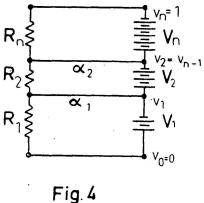
Notre plaque se comporte à présent comme un système de n résistances $R_i = R_{\gamma_{i-1} \gamma_i}$ connectées en série (fig. 3):



$$\frac{1}{\overline{I}} = \overline{R} = R_1 + R_2 + \dots + R_n.$$

Modifions de nouveau le problème physique: Au lieu de laisser des potentiels « naturels » u_i s'établir librement sur les conducteurs γ_i , nous imposons des potentiels arbitraires ρ_i . En d'autres termes, nous connectons à la batterie toutes les extrémités des résistances partielles R_i (fig. 4).

Appelons v (x, y) la solution du nouveau problème physique (obtenue par résolution, dans chaque bande G_i , d'un problème de Dirichlet), et $\overline{\overline{J}}$ la chaleur de Joule maintenant dégagée par seconde.



Il est intuitif que $\bar{\bar{J}} \gg \bar{J}$;

quand a-t-on l'égalité? Lorsque aucun courant ne parcourt les conducteurs ajoutés $\alpha_1, \alpha_2, ..., \alpha_{n-1}$, c'est-à-dire si les potentiels intermédiaires imposés v_i sont égaux aux potentiels « naturels » u_i . La démonstration est simple et repose sur l'inégalité de Schwarz: posons

$$\begin{split} \boldsymbol{\rho}_i - \boldsymbol{\rho}_{i-1} &= \mathbf{V}_i \, ; \quad \sum_1^n \, \mathbf{V}_i = 1 \, ; \\ \overline{\overline{\mathbf{J}}} &= \mathbf{D} \left(\boldsymbol{\rho} \right) \, = \, \sum_{i=1}^n \frac{\mathbf{V}_i^2}{\mathbf{R}_i} \geqslant \frac{(\boldsymbol{\Sigma} \, \mathbf{V}_i)^2}{\boldsymbol{\Sigma} \, \mathbf{R}_i} = \frac{1}{\overline{\mathbf{R}}} = \mathbf{D} \left(\boldsymbol{u} \right) = \overline{\mathbf{I}} = \overline{\mathbf{J}} \, ; \end{split}$$

on a l'égalité si $\frac{V_i}{R_i}$ = const, c'est-à-dire si l'intensité est la même dans chaque G_i : c'est précisément la condition qui, au § 3.1, déterminait les u_i . On a donc

D
$$(o) \ge D (u) \ge D (\phi)$$
.

3. 3. Le principe de Dirichlet exprime précisément l'inégalité $D(v) \gg D(\varphi)$ dans le cas limite où l'on a imposé toutes les lignes de niveau de v et leur potentiel, c'est-à-dire lorsqu'on a imposé la fonction v elle-même 1). On n'a l'égalité que si $v = \varphi$.

¹⁾ A l'aide de toutes les lignes de niveau d'une fonction admissible v, on peut construire une borne supérieure D (u) pour D (φ) , meilleure que D (v): cf. G. Pólya et G. Szegö: Isoperimetric Inequalities in Mathematical Physics (Princeton University Press, 1951), p. 47.