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3. UNE INTERPRETATION DU PRINCIPE DE DIRICHLET.

3. 1. Modifions le probleme
physique du § 2 en introduisant
dans le domaine G des conducteurs
parfaits vy, Yayery Ynog (fig. 2).
J’écrirai v, = [, v,= I';. Cette
modification provoque évidem-
ment une augmentation de Il'in-,
tensité. Quand [lintensité est-elle
inchangée? Lorsque aucun courant Fig. 2
ne parcourt les conducteurs -,
c’est-a-dire su toutes les courbes vy, sont des lignes de niveau
de ¢ (§ 2).

Appelons u (z,y) le potentiel pour le probléme modifié,

I Pintensité et J la chaleur de Joule dégagée par seconde. On
a u = const = u; sur la courbe v,; dans chaque bande G; (entre
Yi—y et v;), u (z, y) s'obtient & partir de u;,_, et u; en résolvant
un probléme de Dirichlet (i = 1,2, ..., n); les inconnues uy, ..., u, _,
sont déterminées par les » — 1 conditions de conservation de
]a charge:

Flux a travers Gi = Flux a travers Gi 1

‘ * ? Up=1

(i=1,2,...,n—1). R —L
On a encore J =V - I = I, done R, -2 % V=1
D)= =1<T=7=D (u R Uq =

Notre plaque se comporte 2
présent comme un sysiéme de n
résistances R; = R, connectées

]
(=)

. Fig 3
i1 Yi
en série (fig. 3):

=R=R,+Ry,+..+R,.

] -

3.2. Modifions de nouveau le probléeme physique: Au lieu
de laisser des potentiels « naturels » u, s’établir librement sur les
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conducteurs y;, nous imposons des potentiels arbitraires ¢;. En
d’autres termes, nous connectons a la batterie toutes les extre-

mités des résistances partielles
R, (fig. 4). -

A
Appelons ¢ (z, y) la solution RQ% = v,
du nouveau probléme physique ~ Vo= vy
(obtenue par résolution, dans R, ’ =

chaque bande G;, d’un probléme R

de Dirichlet), et J la chaleur de
Joule maintenant dégagée par
seconde. " Fig.4

<7 <K

T—'V\N\/'*—J r—’\t\ﬂ
}
i

L

o
"
o

Il est intuitif que J J;
quand a-t-on Uégalité ? Lorsque aucun courant ne parcourt les
conducteurs ajoutés oy, ay, ..., ,_;, ¢’est-a-dire si les potentiels
intermédiaires imposés v; sont égaux aux potentiels « naturels » u,.
La démonstration est simple et repose sur 'inégalité de Schwarz:
posons

n
0, — 9,y = V;; EV:
1

Ldl

n
. 1 — —
- S ® > R_=§=D<u>=I=J,

i=1 1

V., ) . ) .

on a I’égalité si Eﬁ = const, ¢’est-a-dire si 'intensité est la méme
i

dans chaque G;: c’est précisément la condition qui, au § 3.1,

déterminait les u;. On a donc

D (o) >D (u) >D (o) . .

3.3. Le principe de Dirichlet exprime précisément I’inégalité
D (¢) > D () dans le cas limite ou I’on a imposé toutes les lignes
de niveau de ¢ et leur potentiel, ¢’est-a-dire lorsqu’on a imposé
la fonction ¢ elle-méme !). On n’a P’égalité que si ¢ = o.

1) A Taide de toutes les lignes de niveau d’une fonction admissible v, on peut
construire une borne supérieure D (u) pour D (v), meilleure que D (v): cf. G. PéLyA
et G. Szeacd: Isoperimetric Inequalztzes in Mathematical Physics (Princeton University
Press, 1951), p. 47.
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